二维有序银纳米阵列的制备及其SPR和SERS性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用刻印技术和模板法制备了结构参数可调的二维有序的银纳米阵列。通过调整参数使得阵列结构的表面等离子体共振(SPR)和表面增强拉曼散射(SERS)活性受到调制。
     主要创新成果如下:
     1.利用纳米小球印刷(NSL)和反应离子刻蚀技术制备了纳米尺度的间距可调的银半球壳阵列,并研究了阵列的SPR性质。该方法制备的半球壳阵列不但可以实现SPR可调控的目的,而且半球壳阵列可以激发局域的和去局域的表面等离子体。作为SERS基底,半球壳阵列表现出了较高的增强能力和较好的均一性。
     2.利用NSL方法和模板法制备了尺寸可调的银球冠阵列。该方法可以简单地调节阵列结构的参数并使球冠阵列在可见到近红外光谱区域表现出SPR可调控的特点。SERS结果展示了在可见到近红外光激发下,银球冠均有较高的增强能力。
     3.利用大面积有序的聚苯乙烯微球单层膜为模板制备了中空的银纳米粒子阵列。阵列的SPR性质依赖于所用模板结构的尺度。同时,作为SERS基底,阵列的增强能力也随之受到调制。
     4.通过四光束激光干涉光刻方法制备了周期和结构尺度可调的正交点阵结构,并将其作为SERS基底制备的模板。实验证明了这种方法在SERS基底制备中具有非常广阔的应用前景。
Surface plasmon resonance (SPR) is a unique optical property possessed by metal nanomaterials, especially noble metal nanomaterials, which is different from metal bulk. SPR strongly dependents on size, shape, distribution of nanostructure and other factors. The resonance generated by surface plasma and excitating light greatly enhance local electromagnetic field of nanostructure. Built on the foundation of enhanced electromagnetic field, surface enhanced spectroscopy (SES) has been developed. Of various SES techniques, Surface Enhanced Raman Scatting (SERS) spectroscopy was is an important branch. The research of SERS mainly focused on the following four areas: (1) to discuss SERS enhancement mechanisms; (2) to expand SERS active substrates; (3) to enlarge the SERS spectral library; (4) to develop the practical application of SERS. Enlarging the range of SERS active substrates provides the prerequisite for the other studies. Nanostructured noble metal substrate is always the first choice for high SERS enhancement. Since primary contribution of SERS enhancement is caused by enhanced local electromagnetic field, it’s necessary to study how the structure could influence its SPR or even its SERS. Preparation of noble metal nanomaterials with ordered structures is an effective means to achieve the aim.
     Lithography technique and template method possess their own advantages in the preparation of ordered structure, they are better than any other method and consequently the common methods to prepare ordered structure. Therefore, we employed both the lithography technique and the template method to prepare ordered two-dimensional array of silver nanoparticles and investigate their SPR and SERS properties. Our study is outlined as follow:
     1. In the fields of spectral and biological detection, composite materials composited by noble metal shell and dielectric core are valuable in practice, and highly expected. Size of polystyrene (polystyrene, PS) spheres was independently controlled by nanosphere lithography (nanosphere lithography, NSL) and reactive ion etching (reactive ion etching, RIE) technology. With etched PS spheres as templates, Ag semishell arrays with the same size and different interparticle spaces were prepared. Both local surface plasmon mode and delocalized surface plasmon mode were excited on these Ag semishell arrays. The correlation between nanoscale morphology and SERS activity of the substrates was investigated. It showed that SERS enhancement is altered with structure. Besides, the adjustability of SPR and SERS, good homogeneity and large-area ordered Ag semishell arrays suggest their promising applications as functional components in spectroscopy, immunoassay, biosensor and biochip.
     2. NSL is a simple and widely used method for preparation of nanoarrays. The method is of great practicality and flexibility in preparation of both biological/chemical sensor and SERS substrate.By combining NSL and template method,Ag nanocap arrays with adjustable parameters were prepared. SPR of the the arrays can be modulated from visible region to the NIR, which provides an opportunity of application for the arrays in SERS spectra. Experiments revealed that nanocap arrays with the different parameters have produced such high SERS enhancement that the enhancement factors have reached six orders of magnitude using 514.5 nm laser as the exciting light. At the same time, 785 nm laser as the exciting light was also used to estimate SERS activity of the arrays. The extreme enhancement excited by 514.5nm laser implies that it will be applied in the detection of biological analysis.
