白藜芦醇三个不同载体材料纳米口服给药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白藜芦醇(Resveratrol,Res)是从植物中提取的一种天然二苯乙烯类化合物。现代药理学研究表明白藜芦醇具有确切的抗癌、保护心血管、调节血脂代谢及抗炎等多种生理活性。但白藜芦醇水不溶性的物理化学性质使其普通制剂难以通过口服给药途径在体内发挥其良好的生物活性。
     纳米给药系统(nanoparticaes drug delivery system,NDDS)是指药物与载体材料采用纳米技术制成的1~1000nm的药物输送系统。是近年来药剂学领域研究颇为活跃的一系列新型超微小给药系统的统称,其粒径大小多在10~1000nm之间。作为口服药物输送系统其提高药物胃肠吸收的机理可能包括以下几个方面:1)纳米粒可通过小肠的peyer’s结而进入循环系统,粒径小的纳米载体还可穿过肠系膜的细胞间通路进入循环;2)由于纳米粒高度的分散性和巨大的表面积,能增加难溶性药物的溶解度和溶出速度,也能增加与胃肠道壁的接触,从而增加吸收的机会,提高难溶性药物的生物利用度;3)纳米粒较之溶液剂,更能被十二指肠的微毛所捕获,并滞留较长时间,进一步延长药物与细胞壁接触时间,提高药物的吸收速率和吸收率;4)纳米载体可保护某些不稳定药物,使之不被酶或酸碱催化降解。因此,采用现代药剂学手段设计合理的药物纳米口服传输系统,是解决难溶性药物低口服生物利用度问题的一种有效途径。
     本课题以中药抗癌生物活性成分白藜芦醇为模型药物,分别以天然新型载体材料小麦醇溶蛋白、单硬脂酸甘油脂及磷脂为载体材料,系统进行了白藜芦醇小麦醇溶蛋白纳米粒、固体脂质纳米粒及纳米脂质体3个不同载体材料的纳米给药系统的的制备工艺,制剂学性质、体外释药规律,大鼠在体小肠吸收动力学及大鼠药代动力学的研究,旨在为纳米给药系统提高难溶性药物生物利用度的可行性提供一定的依据。
     依据白藜芦醇溶解性质及各制备方法的特点,采用简单、快速的乙醇注入法制备Res-LP。采用试验次数少但模型预测精度低的五因素二水平正交实验设计法初步确定了影响药物包封率和载药量的3个主要影响因素;在此基础上,采用模型预测精度高的星点设计-效应面法进一步优化,各指标与3个因素的关系均用多元三项式方程来描述,根据指标与因素的三维效应面和二维等高图筛选出最佳处方配比。结果,制备的Res-LP的粒径、PDI、包封率及载药量分别为95.3nm、0.279、84.48%及4.36%。另外,通过脂质体水分配系数的研究,探讨了Res-LP具有较高包封率的原因。
     通过比较固体脂质纳米粒各种制备方法的特点,选用与乙醇注入法具有相似特点的水性溶剂扩散法制备Res-SLN。采用均匀设计联用星点设计-效应面法进行制备工艺处方的优化。以包封率、载药量及平均粒径为指标,以均匀实验设计法确定了3个影响指标的主要因素,再对这3个因素进一步以星点设计-效应面法进行优化,结果,Res-SLN优化工艺处方制备样品的平均粒径、包封率和载药量分别为170.5nm、0.223、56.77%及2.59%。为进一步提高药物的包封率,考察了增加药物包封率的方法,结果药物包封率的增加并未改善Res-SLN的体外释药行为。
     结合Res-LP及Res-SLN制备方法的特点,依据文献研究及小麦醇溶蛋白的性质,采用溶剂非溶剂法制备Res-NP,在预实验的基础上,选择药脂比、有机相与水相体积比及水相表面活性剂浓度3个影响因素,采用星点设计效应面法进行优化,根据指标与因素的三维效应面和二维等高图筛选出最佳工艺处方。结果,Res-NP的粒径、包封率、载药量分别为178nm、0.294、71.4%、5.3%。在进行包封率测定方法的研究时,分别考察了柱分离法、超滤法及超速离心法等,结果建立的反相透析法是一种准确、经济、快速的用于Res-NP包封率测定的方法。
     为解决三个纳米给药系统物理化学稳定性差、不易久贮等问题。以外观、色泽、再分散性等为指标,分别优选了Res-SLN及Res-NP冻干剂的处方,体外释药试验结果表明,Res-LP胶体分散液在人工胃液及人工肠液(pH=6.8)的释药曲线均可用Weibull模型拟合,Res-SLN胶体分散液在人工肠液的体外释放以Weibull模型拟合最好,而在人工胃液中则以一级动力学方程模型拟合较好,Res-NP胶体分散液在人工胃液及人工肠液中体外释放的最佳模型均为Weibull模型。体外释放研究结果表明,3个纳米给药系统的释放曲线前期释药有均有一定量的突释,但后期释药则具有一定的缓释特征。
     采用大鼠原位灌注模型进行Res、Res-LP、Res-SLN及Res-NP的小肠吸收部位及小肠吸收动力学的研究,结果,Res-LP及Res-SLN均在回肠处有较高的吸收百分率,与其它肠段相比,差异具有显著性。Res-NP在小肠各段吸收的差异不显著,在十二指肠及结肠处的ka大于Res-LP及Res-SLN,差异具有显著性。大鼠整肠段的吸收结果表明,3个纳米给药系统作为白藜芦醇的载体可以促进其白藜芦醇在小肠的吸收。Res、Res-SLN、Res-LP及Res-NP的吸收机制表明,不同剂量的供试品在整肠段的吸收百分率无显著性差异,提示四者在小肠的吸收机制均为被动扩散。
     大鼠体内药代动力学研究结果表明,Res、Res-LP、Res-SLN及Res-NP绝对生物利用度分别为1.83%、7.12%、6.83%及4.95%,3个不同载体材料的纳米给药系统的主要药动学参数与Res相比,具有显著性差异,因此,纳米给药系统具有增加药物的体内稳定性,延长药物在体内的滞留时间、促进药物经肠吸收作用,为纳米给药系统作为药物的载体提高难溶性药物生物利用度的可行性提供了一定的依据。
