超磁致伸缩振动传感器的模型与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料Terfenol-D具有逆磁致伸缩效应,利用这种效应可以制作超磁致伸缩振动传感器。基于逆磁致伸缩效应的振动传感技术,很有可能开发出新一代的振动传感器,它可广泛应用于振动测试和主动振动控制领域,促进振动测试与振动控制技术的发展。本文选择了“超磁致伸缩振动传感器的模型与实验研究”这一既具有科学价值又具有工程实际意义的课题,以期对超磁致伸缩振动传感器的开发及应用提供支持。本文的主要工作如下:
     1、研究了振动传感器中的核心元件Terfenol-D在一定的偏置磁场下外压应力和应变的关系,结果表明当给Terfenol-D棒施加轴向偏置磁场时,应力与应变之间呈现复杂的非线性关系。由此关系引出杨氏模量随磁场的变化及ΔE效应,从磁性材料磁畴理论和磁导率入手,解释了偏置磁场下应力和应变的关系。进行了一定偏置磁场下外应力和磁感应强度的实验研究,实验结果表明偏置磁场为5kA/m时,磁感应强度最大。
     2、在Jiles-Atherton模型、电磁学原理和换能器系统的结构动力学原理的基础上,考虑交流驱动电流和动态应力的变化,建立了外加交流磁场和动态应力共同作用下的超磁致伸缩换能器的动态模型,利用该模型计算了描述动态磁场和动态应力共同作用下的换能器输出位移、输出力和感应线圈两端产生的感应电压的变化规律。
     3、当给换能器施加的磁场为驱动场,应力为常应力,换能器以致动器模式工作,利用上述模型计算了超磁致伸缩致动器的输入电流和输出应变(或位移),并进行了实验测试,计算结果和实验结果符合较好;当外加应力为动态应力,磁场为常量时,换能器以传感器模式工作,上述模型可用于确定磁致伸缩传感器的感应电压。
     4、进行了振动传感器的实验研究,确定传感器感应电压峰-峰值和传感器的驱动条件及偏置条件(偏置磁场和预应力)的关系,并把实验结果和理论计算值进行了对比,结果基本相符。采用平均法和五点三次平滑法对部分实验数据进行了平滑预处理,处理后采用傅立叶变换进行数字带通滤波,消除了白噪声。
     5、根据振动传感器的机电变换原理,结合惯性传感器的机械接收原理,建立了超磁致伸缩振动传感器的传递函数模型,该模型可以描述振动传感器的输出电压和输入振动信号的变化关系。进行了振动传感器的时域分析、频域分析和灵敏度分析。基于零极点配置的原理进行了振动传感器的低频特性补偿的仿真研究,为振动传感器的低频特性补偿提供了参数。
The giant magnetostrictive material Terfenol-D has a reverse magnetostrictive effect, and a magnetostrictive vibration sensor can be designed based on this effect. The vibration sensing technology, based on the reverse magnetostrictive effect, possibly develop a new vibration sensor to be widely used in vibration testing and vibration control, which would speed up the development in vibration testing and controlling. To provide the groundwork of the optimizing design and application of the magnetostrictive vibration sensor, the model and experiment of the sensor are selected as the subject of dissertation for Ph.D. The main research work is following:
     1. The relationship between strain and compressive stress under different bias magnetic fields of the core element Terfenol-D in magnetostricitve vibration sensor is researched. The results show that the relationship between them is complex and nonlinear when the longitudinal bias magnetic field acts on Terfenol-D, the Young’s modulus dependence of the magnetic fields andΔE effect are acquired from the relationship between strain and stress. The curve of strain and stress under variable bias magnetic fields is explained through magnetic domain theory and magnetic permeability. The experiments of the stress and magnetic induction under different bias magnetic fields are carried out, the results show that the magnetic induction is maximal when the bias magnetic field is 5kA/m.