     3. We can prepare hollow nanostructure of various materials using PS sphere monolayer as a template. The great application value of hollow nanostructures in many fields has attracted enduring effort on hollow nano-structure. Hollow silver nanoarrays were prepared with ordered PS sphere monolayer and their SPR and SERS properties were investigated.
     4. Photolithography technology possesses unique advantages in the preparation of ordered structure. The advantages promote rapid technological development of photolithography in return. Laser interference lithography has overcome some shortcomings of traditional lithography and simultaneously has high resolution and large field is widely used and so on. Present laser interference lithography is used mainly in microelectronics and micromachining. Based on the advantages of laser interference lithography, we prepared a kind of square lattice in large area,, and use it as the template for SERS substrate. By Raman microscope with the optical imaging system, the corresponding relationship between SERS spectra and structure become clearer. The experiments showed that the laser interference lithography could be a new technique to study SERS.
引文
[1] Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews. 2004, 104(1): 293-346.
    [2] Li Wenzhi, Xie Sishen, Qian Luxi, et al. Large-scale synthesis of aligned carbon nanotubes[J]. Science. 1996, 274(5293): 1701-1703.
    [3] Taleb A, Diamond J, Mcgarvey J J, et al. Raman microscopy for the chemometric analysis of tumor cells[J]. Journal of Physical Chemistry B. 2006, 110(39): 19625-19631.
    [4] Haes A J, Van Duyne R P. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles[J]. Journal of Physical Chemistry B. 2004, 108(1): 109-116.
    [5] Han Xiaoxia, Cai Linjun, Guo Jie, et al. Fluorescein isothiocyanate linked immunoabsorbent assay based on surface-enhanced resonance Raman scattering[J]. Analytical Chemistry. 2008, 80(8): 3020-3024.
    [6] Bao P, Frutos A G, Creef C, et al. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering[J]. Analytical Chemistry 2002, 74(8): 1792-1797.
    [7] Sun Souheng, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science. 2000, 287(5460): 1989-1992.
    [8] Gleiter H, Marquardt P. Nanocrystalline Structures-an Approach to New Materials.[J]. Metall.Z. 1984, 75(4): 263-267.
    [9] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene[J]. Nature. 1985, 318: 162-163.
    [10] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials. 2007, 6(3): 183-191.
    [11] Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronicstate[J]. Journal of Chemical Physics. 1984, 80(9): 4403-4409.
    [12] Wang Ying, Mahler W. Degenerate four-wave mixing of CdS/polymer composite[J]. Optical Communication. 1987, 61(3): 233-236.
    [13]李永军,刘春艳.有序纳米结构薄膜材料[M].北京:化学工业出版社,2005.
    [14] Barbara B, Wernsdorfer W. Quantum tunneling effect in magnetic particles[J]. Current Opinion in Solid State and Materials. 1997, 2(2): 220-225.
    [15] Whitesides G M, Graybowski B. Self-assembly at all scales[J]. Science. 2002, 295(5564): 2418-2421.
    [16] Gracias D H, Kavthekar V, Love J C, et al. Fabrication of micrometer-scale, patterned polyhedra by self-assembly[J]. Advanced Materials. 2002, 14(3): 235.
    [17] Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science. 2001, 294(5547): 1684-1688.
    [18] Clark T D, Ferrigno R, Tien J, et al. Self-assembly of 10-mu m-sized objects into ordered three-dimensional arrays[J]. Journal of the American Chemical Society. 2001, 123(131): 7677-7682.
    [19] Ban N, Nissen P, Hansen J, et al. The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution[J]. Science. 2000, 289(5481): 905-920.
    [20]Míguez H, Meseguer F, López C, et al. Evidence of fcc crystallization of SiO2 nanospheres[J]. Langmuir. 1997, 13(23): 6009–6011.
    [21] Xia Younan, Gates B, Yin Yadong, et al. Monodispersed colloidal spheres: old materials with new applications[J]. Advanced Materials. 2000, 12(10): 693-713.
