难溶性药物理化性质对其纳米混悬剂生物利用度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
BCS Ⅱ类药物的纳米化是增加其溶出速度以及生物利用度的有效手段。本研究选取盐酸瑞伐拉赞为模型药物,通过高压均质法制备了盐酸瑞伐拉赞的纳米混悬剂,考察了制备工艺对其混悬剂粒径的影响,并对盐酸瑞伐拉赞的纳米混悬剂、微米混悬剂和粗混悬剂的大鼠体内药动学进行了考察。结果显示,盐酸瑞伐拉赞纳米混悬剂的大鼠体内生物利用度显著高于其微米混悬剂和粗混悬剂,证明了药物粒径会影响盐酸瑞伐拉赞的体内吸收,纳米混悬剂是提高盐酸瑞伐拉赞的生物利用度的有效手段之一。
     在上述研究基础上,以分子量、熔点、loge和分子极性表面积等理化性质均不相同的BCS Ⅱ类药物阿苯达唑、非诺贝特、伊曲康唑、普罗布考和盐酸瑞伐拉赞为模型药物研究水难溶性药物的物理化学性质对其纳米混悬剂体内吸收的影响。本研究以泊洛沙姆188(poloxamer188)为唯一的稳定剂,采用高压均质法制备粒径约为450nn (428nm-463nm)的药物纳米混悬剂,以排除制备工艺、处方因素和药物粒径对纳米混悬剂体内吸收的干扰。采用差示扫描量热法(DSC)和粉末X射线衍射法(PXRD)对上述药物纳米晶体进行晶体学研究,结果表明药物纳米晶体与原料药粉末晶形相同,证实纳米混悬剂的制备过程并没有改变药物的晶形,从而排除药物晶形对药物吸收的干扰。在此基础上,本研究考察了药物纳米混悬剂和微米混悬剂在溶出介质FaSSIF中的溶出度和大鼠体内药物动力学行为。结果表明药物的纳米混悬剂较其微米混悬剂具有更高的溶出速度和生物利用度,并且发现120min时药物纳米混悬剂和微米混悬剂溶出量的比值的dissolvednano/dissolvedmicro与两种混悬剂AUC0-t的比值AUC0-t nano/AUC0-t micro呈显著线性关系,证明药物纳米混悬剂在FaSSIF中的溶出行为能在一定程度上预测其在体内的吸收情况。FaSSIF可能是研究难溶性药物纳米混悬剂体内外相关性的适宜溶出介质。
     为了得到药物物理化学性质与其纳米混悬剂体内吸收的关系,本研究借助于统计学方法和Matlab2009可视化软件考察了药物的物理化学性质(分子量、熔点、logP和分子极性表面积)与药物纳米混悬剂生物利用度之间的关系。结果表明当药物的熔点越低、logP值在5左右、分子极性表面积值在50-60A2之间时药物纳米混悬剂的AUC0-t越大,即生物利用度越高。
     综上所述,粒径是影响难溶性药物吸收的重要因素,纳米混悬剂能够提高药物的体内生物利用度;药物的熔点、logP和分子极性表面积对难溶性药物纳米混悬剂的体内吸收影响很大。本课题为后续研究理化性质对难溶性药物纳米混悬剂体内吸收的影响提供了新的思路。
Nanosizing of BCS II drugs is an effective way to improve their dissolution rate and bioavailability. Revaprazan hydrochloride nanosuspension was prepared by high pressure homogenization to investigate whether the the nanosuspension strategy is a good way to improve its bioavailability. The influence of homogenization pressure and cycles on particle size were studied as well. Higher pressure and more homogenization cycles favored the decrease of drug particle size, but there were optimal pressure and cycle numbers beyond which the particle size would not decrease. Three different sized revaprazan hydrochloride suspensions were prepared and the in vitro and in vivo evaluations were carried out. The nanosuspensions gained the highest dissolution rate and bioavailability. The results reveal that drug particle size affects the drug absorption and the nanosuspension could improve the bioavailability of revaprazan hydrochloride.
     In order to investigate the influence of drug physicochemical properties on bioavailability of water insoluble drug nanosuspensions, albendazole, fenofibrate, itraconazole, probucol and revaprazan hydrochloride were selected as model drugs. Due to the poor water solubility the bioavailability of the model drugs are very low. As BSC II drugs their bioavailability could be improved by nanosuspension strategy. The drug nanosuspensions were prepared by high pressure homogenization using the same stabilizer(poloxamer188) and were similar in particle size(around450nm). So the interference from stabilizer and particle size on drug absorption were excluded. DSC and powder X-ray diffraction study showed that the crystalline state of the freeze dried nanoparticles did not change. As a result the interference of crystalline state on drug absorption were excluded either. Based on this the in vitro dissolution in FaSSIF and in vivo bioavailability study in rats were performed. The results showed that the nanosuspensions demonstrated higher dissolution rate and bioavailability compared with the corresponding microsuspensions. Besides, it was found that the dissolvednano/dissolvedmicro in120min was significantly correlated with AUC0-t nano/AUC0-t micro, which revealed that dissolution in FaSSIF could in some extent predict the absorption of the drug nanosuspension. FaSSIF may be a suitable dissolution medium for in vitro-in vivo correlation study of drug nanosuspensions.