     2. A model of giant magnetostrictive transducer under AC driving magnetic fields and dynamic stress is presented, based on the Jiles-Atherton model, the magnetic principle and the transducer’s structural dynamics principle. The output displacement, output force and the sensing voltage of the sensing coils are computed when the transducer is under both AC driving magnetic fields and dynamic stress.
     3. When the magnetic field is AC driving field and the stress is constant, the transducer works as an actuator, then the above mentioned model can be used to compute the relationship between the output displacement and the input current. The experiments of the transducer are processed, and it is found that the computing results and experimental ones are coincident on the whole. When the stress is dynamic and the magnetic field is constant, the transducer works as a sensor, and the above mentioned model can be used to compute the sensing voltage of the sensor.
     4. An experimental study on the sensing voltage of the sensor is carried out to determine the relationship between the peak to peak value of the voltage and the driving force as well as the bias magnetic field. Experimental data are in a good agreement with computing results. Some experimental data are processed beforehand with averaging method and five points-thrice smoothing technique, then they are filtered with Fourier transformation, and the white noise is eliminated.
     5. The transfer function of the magnetostrictive vibration sensor is founded based on the electromechanical transform theory of Terfenol-D and mechanical accepting theory of inertial sensor, the model can describe the change of sensor’s output voltage and input vibration. The time domain analysis, frequency domain analysis, and sensitivity analysis of the sensor are finished in the paper. The simulation of low frequency compensation is processed based on zero -pole configuration theory, and the parameter is useful to low frequency compensation of the sensor.
引文
[1] J. P. Joule. On a new class of magnetic forces. Ann. Electr Magn Chem.,1842,8:219-224
    [2]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003
    [3] Clark A E. Magnetostrictive rare earth-Fe2 compounds. Edited by E.P. Wohlfarth. New York: North-Holland Pubishing Company,1980
    [4]刘增民,林后植治.铁磁材料(卷1) .北京:电子工业出版社,1993:375-414
    [5] Clark A E,Belson H. Giant room-temperature magnetostrictions in TbFe2 and DyFe2. Phys.Rev.B,1972,5:3642-3648
    [6] List Prices for Etrema Terfenol-D,ETREMA PRODUCER, INC.,1991
    [7]贺西平.稀土磁致伸缩弯张换能器的设计理论及实验研究:[博士学位论文].西北工业大学,1999
    [8]杨大智.智能材料与智能系统.天津:天津大学出版社,2002,284-350
    [9]李陪,伍虹.国外稀土超磁致伸缩材料的研究状况.稀土,1990,11(6):52-59