     综上所述,本课题首次以白藜芦醇为模型药物,系统进行了以口服纳米给药系统作为药物的载体提高药物口服生物利用度的可行性研究。而有关白藜芦醇小麦醇溶蛋白纳米的制备、正交设计联用星点设计优化白藜芦醇脂质体的制备工艺及均匀实验设计联用星点设计优化白藜芦醇固体脂质纳米粒制备工艺等研究内容,国内外均未见相关的报道。因此,为纳米给药系统载体材料的选用、制备工艺实验方法的设计提供了新的研究思路,同时课题的研究成果也丰富了改善难溶性药物口服生物利用度的研究内容和方法。
Resveratrol (Res) is a natural compound extracted and purified from variousspermatophytes such as mulberries. Its activities of anti- platelet aggregation,anticancer, adjusting lipid metabolism and antibiosis were proved in modernpharmacological studies. However, the absorption of Res in common oraladministration was extremely poor due to its water insoluble properties, whichhampered the Res to educe its biological activity in vivo.
     The study of nanopartical drug delivery system was defined as particlescomposed of drugs and materials prepared by nanotechnology and particle diameterranged from 10nm to 1000nm. The mechanisms of nanoparticles enhancing the oralabsorption of drugs may include: 1) The nanoparticles can enter the systemcirculation through the peyer's knot on small intestine or spaces between theintestine cells. 2) The high dispersivity and enormous surface area of thenanoparticles can increase the solubility and the dissolution of the water-insolubledrugs. 3) Comparing to the solution, nanoparticles were more prone to be capturedby the microtriche on the duodenal wall, which extended the contact time of the drugand cells. 4) Some unstable drugs can be protected in the carders. Generallydesigning nanoparticles drug delivery system for water insoluble drugs was aneffective method to solve the low bioavailability problem.
     In present study, using Res as the model drug, three different carders includingnanoparticles, SLN, nanoliposomes were studied. Their preparation technologies,pharmaceutical properties, releasing mechanism in vitro, absorption mechanism of in-situ perfusate and pharmacokinetics of rats were studied.
     Firstly, using orthogonal design to optimize the formulation from five factorsincluding concentration of SPC, drug-lipids ratio, organic solvent-water ratio,SPC-cholesterol ratio and concentration of mannitol, entrapment efficiency (EE),drug loading (DL), and OD values were selected to evaluate the results. On the baseof the results, three factors (concentration of SPC, drug-lipids ratio, organicsolvent-water ratio) were chosen by orthogonal design as the most significant factors.Secondly, using central composite design with three selected factors to optimize theformulation again, the response surfaces were delineated according to best-fitmathematic models to obtain the optimized formulation.