     In order to find the relationship between the bioavailability of the drug nanosuspensions and the drug physicochemical properties (molecular weight, melting point, logP and polar surface area) the statistical analysis were performed. After multi-linear regression analysis and interpolated surface analysis it was found that the drug with smaller melting point, logP value around5and polar surface area value in the range of50-60would gain higher AUC0-t nano and accordingly higher bioavailability.
     In summary, particle size played an important in drug absorption and melting point, logP and polar surface area were factors that influence the bioavailability of water insoluble drug nanosuspensions in this study. This study gives an excellent resolution in studying the influence of drug physicochemical properties on bioavailability of water insoluble drug nanosuspensions.
引文
[1]C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced drug delivery reviews,23 (1997) 3-25.
    [2]G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharmaceutical research,12 (1995) 413-420.
    [3]C.A. Lipinski, Poor Aqueous Solubility-an Industry Wide Problem in ADME Screening, American Pharmaceutical Review,5 (2002) 82-85.
    [4]E.R. Cooper, Nanoparticles:a personal experience for formulating poorly water soluble drugs, Journal of Controlled Release,141 (2010) 300-302.
    [5]E. Merisko-Liversidge, Nanocrystals:resolving pharmaceutical formulation issues associated with poorly water-soluble compounds, Particles. Orlando:Marcel Dekker, (2002).
    [6]D.M. Stovall, C. Givens, S. Keown, K.R. Hoover, R. Barnes, C. Harris, J. Lozano, M. Nguyen, E. Rodriguez, W.E. Acree, Solubility of crystalline nonelectrolyte solutes in organic solvents: mathematical correlation of 4-chloro-3-nitrobenzoic acid and 2-chloro-5-nitrobenzoic acid solubilities with the Abraham solvation parameter model, Physics and Chemistry of Liquids, 43(2005)351-360.
    [7]T. Loftsson, M.E. Brewster, M. Masson, Role of cyclodextrins in improving oral drug delivery, American Journal of Drug Delivery,2 (2004) 261-275.
    [8]A. Makhlof, Y. Miyazaki, Y. Tozuka, H. Takeuchi, Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method, International journal of pharmaceutics,357 (2008) 280-285.
    [9]Z. Wang, Y. Deng, S. Sun, X. Zhang, Preparation of hydrophobic drugs cyclodextrin complex by lyophilization monophase solution, Drug development and industrial pharmacy,32 (2006) 73-83.
    [10]T. Vasconcelos, B. Sarmento, P. Costa, Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs, Drug discovery today,12 (2007) 1068-1075.
    [11]R.M. Dannenfelser, H. He, Y. Joshi, S. Bateman, A. Serajuddin, Development of clinical dosage forms for a poorly water soluble drug I:Application of polyethylene glycol-polysorbate 80 solid dispersion carrier system, Journal of pharmaceutical sciences, 93(2004)1165-1175.
    [12]T. Tao, Y. Zhao, J. Wu, B. Zhou, Preparation and evaluation of itraconazole dihydrochloride for the solubility and dissolution rate enhancement, International journal of pharmaceutics, 367(2009)109-114.
    [13]熊若兰,陆伟根,纳米混悬剂研究进展,世界临床药物,28(2007)117-121.
    [14]E.A. Bleeker, W.H. de Jong, R.E. Geertsma, M. Groenewold, E.H. Heugens, M. Koers-Jacquemijns, D.v.d. Meent, J.R. Popma, A.G. Rietveld, S.W. Wijnhoven, Considerations on the EU definition of a nanomaterial:Science to support policy making, Regulatory Toxicology and Pharmacology, (2012).
    [15]M.C. Roco, The lang view of nanotechnology development:the National Nanotechnology Initiative at 10 years, in:Nanotechnology Research Directions for Societal Needs in 2020, Springer,2011, pp.1-28.
    [16]F. Kesisoglou, S. Panmai, Y. Wu, Nanosizing--oral formulation development and biopharmaceutical evaluation, Advanced drug delivery reviews,59 (2007) 631-644.
    [17]L. Gao, G. Liu, J. Ma, X. Wang, L. Zhou, X. Li, F. Wang, Application of Drug Nanocrystal Technologies on Oral Drug Delivery of Poorly Soluble Drugs, Pharmaceutical research,30 (2013)307-324.
    [18]R. Shegokar, R.H. Muller, Nanocrystals:industrially feasible multifunctional formulation technology for poorly soluble actives, International journal of pharmaceutics,399 (2010) 129-139.
    [19]D. Heng, D.J. Cutler, H.K. Chan, J. Yun, J.A. Raper, What is a suitable dissolution method for drug nanoparticles?, Pharmaceutical research,25 (2008) 1696-1701.
    [20]M. Jan, H.M. Rainer, Drug Nanocrystals—The Universal Formulation Approach for Poorly Soluble Drugs, in:Nanoparticulate Drug Delivery Systems, CRC Press,2007, pp.71-88.
    [21]R. Mauludin, R.H. Muller, C.M. Keck, Kinetic solubility and dissolution velocity of rutin nanocrystals, European journal of pharmaceutical sciences:official journal of the European Federation for Pharmaceutical Sciences,36 (2009) 502-510.