    [10]钟文定.铁磁学.北京:科学出版社,1987
    [11]金绥更,刘湘林,蒋志红.稀土超磁致伸缩器件的设计与应用.稀土,1992,13(1):39-43
    [12]郭懋端.Terfenol-D的特性和应用.第一届全国磁性材料应用技术会议,1993年9月
    [13]王明沁.稀土功能材料的研究热点-超磁致伸缩材料.稀土,1991,12(6)
    [14]赵玉刚,平爵云,李碚.制备具有“跳跃效应”的Terfenol-D.金属功能材料,1997,6
    [15]高有辉,刘雨明,祝景汉,等. Tb0.27Dy0.73Fe2在恒场下磁致伸缩应变随压力变化曲线的诠释.金属功能材料,1997,5:220-223
    [16]贾振元,杨兴,武丹,等.超磁致伸缩执行器及其在流体控制元件中的应用.机床与液压,2000,2:3-4
    [17]郭东明,杨兴,贾振元,等.超磁致伸缩执行器在机电工程中的应用研究现状.中国机械工程,2001,12(6):724-727
    [18] www.txre.net
    [19] E. du Tremolet de lacheisserie. Magnetostriction,theory and applications of magnetoelasticity: CRC Press,1993
    [20]张洪平.稀土铁系超磁致伸缩材料的成分、工艺、结构、性质和应用研究:[博士学位论文].北京:冶金工业部钢铁研究总院. 1993
    [21]闫荣格.超磁致伸缩制动器特性的数值模型及其试验研究:[博士学位论文].天津:河北工业大学,2003
    [22]曹淑英.超磁致伸缩致动器的磁滞非线性动态模型与控制技术:[博士学位论文].天津:河北工业大学,2004
    [23]黄文美.超磁致伸缩换能器的动态模型及实验研究:[博士学位论文].天津:河北工业大学,2005
    [24] http://www.etrema-usa.com
    [25] www.toshiba.co.jp
    [26]夏春林,丁凡,路甬祥.超磁致伸缩材料驱动器实验研究.电工技术学报,1999,14(4):14-17
    [27]唐志峰.超磁致伸缩执行器的基础理论与实验研究:[博士学位论文].杭州:浙江大学,2005
    [28]唐志峰,项占琴,吕福在.稀土超磁致伸缩执行器优化设计及控制建模.中国机械工程,2005, 16(9):753-758
    [29]唐志峰,吕福在,项占琴.超磁致伸缩微位移驱动器的非线性迟滞建模及控制方法.机械工程学报,2007,43(6):55-61
    [30]孟爱华,项占琴,吕福在.偏置优化对Terfenol - D致动器性能的影响.中国机械工程,2005,16(18):1603-1606
    [31]余佩琼,刚宪约.稀土超磁致伸缩微致动器设计与实验.浙江工业大学学报,2005,33(4):407-410
    [32]余佩琼,梅德庆,陈子辰,等.超磁致伸缩微致动器结构优化与静态特性试验.农业机械学报,2005,36(7):114-117
    [33]李国平,陈子辰.超磁致伸缩驱动器输出特性的实验研究.兵工学报,2005,26(1):136-139
    [34]邬义杰,刘楚辉.超磁致伸缩驱动器设计准则的建立.工程设计学报,2004,11(4):187-191
    [35]邬义杰,徐杰.超磁致伸缩执行器热误差补偿及抑制方法研究.工程设计学报,2005,12(4):213-218
    [36]贾宇辉,谭久彬,张杰.超磁致伸缩微位移驱动器的研究.微细加工技术,2000,2:70-76
    [37]贾宇辉,谭久彬.超磁致伸缩微位移驱动器在纳米测量中应用的研究.压电与声光,2000,22(2):127-130
    [38]贾宇辉,谭久彬.超磁致伸缩材料微位移驱动系统的研究.仪器仪表学报,2000,21(1):38-41
    [39]贾宇辉,谭久彬.基于超磁致伸缩材料的微位移驱动器特性研究.中国机械工程,1999,10(11):1213-1215
    [40]杨兴.磁场与位移感知型超磁致伸缩微位移执行器及其相关技术研究:[博士学位论文].大连:大连理工大学,2001
    [41]杨兴,贾振元,郭东明.超磁致伸缩材料的伸缩特性及其磁感应强度控制原理及方法的实现.电工技术学报,2001,16(5):55-58
    [42]贾振元,杨兴,郭东明,等.超磁致伸缩材料微位移执行器的设计理论及方法.机械工程学报,2001,37(11):46-49
    [43]贾振元,王福吉,郭东明,等.功能材料驱动的微执行器及其关键技术.机械工程学报,2003,39(11):61-67
    [44]贾振元,杨兴,王福吉,等.具有位移感知功能的超磁致伸缩微位移执行器的研究.应用科学学报,2002,20(4):354-359
    [45]闫荣格,王博文,曹淑瑛,等.超磁致伸缩致动器的磁-机械强耦合模型.中国电机工程学报,2003,23(7):107-111
    [46]曹淑瑛,王博文,闫荣格,等.超磁致伸缩致动器的磁滞非线性动态模型.中国电机工程学报, 2003,23(11):145-149
    [47]曹淑瑛,王博文,郑加驹,等.应用混合遗传算法的超磁致伸缩致动器磁滞模型的参数辨识.中国电机工程学报,2004,24(10):127-132
    [48]黄文美,王博文,曹淑瑛,等.计及涡流效应和应力变化的超磁致伸缩换能器的动态模型.中国电机工程学报,2005,25(16):132-136
    [49]翁玲,王博文,孙英,等.超磁致伸缩致动器动态特性分析与实验研究.河北工业大学学报,2005,34(5):14-17
    [50]翁玲,王博文,孙英,等.超磁致伸缩致动器的输出位移与其控制研究.仪器仪表学报,2006,27(7):800-803
    [51]曹淑瑛,郑加驹,王博文,等.基于动态递归神经网络的超磁致伸缩驱动器精密位移控制.中国电机工程学报,2006, 26(3):106-111
    [52]孙英,王博文,翁玲,等.超磁致伸缩致动器动态线性模型及实验验证.中国电机工程学报,2007,27(18): 96-101