     The ethanol injection method was used to prepare the nanoparticles accordingto the physico-chemical properties of Res. Firstly, using orthogonal design tooptimize the formulation from five factors in this formulation includingconcentration of SPC, drug-lipids ratio, organic solvent-water ratio, SPC-cholesterolratio and concentration of mannitol. Entrapment efficiency (EE), drug loading (DL),and OD values were selected to evaluate the results. Secondly, using centralcomposite design with three selected factors to optimize the formulation again, theresponse surfaces were delineated according to best-fit mathematic models to obtainthe optimized formulation. The optimized results of particle size, PDI、EE and DL,which were 95.3nm, 0.279, 84.48% and 4.36%, respectively.
     According to the method described above, Res-SLN was prepared by solventdispersion method which was similar to the ethanol injection method.Thecombination uniform design with central composite design was used to optimize thepreparation technology. The optimized mean size, PDI, EE and DL of samples were170.5nm, 0.223, 56.77% and 2.59%, respectively.
     The Res-NP was prepared by solvent-insolvent method according to thereferences and the properties of gliadin. Based on the results of the preliminaryexperiment, central composite design was utilized to gain the optimized results.Furthermore, then the response surfaces were delineated according to best-fitmathematic models to obtain the optimized formulation, the optimized results of particle size, PDI, EE and DL, which were 178nm, 0.294, 71.4% and 5.3%,respectively. Particularly, retrodialysis metod was used to determine the EE of theRes-NP, which is accurate, economic and convenient comparing to the othertraditional methods.
     Freeze-drying technology was also applied to enhance the deposition stabilityof the nanoparticles. In vitro releasing experiments, the releasing profile of Res-LPin artificial gastric and intestinal juice can be fitted by Weibull model, whileRes-SLN in artificial gastric and intestinal juice were fitted by first-order kineticsequation and Weibull model; Res-NP fitted by Weibull model, respectively. Thereleasing profiles of the three kinds of nanoparticles demonstrated a fast release inthe beginning and a sustained release in the later period.
     The absorption mechanism of the three nanoparticles was studied by in-situperfusate model on rats. The results showed that both Res-LP and Res-SLN had ahigher absorptive effect in ileum, which were significantly different from other partof the intestine. Res-NP had a relatively similar absorptive behavior in the wholeintestine. It can be concluded that three kinds of nanoparticles can enhance theabsorption of Res comparing to the solution and all of them were passively absorbeddue to no active transporting happened.
     The results of pharmacokinetics study on rats showed that the absolutebioavailability of Res、Res-LP、Res-SLN and Res-NP were 1.83%, 6.83%, 7.11% and4.96%, respectively. The main pharmacokinetics parameters of the nanoparticleswere significantly different from the Res solution samples. So it can be concludedthat nanoparticle drug delivery system increased the stability of the drug in vivo,sustained the retention time and enhance the absorption of drugs. All theseadvantages may be applied to improve the bioavailability of the water insolubledrugs.
     To sum up, in our study, three different kinds of nanoparticles were introducedto improve the low bioavailability of the Res which was used as the model drug.Another creative point was the combination of orthogonal or uniform design withcentral composite to optimize the preparation technology of the nanoparticles, which central composite to optimize the preparation technology of the nanoparticles, whichwas still not reported in international journals. The achievement of our studyprovided a new method to adopting the carrier materials and designing thepreparation technology, meanwhile, it also enriched the research contents andmethods to improve the bioavailability of water insoluble drugs in oraladministration.
引文
[1] Jeandet P, etal. Effect of enological practices on the resveratrol isomer content of wine.[J]. J Agric food Chem, 1995, 43(2): 316
    [2] Jang M, etal. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes[J]. Science, 1997, 275(10):218
    [3] 江文沁,沈金芳.白藜芦醇的药理活性及作用机制[J].药学进展,2003,27(3):159.
    [4] Elisabeth W, Tomislav S, Helmut Erbersdobler, et al. Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats.[J]. Mol. Nutr. Food Res. 2005, 49:482.
    [5] Elisabeth W, Veronika S. Review Metabolism and bioavailability of trans-resveratrol[J]. Mol. Nutr. Food Res. 2005, 49:472
    [6] Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodcgrdaable polymeric nanoparticlcs as drug delivery devices[J]. J Cont roiled Release, 2001, 70: 1.