    [22]G. Buckton, A.E. Beezer, The relationship between particle size and solubility, International journal of pharmaceutics,82 (1992) R7-R10.
    [23]A. Dokoumetzidis, P. Macheras, A century of dissolution research:from Noyes and Whitney to the biopharmaceutics classification system, International journal of pharmaceutics,321 (2006)1-11.
    [24]A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, Journal of the American Chemical Society,19 (1897) 930-934.
    [25]L.X. Yu, G.L. Amidon, J.E. Polli, H. Zhao, M.U. Mehta, D.P. Conner, V.P. Shah, L.J. Lesko, M.-L. Chen, V.H. Lee, Biopharmaceutics classification system:the scientific basis for biowaiver extensions, Pharmaceutical research,19 (2002) 921-925.
    [26]G.G. Liversidge, P. Conzentino, Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats, International journal of pharmaceutics,125 (1995)309-313.
    [27]G. Ponchel, M.-J. Montisci, A. Dembri, C. Durrer, D. Duchene, Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract, European journal of pharmaceutics and biopharmaceutics,44 (1997) 25-31.
    [28]T. Lenhardt, G. Vergnault, P. Grenier, D. Scherer, P. Langguth, Evaluation of nanosuspensions for absorption enhancement of poorly soluble drugs:in vitro transport studies across intestinal epithelial monolayers, The AAPS journal,10 (2008) 435-438.
    [29]C.M. Keck, R.H. Muller, Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation, European Journal of Pharmaceutics and Biopharmaceutics,62 (2006)3-16.
    [30]吴大鹏,陶涛,静脉注射用纳米混悬剂,药学服务与研究,10(2010)161-165.
    [31]L. Wu, J. Zhang, W. Watanabe, Physical and chemical stability of drug nanoparticles, Advanced drug delivery reviews,63 (2011) 456-469.
    [32]B. Van Eerdenbrugh, G. Van den Mooter, P. Augustijns, Top-down production of drug nanocrystals:nanosuspension stabilization, miniaturization and transformation into solid products, International journal of pharmaceutics,364 (2008) 64-75.
    [33]A. Dolenc, J. Kristl, S. Baumgartner, O. Planinsek, Advantages of celecoxib nanosuspension formulation and transformation into tablets, International journal of pharmaceutics,376 (2009)204-212.
    [34]S. Verma, R. Gokhale, D.J. Burgess, A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions, International journal of pharmaceutics,380 (2009) 216-222.
    [35]F. Lai, E. Pini, G. Angioni, M. Manca, J. Perricci, C. Sinico, A. Fadda, Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets, European journal of pharmaceutics and biopharmaceutics,79 (2011) 552-558.
    [36]V. Teeranachaideekul, V.B. Junyaprasert, E.B. Souto, R.H. Muller, Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology, International journal of pharmaceutics,354 (2008) 227-234.
    [37]R. Laitinen, E. Suihko, K. Toukola, M. Bjorkqvist, J. Riikonen, V.P. Lehto, K. Jarvinen, J. Ketolainen, Intraorally fast-dissolving particles of a poorly soluble drug:Preparation and in vitro characterization, European Journal of Pharmaceutics and Biopharmaceutics,71 (2009) 271-281.
    [38]L. Gao, G. Liu, J. Ma, X. Wang, L. Zhou, X. Li, Drug nanocrystals:In vivo performances, Journal of controlled release:official journal of the Controlled Release Society,160 (2012) 418-430.
    [39]P. Quan, K. Shi, H. Piao, H. Piao, N. Liang, D. Xia, F. Cui, A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability, International journal of pharmaceutics,430 (2012) 366-371.
    [40]W. Li, Y. Yang, Y. Tian, X. Xu, Y. Chen, L. Mu, Y. Zhang, L. Fang, Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension, International journal of pharmaceutics,408 (2011) 157-162.
    [41]D. Xia, P. Quan, H. Piao, H. Piao, S. Sun, Y. Yin, F. Cui, Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability, European Journal of Pharmaceutical Sciences,40 (2010) 325-334.
    [42]Z. Jia, P. Lin, Y. Xiang, X. Wang, J. Wang, X. Zhang, Q. Zhang, A novel nanomatrix system consisted of colloidal silica and pH-sensitive polymethylacrylate improves the oral bioavailability of fenofibrate, European Journal of Pharmaceutics and Biopharmaceutics,79 (2011)126-134.
    [43]F.S. Nielsen, K.B. Petersen, A. Mullertz, Bioavailability of probucol from lipid and surfactant based formulations in minipigs:influence of droplet size and dietary state, European Journal of Pharmaceutics and Biopharmaceutics,69 (2008) 553-562.
    [44]W. Sun, S. Mao, Y. Shi, L.C. Li, L. Fang, Nanonization of itraconazole by high pressure homogenization:stabilizer optimization and effect of particle size on oral absorption, Journal of pharmaceutical sciences,100 (2011) 3365-3373.
    [45]D. Xia, F. Cui, H. Piao, D. Cun, H. Piao, Y. Jiang, M. Ouyang, P. Quan, Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats, Pharmaceutical research,27 (2010) 1965-1976.
    [46]L. Lindfors, S. Forssen, P. Skantze, U. Skantze, A. Zackrisson, U. Olsson, Amorphous drug nanosuspensions.2. Experimental determination of bulk monomer concentrations, Langmuir, 22(2006)911-916.