    [53]鲍芳,李继容,王春茹.磁致伸缩器件及其应用研究.传感器技术,2001,20(8):1-3
    [54]卢全国,陈定方,钟毓宁,等.超磁致伸缩致动器热变形影响及温控研究.中国机械工程,2007,18(1):16-19
    [55]卢全国,陈定方,陈昆,等.基于Preisach修正模型的GMA前馈补偿研究.武汉理工大学学报,2007,29(1):48-51
    [56]袁惠群,李鹤,周硕,等.超磁致伸缩材料换能器的非线性特性.东北大学学报:自然科学版, 2002,22(4):404-407
    [57]朱金才,顾仲权.磁致伸缩作动器的设计及其动态特性研究.南京航空航天大学学报,1998,30(4):413-418
    [58]顾仲权,朱金才,彭福军,等.磁致伸缩材料作动器在振动主动控制中的应用研究.振动工程学报,1998,11(4):381-388
    [59]徐峰,张虎,蒋成保,等.超磁致伸缩材料作动器的研制及特性分析.航空学报,2002,23(6):552-555
    [60]李超,李琳.磁致伸缩材料作动器用于主动振动控制的实验研究.航空动力学报,2003,18(1):134-139
    [61] Tianli Zhang,Chengbao Jiang, Hu Zhang,et.al. Giant magnetostrictive actuators for active vibration control.Smart materials and Structures,2004,13:473-477
    [62] Frederick T. Calkins,Alison B. Flatau.Terfenol-D sensor design and optimization
    [63]樊长在.超磁致伸缩逆效应与传感技术研究:[博士学位论文].天津:河北工业大学,2007
    [64] Yoshio Yamamoto, Hiroshi Eda, Teruo Mori,et.al.Three-dimensinal magnetostrictive vibration sensor: development, analysis, and applications.Journal of alloys and compounds, 1997,258:107-113
    [65] Viktor Berbyuk , Jayesh Sodhani . Towards modelling and design of magnetostrictive electric generators.Computers and Structures,In Press,Corrected Proof,Available online 9 March 2007
    [66] Goran Engdahl. Handbook of Giant Magnetostrictive Materials.Sa Diego:Academic Press, 2002:12-254
    [67] F.Claeyssen., N.Lhermet., R.Le Letty..Actuators, transducers and motors based on giant magnetostrictive materials.Journal of Alloys and Compounds,1997,258:61~73
    [68] Dubus B, Bigotte P,Claeyssen F. Low-frequency magnetostrictive projectors for oceanography and sonar. 3 rd European conference on underwater acoustics:Heraklion,1996,1019-1024
    [69] Derac Son , Yuk Cho. . Under Water Sonar Transducer Using Terfenol-D Magnetostrictive Material.Journal of Magnetics,1999,4(3):98-101
    [70] A.B.Flatau, M.J.Dapino, Frederick T.Calkins. High bandwidth tenability in a smart vibration absorber.Proceedings of SPIE on Smart Structures and Materials,1998, 3329:19-30
    [71] Patrick P.Downey,M.J.Dapino,R.C.Smith.Analysis of hybrid PMN/Terfenol broadband transducers in mechanical series configuration. Proceedings of SPIE,2003,5049:168-179
    [72] A G Olabi,A Grunwald. Design and application of magnetostrictive materials. Materials and Design,2007
    [73] Jon pratt,Alison B.Flatau. Development and analysis of a self-sensing magnetostrictive actuator design. Proceedings SPIE, 1993,1917:952~961
    [74] Bernd Clephas , Hartmut Janocha . Simultaneous sensing and actuation of a magnetostictivetransducer.Proceedings of SPIE,1998,3329:174-184
    [75]苑德福,马兴隆.磁性物理学.北京:电子工业出版社,1999