    [7] Ravi Kumar MNV. Nano and microparticlcs as controllcs drug delivery dcviccs[J] J Pharm Sci, 2000, 3: 234
    [8] 翟光喜,陈国广,赵焰等.低分子肝素纳米脂质体的制备及大鼠口服吸收[J].中国药科大学学报,2002,33(3):200.
    [9] Regine P, Cathi D, Francis C, etal. A simple in vitro mode to study the release kinetics of liposome encapsulated material.[J]. J. Control. Rel., 1998, 56: 41.
    [10] Gao ZG, Lukyanov AN, Singhal, et al. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs[J]. Nanoletters, 2002, 2(9): 979.
    [11] 何军 四川大学博士论文,2005.
    [12] Kunitake T, Tawaki S T, Nakashima N. Exoimer formation and phase separation of hydrocarbon and flucarbon bilayer membrane[J]. Bull Chem Soc Jpn, 1988, 56:3233.
    [13] Murakema Y, Nakano A, Kikuchi J I, et al. Morphological Change induced by intermembrane interaction of synthetic peptide lipids bearing cationic and nonioric head groups[J]. Chemistry Letters, 1983, 1891.
    [14] Neumann R, Ringsdrof H. Peptide liposomes from amphiphilic amino acids. J AM Chem Soc, 1986, 108:487.
    [15] 王素云,杨中汉。肽泡的形态特征及其成膜蛋白的特性。北京大学学报(自然科学版,1996,32(4):514.
    [16] Isabel E, Juan M, Irache, Serge Stainmess, et al. Gliadin nanoparticles for the controlled of all-trans-retinoic acid[J]. Int. J. Pharm.. 1996, 131:191.
    [17] M. A. Arangoa, G. Ponchel, A. M. Orecchioni, et al. Bioadhesive potential of giiadin nanoparticulate systems.[J] Euro.J.Pharm, 2000, 113,33.
    [18] Isabel E, Miguel A. Arangoa, et al. Preparation of Ulex europaeus lectin-gliadin nanoparticle conjugates and their interaction with gastrointestinal mucus[J] Int. J Pharm, 1999, 191:25.
    [19] Umamaheshwari, -R-B, Jain,-N-K. Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori.[J]. Journal Drug Target, 2003, 11(7):415.
    [20] C. Duclairoir a, A.-M. Orecchioni b., P. Depraetere c, Evaluation of gliadins nanoparticles as drug delivery systems:a study of three different drugs[J]. Int. J. Pharm, 2003, 253:133.
    [1] Regine P, Cathi D, Francis C, etal. A simple in vitro mode to study the release kinetics of lip osome encapsulated material[J]. J. Control. Rel., 1998, 56:41.
    [2] Gao ZG, Lukyanov AN, Singhal, et al. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs[J]. Nanoletters, 2002, 2(9): 979.
    [3] Vladimix PT, Dimir PT, Anatoly N, Gao ZG, et al. Immunomicells: targeted pharmaceutical carriers for poorly soluble drug[J]. PANS, 2003, 100:5039.
    [4] 李玉宝.纳米生物医药材料[M].北京:化学工业出版社.2003.
    [5] 姚倩,四川大学博士论文,2006]
    [6] 平其能。现代药剂学。北京:中国医学技术出版社,1998,658.
    [7] Taillardat, Bertschinger A, Martinet CA, Carrupt PA, et al. Molecular factors influencing retention on immobilized artificial membranes (IAM) compared to partitioning in liposomes and n-octanol [J]. Pharm Res, 2002, 19 (6):729.
    [8] Fruttero R, Caron G, Fomatto E, et al. Mechanisms of liposomes/water partitioning of (p-methylbenzyl) alky-lamines [J]. Pharm Res, 1998, 15(9):1407.
    [9] Huang C, Mason J T. Geometric packing constraints in egg phosphatidylcholine vesicles [J]. Proc Natl Acad Sci USA, 1978, 75(1):308.
    [10] Friedman D, Benta S. A mathematical model for drug release from O/W emulsions: Application to controlled release morphine emulsions[J]. Drug Dev Ind Pharm, 1987,13:2067.
    [11] Gupta PK, Hung CT and Perrier DG. Quantitation of the release of doxorubicin from colloidal dosage forms using dynamic dialysis[J]. J Pharm Sci, 1987, 76(2):141.