    [47]L. Lindfors, P. Skantze, U. Skantze, J. Westergren, U. Olsson, Amorphous drug nanosuspensions.3. Particle dissolution and crystal growth, Langmuir,23 (2007) 9866-9874.
    [48]D. Horter, J.B. Dressman, Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract, Advanced drug delivery reviews,46 (2001) 75-87.
    [49]S. Tian, Y. Li, J. Wang, J. Zhang, T. Hou, ADME evaluation in drug discovery.9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints, Molecular Pharmaceutics,8 (2011) 841-851.
    [50]B. Van Eerdenbrugh, L. Froyen, J. Van Humbeeck, J.A. Martens, P. Augustijns, G. Van den Mooter, Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion, European journal of pharmaceutical sciences:official journal of the European Federation for Pharmaceutical Sciences,35 (2008) 127-135.
    [51]K. Sugano, Fraction of a dose absorbed estimation for structurally diverse low solubility compounds, International journal of pharmaceutics,405 (2011) 79-89.
    [1]A. Drug, Revaprazan Hydrochloride Treatment of GERD, Drugs of the Future,29 (2004) 455-459.
    [2]Y.-J. PARK, C.-K. HYUN, Revaprazan-containing solid dispersion and process for the preparation thereof, in, WO Patent 2,008,078,922,2008.
    [3]K.S. Han, Y.G Kim, J.K. Yoo, J.W. Lee, M.G. Lee, Pharmacokinetics of a new reversible proton pump inhibitor, YH1885, after intravenous and oral administrations to rats and dogs: hepatic first-pass effect in rats, Biopharmaceutics & drug disposition,19 (1998) 493-500.
    [4]G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharmaceutical research,12 (1995) 413-420.
    [5]C.M. Keck, Particle size analysis of nanocrystals:improved analysis method, International journal of pharmaceutics,390 (2010) 3-12.
    [6]M. Jan, H.M. Rainer, Drug Nanocrystals—The Universal Formulation Approach for Poorly Soluble Drugs, in:Nanoparticulate Drug Delivery Systems, CRC Press,2007, pp.71-88.
    [7]R.H. Miiller, K. Peters, Nanosuspensions for the formulation of poorly soluble drugs:I. Preparation by a size-reduction technique, International journal of pharmaceutics,160 (1998) 229-237.
    [8]C.M. Keck, R.H. Muller, Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation, European Journal of Pharmaceutics and Biopharmaceutics,62 (2006) 3-16.
    [9]M.J. Grau, O. Kayser, R.H. Muller, Nanosuspensions of poorly soluble drugs— reproducibility of small scale production, International journal of pharmaceutics,196 (2000) 155-159.
    [10]D. Heng, D.J. Cutler, H.K. Chan, J. Yun, J.A. Raper, What is a suitable dissolution method for drug nanoparticles?, Pharmaceutical research,25 (2008) 1696-1701.
    [11]R. Muller, C. Jacobs, O. Kayser, Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future, Advanced drug delivery reviews,47 (2001) 3-19.
    [12]S. Verma, S. Kumar, R. Gokhale, D.J. Burgess, Physical stability of nanosuspensions: Investigation of the role of stabilizers on Ostwald ripening, International journal of pharmaceutics,406 (2011) 145-152.
    [1]K. Soo Han, H.-C. Choi, J.-K. Yoo, J. Wook Lee, M.G. Lee, Determination of a new proton pump inhibitor, YH1885, in human plasma and urine by high-performance liquid chromatography, Journal of Chromatography B:Biomedical Sciences and Applications,696 (1997)312-316.
    [2]C.M. Keck, Particle size analysis of nanocrystals:improved analysis method, International journal of pharmaceutics,390 (2010) 3-12.
    [3]M. Sarkari, J. Brown, X. Chen, S. Swinnea, R.O. Williams Ⅲ, K.P. Johnston, Enhanced drug dissolution using evaporative precipitation into aqueous solution, International journal of pharmaceutics,243 (2002) 17-31.
    [4]J. Zhong, Z. Shen, Y. Yang, J. Chen, Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment, International journal of pharmaceutics,301 (2005) 286-293.
    [5]A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, Journal of the American Chemical Society,19 (1897) 930-934.
    [6]A. Dokoumetzidis, P. Macheras, A century of dissolution research:from Noyes and Whitney to the biopharmaceutics classification system, International journal of pharmaceutics,321 (2006) 1-11.
    [7]P. Quan, K. Shi, H. Piao, H. Piao, N. Liang, D. Xia, F. Cui, A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability, International journal of pharmaceutics,430 (2012) 366-371.
    [8]Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, S. Wang, Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan, Journal of Controlled Release,145 (2010) 257-263.
    [9]D. Xia, P. Quan, H. Piao, H. Piao, S. Sun, Y. Yin, F. Cui, Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability, European Journal of Pharmaceutical Sciences,40 (2010) 325-334.
    [10]H. De Waard, W. Hinrichs, H. Frijlink, A novel bottom-up process to produce drug nanocrystals:controlled crystallization during freeze-drying, Journal of Controlled Release, 128(2008) 179-183.