    [76] B.W. Wang, S.C. Busbridge,Y.X. Li,et.al.Magnetostriction and magnetisation process in Tb0.27Dy0.73Fe2 single crystal.J. Magn. Magn. Mater., 2000,218(2-3):198
    [77] B.W. Wang, S.C. Busbridge,Z.J. Guo,et.al.Magnetization processes and magnetostriction of Tb0.27Dy0.73Fe2 single crystal along <110> direction. J. Appl. Phys., 2003,93(10):8979
    [78] B.W. Wang,L. Weng,S.Y. Li,et.al.Dynamic characteristics of Tb-Dy-Fe crystal with <110> axial alignment.Proceedings of The Fifth Pacific Rim International Conference on Advanced Materials and Processing:Beijing,2004:475-479
    [79] Shouzeng Zhou,Xuexu Gao, Maocai Zhang,et.al.Giant magnetostrictive of Tb-Dy-Fe polucrystals with <110> axial alignment. J. Mater. Sci. Technol.,2000,16(2):175
    [80] Marilyn Wun-Fogle, James B.Restorff, Arthur E. Clark. Magnetomechanical damping capacity of TbxDy1-xFe1.92(0.30≤x≤0.50) alloys. IEEE Trans. Magn.,2003,39(9):3408
    [81] Xue Feng, Dai-Ning Fang, Keh-Chih Hwang. Ferroelastic properties of oriented TbxDy1-xFe2 polycrystals. Appl. Phys. Lett., 2003,83:3960
    [82] Rick Kellogg, Alison Flatau. Blocked force investigation of a Terfenol-D transducer. SPIE’s Annual International Symposium on Smart Structures and Materials, 1999, 3668:19
    [83] Rick Kellogg, Alison Flatau. Stress-strain relationship in Terfenol-D. Proceedings of SPIE on Smart Structures and Materials,Newport Beach,CA,2001,4327:541
    [84] S Chakraborty, G R Tomlinson. An initial experimental into the change in magnetic induction of a Tefenol-D rod due to external stress. Smart Mater. Struct., 2003,12:763-768
    [85] M.J.Dapino , A.B.Flatau , Frederick T.Calkins . Statistical analysis of Terfenol-D material properties.Proceedings of SPIE,1996,3041:256-267
    [86] LeAnn E.Faidley,Brian J.Lund,A.B.Flatau,et.al.Terfenol-D elasto-magnetic properties under varied operating conditions using hysteresis loop analysis.Proceedings of SPIE,1998,3329:92-102
    [87] Nersesse Nersessian, Sin-Wing Or, Gregory P.Carman. Magneto-thermo-mechanical characterization of 1-3 type polymer-boned Terfenol-D composites. J. Magn. Magn. Mater., 2003,263:101-112
    [88] G. P. Carman, M. Mitrovic.Nonlinear Constitutive Relations for Magnetostrictive Materials with Application to 1-D Problems. J. Intelligent Mat Syst & Stru, 1995,6:673-684
    [89] D. C. Jiles, D. L. Atherton.Ferromagnetic Hysteresis.IEEE Trans. Magn.,1983,19(5):2183-2185
    [90] D. C. Jiles,D. L. Atherton.Theory of Ferromagnetic Hysteresis. J. Magn. Magn. Mater., 1986,61: 48-60
    [91] M. J. Sablik,H. K wun, G. L. Burkhardt,et.al. Model for the Effect of Tensile and Compressive Stress on Ferromagnetic Hysteresis. J. Appl. Phys., 1987,61(8):3799-3801