    [12] Washington, C. Evaluation of non-sink dialysis methods for the measurement of drug release from colloids: effects of drug partition[J]. Int. J. Pharra. 1989, 56: 71.
    [13] Wang YM, Sato H, Adachi I, et al. Optimization of the formulation design of chitosan microspheres containing cisplatin[J]. J Pharm Sci 1996, 85(11):1204.
    [14] 黄虹,唐琦文。均匀设计和模式识别法优化鱼腥草口服液制备工艺[J]。中成药,2000,22(10):684.
    [15] Molpeceres J, Guzman M, Aberturas MR, et al. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement[J]. J Pharm Sci, 1996, 85(2):206.
    [16] 唐春红,蔡绍皙,王摆初.均匀设计与正交设计联用筛选复方银杏的最佳配比[J].中草药,2005,36(1):63。
    [1] 杨时成,朱家壁,梁秉文等.喜树碱固体脂质纳米粒的研究[J].药学学报,1999,34(2:146
    [2] Roberta Cavalli, Otto Caputo, Maria Eugenia Carlotti, etal. Sterillization and freeze-drying of drug—free and drug—loaded solid lipid nanoparticles [J]. Int. J. Pharm, 148 (1997):47.
    [3] M. A. Schubert, CC. Muller-Goymann. Solvent injection as a new approach for manufacturing lipid nanoparticles-evaluation of the method and process parameters[J]. EUR. J. Pharm. Bio, 55(2003):125.
    [4] 张娜,平其能,闫婷婷等。麦胚凝集素修饰胰岛素固体脂质纳米粒的研究。山东大学学报(医学版)2006,44卷(2):222。
    [5] Muhlen AZ, Metmert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles [J]. Pharmazie, 1998, 53 (8):552
    [6] Gasco MR. Method for producing solid lipid microspheres having a narrow size distribution [P]. US Pat: 5250236, 1993-10-05
    [7] Miehele Trotta., Francesca Debernardi, Otto Caputo. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique[J] Int.J.Pharm, 257(2003):153
    [8] 张继明,胡富强,应晓英等.胰岛素固体脂质纳米粒的制备及其理化性质研究[J].中国药学杂志,2004,38(8):605
    [9] Desai MP, Labhasetwar V, Amidon GL, etal. Gastrointestinal uptake of biodegradable microparticles:effect of particle size. Pharm Res, 1996, 13(12): 1838.
    [10] 张惠宏,胡富强,袁弘等.溶剂扩散法制备丙酸倍氯米松固体脂质纳米粒[J].药学学报,2003,38(4):302
    [11] 汪作良,袁弘,章槿.环孢菌素A固体脂质纳米粒的制备与理化性质考察[J].中国药学杂志,,2005,40(6):444。
    [12] Miihlen AZ, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug releaseand release mechanism [J] Eur J Pharm Biopharm, 1998, 45 (2):149.
    [13] Fessi H, Puisieux F, Devissaguet JP, et al. Nanocapsule formation by interracial polymer deposition following solvent displacement [J]. Int J Pharm, 1989, 55 (Suppl):R1-R4.
    [1] 蒋雪涛。生物药剂学。[M]。北京:解放军出版社。1985,472~508
    [2] Aprahamian M, Michel C, Humbert W, etal. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as a new drug carrier in the small intestine[J]. Biol. Cell. 1987, 61:69.
    [3] 李凤前,陆彬。经胃肠道上皮吸收的微粒给药系统研究概况[J]国外医药一代合成药、 生化药、制剂分册,2000,21(5):307-310。
    [4] 徐叔云,卞如濂,陈修.药理实验方法学[M].第3版.北京:人民卫生出版社.2002.700。
    [5] M. A. Arangoa, G. Ponchel, A. M. Orecchioni, et al. Bioadhesive potential of gliadin nanoparticulate systems[J]. Eur. J. Pharm., 2000, 113,33.
    [6] 李高,方超.药物肠道吸收的生物学研究方法[J].中国药学杂志,2002,37(10):726。
    [7] Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake?[J]. Eur. J. Pharm. Biopharm. 2000, 50:147.
    [8] 李玉宝.纳米生物医药材料[M].北京:化学工业出版社.2003.
    [1] Elisabeth W, Veronika S. Review Metabolism and bioavailability of trans-resveratrol [J]. Mol. Nutr. Food Res. 2005, 49, 472.