    [11]R. Mauludin, R.H. Muller, C.M. Keck, Kinetic solubility and dissolution velocity of rutin nanocrystals, European journal of pharmaceutical sciences:official journal of the European Federation for Pharmaceutical Sciences,36 (2009) 502-510.
    [12]M.-S. Kim, S.-J. Jin, J.-S. Kim, H.J. Park, H.-S. Song, R.H. Neubert, S.-J. Hwang, Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process, European journal of pharmaceutics and biopharmaceutics,69 (2008) 454-465.
    [13]M. Mosharraf, C. Nystrom, The effect of particle size and shape on the surface specific dissolution rat of microsized practically insoluble drugs, International journal of pharmaceutics,122 (1995) 35-47.
    [14]G. Ponchel, M.-J. Montisci, A. Dembri, C. Durrer, D. Duchene, Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract, European journal of pharmaceutics and biopharmaceutics,44 (1997) 25-31.
    [15]T. Jung, W. Kamm, A. Breitenbach, E. Kaiserling, J. Xiao, T. Kissel, Biodegradable nanoparticles for oral delivery of peptides:is there a role for polymers to affect mucosal uptake?, European Journal of Pharmaceutics and Biopharmaceutics,50 (2000) 147-160.
    [16]T. Lenhardt, G. Vergnault, P. Grenier, D. Scherer, P. Langguth, Evaluation of nanosuspensions for absorption enhancement of poorly soluble drugs:in vitro transport studies across intestinal epithelial monolayers, The AAPS journal,10 (2008) 435-438.
    [17]G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharmaceutical research,12 (1995) 413-420.
    [18]K.S. Han, Y.G. Kim, J.K. Yoo, J.W. Lee, M.G. Lee, Pharmacokinetics of a new reversible proton pump inhibitor, YH1885, after intravenous and oral administrations to rats and dogs: hepatic first-pass effect in rats, Biopharmaceutics & drug disposition,19 (1998) 493-500.
    [19]Y.-J. PARK, C.-K. HYUN, Revaprazan-containing solid dispersion and process for the preparation thereof, in, WO Patent 2,008,078,922,2008.
    [20]A.M. Hillery, A.T. Florence, The effect of adsorbed poloxamer 188 and 407 surfactants on the intestinal uptake of 60-nm polystyrene particles after oral administration in the rat, International journal of pharmaceutics,132 (1996) 123-130.
    [21]B. Van Eerdenbrugh, L. Froyen, J. Van Humbeeck, J.A. Martens, P. Augustijns, G. Van den Mooter, Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion, European journal of pharmaceutical sciences:official journal of the European Federation for Pharmaceutical Sciences,35(2008)127-135.
    [22]K.-R. Lee, E.-J. Kim, S.-W. Seo, H.-K. Choi, Effect of poloxamer on the dissolution of felodipine and preparation of controlled release matrix tablets containing felodipine, Archives of pharmacal research,31 (2008) 1023-1028.
    [1]M. Jan, H.M. Rainer, Drug Nanocrystals—The Universal Formulation Approach for Poorly Soluble Drugs, in:Nanoparticulate Drug Delivery Systems, CRC Press,2007, pp.71-88.
    [2]E. Merisko-Liversidge, GG Liversidge, E.R. Cooper, Nanosizing:a formulation approach for poorly-water-soluble compounds, European Journal of Pharmaceutical Sciences,18 (2003) 113-120.
    [3]F. Kesisoglou, S. Panmai, Y. Wu, Nanosizing--oral formulation development and biopharmaceutical evaluation, Advanced drug delivery reviews,59 (2007) 631-644.
    [4]A. Dolenc, J. Kristl, S. Baumgartner, O. Planinsek, Advantages of celecoxib nanosuspension formulation and transformation into tablets, International journal of pharmaceutics,376 (2009) 204-212.
    [5]R. Mauludin, R.H. Muller, C.M. Keck, Kinetic solubility and dissolution velocity of rutin nanocrystals, European journal of pharmaceutical sciences,36 (2009) 502-510.
    [6]S. Verma, R. Gokhale, D.J. Burgess, A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions, International journal of pharmaceutics,380 (2009) 216-222.
    [7]F. Lai, E. Pini, G. Angioni, M. Manca, J. Perricci, C. Sinico, A. Fadda, Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets, European journal of pharmaceutics and biopharmaceutics,79 (2011) 552-558.
    [8]V. Teeranachaideekul, V.B. Junyaprasert, E.B. Souto, R.H. Muller, Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology, International journal of pharmaceutics,354 (2008) 227-234.
    [9]R. Laitinen, E. Suihko, K. Toukola, M. Bjorkqvist, J. Riikonen, V.P. Lehto, K. Jarvinen, J. Ketolainen, Intraorally fast-dissolving particles of a poorly soluble drug:Preparation and in vitro characterization, European Journal of Pharmaceutics and Biopharmaceutics,71 (2009) 271-281.
    [10]D. Heng, D.J. Cutler, H.K. Chan, J. Yun, J.A. Raper, What is a suitable dissolution method for drug nanoparticles? Pharmaceutical research,25 (2008) 1696-1701.
    [11]M. Pavan Kumar, Y. Madhusudan Rao, S. Apte, Improved bioavailability of albendazole following oral administration of nanosuspension in rats, Current Nanoscience,3 (2007) 191-194.