    [92] M. J. Sablik, D. C. Jiles. A Model for Magnetostriction Hysteresis. J. Appl. Phys., 1988,64(10): 5402-5404
    [93] D. C. Jiles. Introduction to Magnetism and Magnetic Materials. New York:Chapman and Hall,1991
    [94] D. C. Jiles, J. B. Thoelke, M. K. Devine. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans. Magn., 1992,28(1):27-35
    [95] M. J. Sablik, D. C. Jiles. Coupled Magnetoelastic Theory of Magnetic and Magnetostrictive Hysteresis. IEEE Trans. Magn., 1993,29(3):2113-2123
    [96] D.C.Jiles. Modeling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media. IEEE Trans. Magn., 1994,30(6):4326-4328
    [97] I.D. Mayergoyz,G. Frienman. Generalized Preisach Model of Hysteresis(invited) .IEEE Transactions on Magnetics,1988, 24(1):212~217
    [98] E.Della Torre. Preisach modeling and reversible magnetization. IEEE Transactions on Magnetics, 1990,26(6):3052~3058
    [99] I.D. Mayergoyz, Vector Preisach hysteresis models(invited). Journal of Applied Physics, 1988, 63(8):2995~3000
    [100] D. C. Jiles. Theory of the Magnetomechanical Effect.Journal of Applied Physics, 1995, 28:1537-1546
    [101] L.Li,D.C.Jiles.Modeling of magnetomechanical effect: Application of Rayleigh law to the stress domain.Journal of Applied Physics, 2003, 93(10):8480-8482
    [102] D.C.Jiles, L.Li. A new approach to modeling the magnetomechanical effect. Journal of Applied Physics, 2004,95(11):7058-7060
    [103] ETREMA Products Inc. .Terfenol-D magnetostrictive actuator information. Specifications, Public domain information. Available from: www.eterma-usa.com.
    [104] R.C.Smith.Modeling techniques for magnetostrictive actuators.Proceedings of SPIE,1996,3041:243-253
    [105] M.J.Dapino,R.C.Smith,A.B.Flatau. An avtive and structural strain model for magnetostrictivetransducer. Proceedings of SPIE,1998, 3329:198-209
    [106] M.J.Dapino,Frederick T.Calkins,A.B.Flatau.On identification and analysis of fundamental issues in Terfenol-D transducer modeling.Proceedings of SPIE,1998,3329:185-197
    [107] F.T. Calkins, R.C. Smith, A.B. Flatau. Energy-Based Hysteresis Model for Magnetostrictive Transducers. IEEE Trans. Magn., 2000,36(2):429-439
    [108] M.J.Dapino , R.C.Smith , A.B.Flatau . Structural magnetic strain model for magnetostrictive transducer.IEEE Trans. Magn., 2000,36(3):545-556
    [109] LeAnn E.Faidley,M.J.Dapino,A.B.Flatau.Characterization of a small Terfenol-D transducer in mechanically blocked configuration.Proceedings of SPIE,2001, 4327:521-532
    [110] L.A.L.Almeida,G.S.Deep,A.M.N.Lima, et.al. Modeling a magnetostrictive transducer using genetic algorithm. J. Magn. Magn. Mater., 2001,266-230:1262-1264