    [2] 曾经泽主编。生物药物分析。第二版。北京医科大学中国协和医科大学联合出版社,1998-32
    [3] Zhimeng Zhu*, Gia K, Andre V, etal. Determination of trans-resveratrol in human plasma by high-performance liquid chromatography[J]Journal of Chromatography B, 1999, 724: 389.
    [4] 王莉,张三奇等。具有肝靶向性的白藜芦醇脂质体。解放军药学学报,2006,22(4):241。
    [5] Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency[J]. J Pharm Pharmacol, 1990,42(12):821.
    [6] Gabriele B, Awad O, Thomas M. Peptic-tryptic digests of gliadin: contaminating trypsin but not pepsin interferes with gastrointestinal protein binding characteristics[J]. Clinics Chimica Acta 247 (1996): 59.
    1. Ravi Kumar MNV. Nano and microparticles as controlles drug delivery devices[J] J Pharm Sci, 2000, 3: 234
    2.汪龙,邓瑾,金玉燕等.低分子肝素微乳及其纳米脂质体作大鼠口服抗凝效果的比较[J].江苏药学与临床研究 2005,13(2):4.
    3.刘建平,杜志永,朱丽.丹参酮ⅡA固体脂质纳米粒的体外释药和大鼠肠吸收特性的研究[J].中国药理学通报,2005,21(2):186
    4.何军.四川大学博士论文,2005.
    5.张琰,汪长春,杨武利等。聚合物胶束作为药物载体的研究进展.高分子通报,2005(2):42
    6.王彩霞,冯霞,徐芳。透析法制备紫杉醇聚合物胶束给药系统.化学工业与工程,2007,24(1):24
    7. Constantinides PP, Yio SH. Pharmaceutical self-emulsifying micmemulsion comprising surfactants [P]. WO:9408610, 1994-04-28
    8.佘佐彦,柯学,平其能等.灯盏花素纳米混悬剂的制备及其大鼠体内药动学研究[J].中 therapy rationale for development and what we can expect for the future[J] A dv Drug Deliv Re, 2001, 47:3
    11. Muller RH, Mehnert W, Lucks J S, et al. Solid lipid nanoparticles (SLN) -an alternative colloidal carder system for controlled drugdelivery[J] Eur J Pharm Biopharm, 1995, 41:62
    12. Mafia A. C, Felice C, Stefania C, etal. Solid lipid nanoparticles incorporated in dextran hydrogels:A new drug delivery system for oral formulations[J]. Int. J. Pharm. 2006, 325,14
    13.黄春玉,周建平,姚静等.尼莫地平微乳及自微乳的家兔口服生物利用度研究[J].中国药科大学学报。2004,35(5):409
    14. .Roberta Cavalli, Otto Caputo, Maria Eugenia Cadotti,etal.Stedllization and freeze-drying of drug—free and drug—loaded solid lipid nanoparticles [J]. Int. J. Pharm, 1997, 148:47.
    15. Siekmann B, Westesen K. Investigation on solid lipid nanoparticles prepared by precipitation in O/W emulsion[J]. Eur J Pharm Biopharm 1996, 43(2):104
    16.段友容,张志荣,唐永刚.PELGE纳米粒的制备及影响粒径大小的因素[J].四川大学学报(医学版)2005:36(1):115.
    17. Lambert G, Fattal E, Couvreur P. Nanoparticles systems for the delivery of antisense oligonucleotides[J]. A dv Drug Deliv Rev, 2001, 47:99
    18. DaiJD, Nagai T, Wang TQ, et al pH-sensitive nanoparticles for improving the oral bioavallability of cyclosporine A[J]. Int J Pharm, 2004, 281.
    19.王学清,戴俊东,张强等.环孢素A-羟丙甲纤维素酞酸酯纳米粒的大鼠相对生物利用度[J].药学学报,2004,39(6):463
    20. M.A.Sehubert, CC. Muller-Goymann.Solvent injection as a new approach for manufacturing lipid nanopartieles-evaluation of the method and process parameters[J]. EUR. J. Pharm. Bio, 2003, 55:125
    21. .Michele Trotta., Francesca Debernardi, Otto Caputo. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique[J] Int. J. Pharm, 2003, 257:153
    22.胡富强,方宏量,宓国强等.LHRH固体脂质纳米粒口服给药系统的研究[J].中国药学杂志,2005,40(18):1405
    23. Isabel E, Juan M, I, Serge S, et al. Gliadin nanoparticles for the controlled of all-trans-retinoic acid[J]. Int J Pharm. 1996, 131:191.