    [12]W. Sun, S. Mao, Y. Shi, L.C. Li, L. Fang, Nanonization of itraconazole by high pressure homogenization:stabilizer optimization and effect of particle size on oral absorption, Journal of pharmaceutical sciences,100 (2011) 3365-3373.
    [13]W. Li, Y. Yang, Y. Tian, X. Xu, Y. Chen, L. Mu, Y. Zhang, L. Fang, Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension, International journal of pharmaceutics,408 (2011) 157-162.
    [14]R.H. Muller, K. Peters, Nanosuspensions for the formulation of poorly soluble drugs:I. Preparation by a size-reduction technique, International journal of pharmaceutics,160 (1998) 229-237.
    [15]A. Hanafy, H. Spahn-Langguth, G. Vergnault, P. Grenier, M. Tubic Grozdanis, T. Lenhardt, P. Langguth, Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug, Advanced drug delivery reviews, 59(2007)419-426.
    [16]R.C. Rowe, P.J. Sheskey, M.E. Quinn, P. Press, Handbook of pharmaceutical excipients, Pharmaceutical press London,2009.
    [17]M.E. Matteucci, J.C. Paguio, M.A. Miller, R.O. Williams Iii, K.P. Johnston, Highly supersaturated solutions from dissolution of amorphous itraconazole microparticles at pH 6.8, Molecular Pharmaceutics,6 (2009) 375-385.
    [18]L. Lindfors, S. Forssen, P. Skantze, U. Skantze, A. Zackrisson, U. Olsson, Amorphous drug nanosuspensions.2. Experimental determination of bulk monomer concentrations, Langmuir, 22(2006)911-916.
    [19]M.E. Matteucci, B.K. Brettmann, T.L. Rogers, E.J. Elder, R.O. Williams Iii, K.P. Johnston, Design of potent amorphous drug nanoparticles for rapid generation of highly supersaturated media, Molecular Pharmaceutics,4 (2007) 782-793.
    [20]D.E. Alonzo, GG. Zhang, D. Zhou, Y. Gao, L.S. Taylor, Understanding the behavior of amorphous pharmaceutical systems during dissolution, Pharmaceutical research,27 (2010) 608-618.
    [21]L. Lindfors, P. Skantze, U. Skantze, J. Westergren, U. Olsson, Amorphous drug nanosuspensions.3. Particle dissolution and crystal growth, Langmuir,23 (2007) 9866-9874.
    [22]G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharmaceutical research,12 (1995) 413-420.
    [23]L.X. Yu, G.L. Amidon, J.E. Polli, H. Zhao, M.U. Mehta, D.P. Conner, V.P. Shah, L.J. Lesko, M.-L. Chen, V.H. Lee, Biopharmaceutics classification system:the scientific basis for biowaiver extensions, Pharmaceutical research,19 (2002) 921-925.
    [24]D. Xia, M. Ouyang, J.X. Wu, Y. Jiang, H. Piao, S. Sun, L. Zheng, J. Rantanen, F. Cui, M. Yang, Polymer-mediated anti-solvent crystallization of nitrendipine:monodispersed spherical crystals and growth mechanism, Pharmaceutical research,29 (2012) 158-169.
    [25]I.R. Wilding, Evolution of the Biopharmaceutics Classification System (BCS) to oral Modified Release (MR) formulations; what do we need to consider?, European journal of pharmaceutical sciences,8 (1999) 157-160.
    [1]E. Galia, E. Nicolaides, D. Horter, R. Lobenberg, C. Reppas, J. Dressman, Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs, Pharmaceutical research,15 (1998) 698-705.
    [2]J.M. Custodio, C.-Y. Wu, L.Z. Benet, Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption, Advanced drug delivery reviews,60 (2008) 717-733.
    [3]J.B. Dressman, C. Reppas, In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs, European journal of pharmaceutical sciences,11 (2000) S73-S80.
    [4]M. Vertzoni, J. Dressman, J. Butler, J. Hempenstall, C. Reppas, Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds, European journal of pharmaceutics and biopharmaceutics,60 (2005) 413-417.
    [5]J.J. Garcia, F. Bolas, J.J. Torrado, Bioavailability and efficacy characteristics of two different oral liquid formulations of albendazole, International journal of pharmaceutics,250 (2003) 351-358.
    [6]J.J. Garcia, F. Bolas-Fernandez, J.J. Torrado, Quantitative determination of albendazole and its main metabolites in plasma, Journal of Chromatography B:Biomedical Sciences and Applications,723 (1999) 265-271.
    [7]A. Hanafy, H. Spahn-Langguth, G. Vergnault, P. Grenier, M. Tubic Grozdanis, T. Lenhardt, P. Langguth, Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug, Advanced drug delivery reviews,59 (2007) 419-426.
    [8]W. Sun, S. Mao, Y. Shi, L.C. Li, L. Fang, Nanonization of itraconazole by high pressure homogenization:stabilizer optimization and effect of particle size on oral absorption, Journal of pharmaceutical sciences,100 (2011) 3365-3373.