    [111] Dapino M J, Smith R C, Calkins F T,et.al. A magnetoelastic model for Villari-effect magnetostrictive sensors. Journal of Intelligent Material Systems and Structures, 2002,13(11):737-748
    [112]刘习军,贾启芬.工程振动理论与测试技术.北京:高等教育出版社,2006
    [113]秦树人.机械工程测试原理与技术.重庆:重庆大学出版社,2002
    [114]师汉民.机械振动系统——分析?测试?建模?对策(上册).武汉:华中科技大学出版社,2004
    [115]师汉民.机械振动系统——分析?测试?建模?对策(下册).武汉:华中科技大学出版社,2004
    [116]陆兆峰,秦旻,陈禾,等.压电式加速度传感器在振动测量系统的应用研究.仪表技术与传感器,2007(7):3-5
    [117]李智慧,姜印平,邵磊.新型压电加速度传感器.传感技术学报,2003,9(3):344-347
    [118]黄朋生,任天令,楼其伟,等.三维压电加速度传感器的设计.压电与声光,2003,25(5):379-381
    [119]刘京诚,刘俊,李敏.基于压电式新型三维力传感器的设计.压电与声光,2005,27(6):643-645
    [120]席占稳.压阻式硅微型加速度传感器的研制.传感器技术,2003,22(11):31-33
    [121]金桐,赵新,谭宜勇.一种电容式微加速度计的结构设计和工艺仿真.传感技术学报,2006,19(5):2177-2185
    [122]刘海涛,温志渝,温中泉.电容式微加速度传感器信号处理电路的设计.传感技术学报,2006,19(5):2190-2196
    [123]刘胜春,姜德生,李盛.新型光纤光栅振动传感器测试斜拉索索力.武汉理工大学学报,2006,28(8):110-113
    [124] F T Calkins, M J Dapino,A B Flatau. Effect of prestress on the dynamic performance of a Terfenol-D transducer. SPIE’s 1997 Symposium on Smart Structures and Materials, 1997,3041:23
    [125] Xue Feng,Daining Fang,Keh-Chih Hwang.An Analytical Model for Predicting Effective Magnetostriction of Magnetostrictive Composites.Modern Physics Letters B,2002,28(29):1107-1114
    [126] Zhengning Wang,Xue Feng,Wenmin Ren,et.al.Mangnetostrictive propenrties of TbDyFe alloys along the direction perpendicular to the magnetic field.Modern Physics Letters B,2005,19(4):163-167
    [127]张智祥.多参数磁测量系统的研制:[硕士学位论文].天津:河北工业大学, 2002
    [128]孙涵芳,徐爱卿.MCS51/96系列单片机原理与应用.北京:北京航空航天大学出版社,1987
    [129]李庆扬,王能超,易大义.数值分析.武昌:华中科技大学出版社,2002
    [130] HUANG Wen-mei,WANG Bo-wen,CAO Shu-ying,et al.Dynamic Strain Model With Eddy Current Effects for Giant Magnetostrictive Transducer.IEEE Transactions on Magnetics,2007,43(4): 1381-1384
    [131] Huang Wen-mei,Wang Bo-wen,Cao Shuying,et al.Dynamic strain model for giant magnetostrictive transducer.Proceeding of the third international symposium on magnetic industry, Shenyang,China Oct.4-8,2004:143-145
    [132]刘德忠,费仁元,李剑峰,等.磁致伸缩微动驱动器的研制.北京工业大学学报,2002,28(4):405-408
    [133]王济,胡晓. MATLAB在振动信号处理中的应用[M].北京:中国是水利水电出版社,2006
    [134]胡寿松.自动控制原理.北京:国防工业出版社,1997
    [135]薛定宇.反馈控制系统分析与设计-MATLAB语言应用.北京:清华大学出版社,2000
    [136]余水宝.超低频绝对振动传感器传递函数优化技术研究.仪器仪表学报,2006,27(8):940-942
    [137]佘天莉,侯兴民,杨学山.测振传感器的低频特性补偿研究.传感器与微系统,2006,25(11):35-39
    [138]徐科军,李成,朱志能,等.机器人腕力传感器动态响应的实时补偿.自动化学报,2001,27 (5): 705 - 709
    [139]董文瀚,董新民,肖晓波.基于虚拟仪器技术的某型飞机电传模拟器传感系统动态特性补偿仪.仪表技术与传感器,2002,(7):180 - 20
    [140]徐科军,张颖,江敦明,等.腕力传感器动态补偿的两种自适应方法.机器人,1997,19(4) :2710 - 276
    [141]徐科军.传感器动态特性的实用研究方法.合肥:中国科学技术大学出版社,1999
    [142]才海男,周兆英,李勇,等.加速度传感器的动态特性软件补偿方法研究.仪器仪表学报,1998,19(3):263-267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700