    24.胡海洋,陈大为,张春叶.蜂毒多肽长循环脂质体的制备研究[J].中国药学杂志,2005,40(15):1160
    25.薛克昌,张三奇,顾宜等.十六酸拉米夫定酯固体脂质纳米粒的肝靶向研究[J].解放军 药学学报,2004,20(1):1
    26. Lambert G, Fattal E, Couvreur P. Nanoparticles systems for thedelivery of antisense oligonucleotides[J]. A dv Drug Deliv Rev, 2001, 47:99.
    27. Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drag delivery devices[J]. J Controlled Release, 2001, 70:1
    28. Ueda M, Iwara A, Kreuter J. Influence of the preparation methods on the drying release behavior of loperamide-loaded nanopar-ticles[J].J Microencapsulation, 1998, 15:361
    29. Yoo HS, Oh J E, Lee KH, et al. Biodegradable nanoparticles con taining doxorubicin2PL GA conjugate for sustained release [J] Pharm Res, 1999, 16:1114
    30. Storm G, Belliot SO, Daeman T, et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocytesystem [J]. A dv drug Deliv Rev, 1995,17:31
    31. Soppimath KS, Aminabhavi TM, Kulkarni AR, et al Biodegrad2able polymeric nanoparticles as drug delivery devices[J]. J Cont rolled Release, 2001, 70:1
    32.李凤前,陆彬.经胃肠道上皮吸收的微粒给药系统研究概况.国外医药—合成药生化药制剂分册,2000,21(5):307
    33.黎洪珊,赵京玲,魏树礼.环孢菌素A聚乳酸纳米粒胶体的制备和大鼠的口服吸收[J]。中国药学杂志,1999,34(8):532
    34.吴华,袁志芳,张小丽,等.尼群地平纳米片在犬体内的药动学与相对生物利用度[J]。中国医院药学杂志,2005,25(10)933
    35. Kreuter J. Nanoparticulate systems for brain delivery of drugs[J]. A dv Drug Deliv Rev, 2001,47: 65
    36. Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system[J]. A dv Drug Deliv Rev, 2001, 47: 55
    37. Lambert G, Fattal E, Pinto2Alphandary H, et al. Poly-isobutylcyanoacrylate nanocapsules containing an aqueos core as a novel colloidal carder for the delivery of oligonucleotides [J]. Pharm Res, 2000, 17: 707
    38. De Jaeghere F, Allemann E, Doelker E, et al. pH-dependent dissolving nano-and microparticels for improved peroral delivery of a highly lipophilic compound in dogs[J]. Pharm Sci, 2001, 3: 28.
    39.张学农,苗爱东,王国荃等.阿苯达唑口服纳米球的制备及释药动力学研究[J].中国现代应用药学杂志,2002,19(2):114
    40.徐希明,李强,朱源等.水飞蓟宾脂质纳米粒的制备与鼠体内分布研究[J].中国中药杂 志,2005,30(24):1912
    41. Hirofumi T, Hiromitsu Y, Yoshiaki K. Mucoadhesive nanoparticulate systems for peptide drug delivery[J]. A dv Drug Deliv Rev, 2001, 47:39
    42. Leong KW, Mao HQ, Truong-Le VL, et al. DNA-polycation nanospheres as nonviral gene delivery vehicles [J].J Cont rolled Release, 1998, 53:183
    43. Mao HQ, Roy K, Troung2Le VL, et al. Chitosan-DNA nanoparticles as gene carriers:systhesis, characterization and transfection efficiency[J]. J Cont rolled Release, 2001, 70:399
    44. Zebela HP, J unghansa M, Maienscheinb V, et al. Enhanced anti-sense efficacy of oligonucleotides adsorbed to monomethylamino ethyacrylate methylmethacrylate copolymer nanoparticles[J]. Eur J Pharm Biopharm, 2000, 49:203
    45..张继明,胡富强,应晓英等.胰岛素固体脂质纳米粒的制备及其理化性质研究[J].中国药学杂志,2004,38(8):605
    46. YerashalmiM, argalitR. Bioadhesive collagen-modified liposomes: molecular and cellular level studies on the monolayers.[J] Arch Biochem Biophys, 1994, 189(1)B13.
    47.孙红武,欧阳五庆。黄连素口服纳米乳的研制、质量及安全性评价。上海交通大学学报(农业科学版),2007,25(1):60。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700