    [9]Z. Jia, P. Lin, Y. Xiang, X. Wang, J. Wang, X. Zhang, Q. Zhang, A novel nanomatrix system consisted of colloidal silica and pH-sensitive polymethylacrylate improves the oral bioavailability of fenofibrate, European Journal of Pharmaceutics and Biopharmaceutics,79 (2011)126-134.
    [10]F.S. Nielsen, K.B. Petersen, A. Mullertz, Bioavailability of probucol from lipid and surfactant based formulations in minipigs:influence of droplet size and dietary state, European Journal of Pharmaceutics and Biopharmaceutics,69 (2008) 553-562.
    [11]H. Uchiyama, Y. Tozuka, M. Imono, H. Takeuchi, Transglycosylated stevia and hesperidin as pharmaceutical excipients:dramatic improvement in drug dissolution and bioavailability, European Journal of Pharmaceutics and Biopharmaceutics,76 (2010) 238-244.
    [12]K. Soo Han, H.-C. Choi, J.-K. Yoo, J. Wook Lee, M.G. Lee, Determination of a new proton pump inhibitor, YH1885, in human plasma and urine by high-performance liquid chromatography, Journal of Chromatography B:Biomedical Sciences and Applications,696 (1997)312-316.
    [13]W. Li, Y. Yang, Y. Tian, X. Xu, Y. Chen, L. Mu, Y. Zhang, L. Fang, Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension, International journal of pharmaceutics,408 (2011) 157-162.
    [14]P. Kinnari, E. Makila, T. Heikkila, J. Salonen, J. Hirvonen, H.A. Santos, Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole, International journal of pharmaceutics,414 (2011) 148-156.
    [15]R.J. Hintz, K.C. Johnson, The effect of particle size distribution on dissolution rate and oral absorption, International journal of pharmaceutics,51 (1989) 9-17.
    [16]N. Kaneniwa, N. Watari, H. Iijima, Dissolution of slightly soluble drugs. V. Effect of particle size on gastrointestinal drug absorption and its relation to solubility, Chemical & pharmaceutical bulletin,26 (1978) 2603-2614.
    [17]R. Mauludin, R.H. Muller, C.M. Keck, Kinetic solubility and dissolution velocity of rutin nanocrystals, European journal of pharmaceutical sciences:official journal of the European Federation for Pharmaceutical Sciences,36 (2009) 502-510.
    [18]C.K. Brown, H.P. Chokshi, B. Nickerson, R.A. Reed, B.R. Rohrs, P.A. Shah, Dissolution testing of poorly soluble compounds, Pharmaceutical Technology, (2004).
    [19]K. Gowthamarajan, S.K. Singh, Dissolution testing for poorly soluble drugs:a continuing perspective, Dissolution Technol,17 (2010) 24-32.
    [20]G.G. Liversidge, P. Conzentino, Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats, International journal of pharmaceutics,125 (1995)309-313.
    [21]G. Ponchel, M.-J. Montisci, A. Dembri, C. Durrer, D. Duchene, Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract, European journal of pharmaceutics and biopharmaceutics,44 (1997) 25-31.
    [22]T. Lenhardt, G Vergnault, P. Grenier, D. Scherer, P. Langguth, Evaluation of nanosuspensions for absorption enhancement of poorly soluble drugs:in vitro transport studies across intestinal epithelial monolayers, The AAPS journal,10 (2008) 435-438.
    [23]C. Ehrhardt, K.J. Kim, Drug absorption studies:in situ, in vitro and in silico models, Springer,2008.
    [24]H. Wei, R. Lobenberg, Biorelevant dissolution media as a predictive tool for glyburide a class Ⅱ drug, European journal of pharmaceutical sciences,29 (2006) 45-52.
    [25]J. Parojcic, Z. Duric, M. Jovanovic, S. Ibric, D. Jovanovic, Influence of dissolution media composition on drug release and in-vitro/in-vivo correlation for paracetamol matrix tablets prepared with novel carbomer polymers, Journal of pharmacy and pharmacology,56 (2004)735-741.
    [26]E. Jantratid, N. Janssen, C. Reppas, J.B. Dressman, Dissolution media simulating conditions in the proximal human gastrointestinal tract:an update, Pharmaceutical research,25 (2008) 1663-1676.
    [27]E. Nicolaides, M. Symillides, J.B. Dressman, C. Reppas, Biorelevant dissolution testing to predict the plasma profile of lipophilic drugs after oral administration, Pharmaceutical research,18(2001)380-388.
    [28]E. Nicolaides, E. Galia, C. Efthymiopoulos, J.B. Dressman, C. Reppas, Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data, Pharmaceutical research,16(1999) 1876-1882.
    [29]F. Varga, Transit time changes with age in the gastrointestinal tract of the rat, Digestion,14 (1976)319.
    [30]L.X. Yu, J.R. Crison, G.L. Amidon, Compartmental transit and dispersion model analysis of small intestinal transit flow in humans, International journal of pharmaceutics,140 (1996) 111-118.
    [31]G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theoretical basis for a biopharmaceutic drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharmaceutical research,12 (1995) 413-420.
    [32]L.X. Yu, G.L. Amidon, J.E. Polli, H. Zhao, M.U. Mehta, D.P. Conner, V.P. Shah, L.J. Lesko, M.-L. Chen, V.H. Lee, Biopharmaceutics classification system:the scientific basis for biowaiver extensions, Pharmaceutical research,19 (2002) 921-925.
    [33]E.L. McConnell, A.W. Basit, S. Murdan, Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments, Journal of Pharmacy and Pharmacology,60 (2008) 63-70.
    [34]W. Li, P. Quan, Y. Zhang, J. Cheng, J. Liu, D. Cun, R. Xiang, L. Fang, Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions, International journal of^harmaceutics, (2013) doi:10.1016/j.ijpharm.2013.10.038.
    [1]D.T. Sandwell, Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data, Geophysical research letters,14 (1987) 139-142.
    [2]L. Gao, G. Liu, J. Ma, X. Wang, L. Zhou, X. Li, Drug nanocrystals:In vivo performances, Journal of controlled release:official journal of the Controlled Release Society,160 (2012) 418-430.
    [3]F. Kesisoglou, S. Panmai, Y. Wu, Nanosizing--oral formulation development and biopharmaceutical evaluation, Advanced drug delivery reviews,59 (2007) 631-644.
    [4]P. Quan, K. Shi, H. Piao, H. Piao, N. Liang, D. Xia, F. Cui, A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability, International journal of pharmaceutics,430 (2012) 366-371.
    [5]W. Li, Y. Yang, Y. Tian, X. Xu, Y. Chen, L. Mu, Y. Zhang, L. Fang, Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension, International journal of pharmaceutics,408 (2011) 157-162.
    [6]D. Xia, P. Quan, H. Piao, H. Piao, S. Sun, Y. Yin, F. Cui, Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability, European Journal of Pharmaceutical Sciences,40 (2010) 325-334.
    [7]Z. Jia, P. Lin, Y. Xiang, X. Wang, J. Wang, X. Zhang, Q. Zhang, A novel nanomatrix system consisted of colloidal silica and pH-sensitive polymethylacrylate improves the oral bioavailability of fenofibrate, European Journal of Pharmaceutics and Biopharmaceutics,79 (2011) 126-134.
    [8]W. Sun, S. Mao, Y. Shi, L.C. Li, L. Fang, Nanonization of itraconazole by high pressure homogenization:stabilizer optimization and effect of particle size on oral absorption, Journal of pharmaceutical sciences,100 (2011) 3365-3373.
    [9]D. Xia, F. Cui, H. Piao, D. Cun, H. Piao, Y. Jiang, M. Ouyang, P. Quan, Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats, Pharmaceutical research, 27(2010)1965-1976.
    [10]L. Lindfors, S. Forssen, P. Skantze, U. Skantze, A. Zackrisson, U. Olsson, Amorphous drug nanosuspensions.2. Experimental determination of bulk monomer concentrations, Langmuir, 22(2006)911-916.
    [11]L. Lindfors, P. Skantze, U. Skantze, J. Westergren, U. Olsson, Amorphous drug nanosuspensions.3. Particle dissolution and crystal growth, Langmuir,23 (2007) 9866-9874.
    [12]D. Horter, J.B. Dressman, Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract, Advanced drug delivery reviews,46 (2001) 75-87.
    [13]S. Tian, Y. Li, J. Wang, J. Zhang, T. Hou, ADME evaluation in drug discovery.9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints, Molecular Pharmaceutics,8 (2011) 841-851.
    [14]C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Advanced drug delivery reviews,23 (1997) 3-25.
    [15]L.X. Yu, E. Lipka, J.R. Crison, G.L. Amidon, Transport approaches to the biopharmaceutical design of oral drug delivery systems:prediction of intestinal absorption, Advanced drug delivery reviews,19 (1996) 359-376.
    [16]A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, Journal of the American Chemical Society,19 (1897) 930-934.
    [17]A. Dokoumetzidis, P. Macheras, A century of dissolution research:from Noyes and Whitney to the biopharmaceutics classification system, International journal of pharmaceutics,321 (2006)1-11.
    [18]M.V. Varma, R.S. Obach, C. Rotter, H.R. Miller, G. Chang, S.J. Steyn, A. El-Kattan, M.D. Troutman, Physicochemical space for optimum oral bioavailability:contribution of human intestinal absorption and first-pass elimination, Journal of medicinal chemistry,53 (2010) 1098-1108.
    [19]Y.C. Martin, A bioavailability score, Journal of medicinal chemistry,48 (2005) 3164-3170.
    [20]Q. Jiang, H. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals, The Journal of chemical physics,111 (1999)2176.
    [21]M. Pavan Kumar, Y. Madhusudan Rao, S. Apte, Improved bioavailability of albendazole following oral administration of nanosuspension in rats, Current Nanoscience,3 (2007) 191-194.
    [22]A. Hanafy, H. Spahn-Langguth, G. Vergnault, P. Grenier, M. Tubic Grozdanis, T. Lenhardt, P. Langguth, Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug, Advanced drug delivery reviews,59 (2007) 419-426.
    [23]F.S. Nielsen, K.B. Petersen, A. Mullertz, Bioavailability of probucol from lipid and surfactant based formulations in minipigs:influence of droplet size and dietary state, European Journal of Pharmaceutics and Biopharmaceutics,69 (2008) 553-562.
    [24]S. Hurst, C.-M. Loi, J. Brodfuehrer, A. El-Kattan, Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans,3 (2007) 469-489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700