    [23]Rybczynski J, Ebels U, Giersig M. Large-scale, 2D arrays of magnetic nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003, 219(1-3): 1-6.
    [22]Denkov N D, Velev O D, Kralchevsky P A, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates[J]. Langmuir. 1992, 8(12): 3183-3190.
    [24] Szekeres M, Kamalin O, Schoonheydt R. A. et al. Ordering and optical properties of monolayers and multilayers of silica spheres deposited by theLangmuir–Blodgett method[J]. Journal of Materials Chemistry. 2002, 12(11): 3268-3274.
    [25]阮伟东.两类有序有序薄膜的制备及其作为SERS基底的研究[D].吉林大学,2007.
    [26]沈家骢等著.超分子层状结构—组装与功能[M].北京:科学出版社,2003:199-226.
    [27] Yu Qiuming, Guan P, Qin Dong, et al. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays[J]. Nano Letters. 2008, 8(7): 1923-1928.
    [28]张锦,冯伯儒,郭永康,等.用于大面积周期性图形制造的激光干涉光刻[J].光电工程2001(06):20-23.
    [29]张锦,冯伯儒,郭永康,等.干涉光刻的原理及计算机模拟:第十一届全国电子束、离子束、光子束学术年会文集[C].成都:2001.
    [30]任琳.基于多光束相干的激光干涉光刻技术研究[D].吉林大学,2007.
    [31] Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching[J]. Applied Physics Letter. 1993, 63(14): 2002, 2002-2004.
    [32]冯杰.软光刻技术制备大分子微图案及微胶囊定向组装[D].浙江大学,2004.
    [33] Rogers J A, Nuzzo R G. Rencent progress in soft lithography [J]. Materials today. 2005, 8(2): 50-56.
    [34] Wilbur J L, Kumar A, Kim E, et al. Microfabrication by microcontact printing of self-assembled monolayers[J]. Advanced Materials. 1994, 6(7-8): 600-604.
    [35] Hulteen J C, Van Duyne R. P. Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces[J]. The Journal of Vacuum Science and Technology A. 1995(13): 1553-1558.
    [36] Haynes C L, Van Duyne R P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J]. Journal of Physical Chemistry B. 2001, 105(24): 5599-5611.
    [37] Penner R M, Martin C R. Controlling the Morphology of Electronically Conductive Polymers[J]. Journal of The Electrochemical Society. 1986, 133(10): 2206-2207.
    [38] Hulteen J C, Martin C R. A General Template- Based Method for the Preparation of Nanomaterials[J]. Journal of Materials Chemistry. 1997, 7(7): 1075-1079.
    [39] Jirage K B, Hulteen J C, Martin C R. Nanotubule- Based Molecular-Filtration Membranes[J]. Science. 1997, 278(5338): 655-660.
    [40] Martin C R. Nanomaterials: A Membrane- Based Synthetic Approach[J]. Science. 1994, 266(5193): 1961-1965.
    [41] Nishizawa M, Menon V P, Martin C R. Metal Nanotubule Membranes with Electrochemically Switchable Ion- Transport Selectivity[J]. Science. 1995, 268(5211): 700-704.
    [42] Deb P, Kim H, Rawat V, et al. Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography[J]. Nano Letters. 2005, 5(9): 1847-1851.
    [43] Lei Yong, Chim W K. Shape and size control of regularly arrayed nanodots fabricated using ultrathin alumina masks[J]. Chemistry of Materials. 2005, 17(3): 580-585.
    [44] Liu Kai, Nogues J, Leighton C, et al. Fabrication and thermal stability of arrays of Fe nanodots[J]. Applied Physics Letters. 2002, 81(23): 4434-4436.
    [45] Lu Zhicheng, Ruan Weidong, Yang Jingxiu, et al. Deposition of Ag nanoparticles on porous anodic alumina for surface enhanced Raman scattering substrate[J]. Journal of Raman Spectroscopy. 2009, 40(1): 112-116.
    [46] Masuda H, Yasui K, Nishio K. Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask[J]. Advanced Materials. 2000, 12(14): 1031-1033.
    [47] Mei Xiangyang, Kim D, Ruda H E, et al. Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks[J]. Applied Physics Letters. 2002, 81(2): 361-363.
    [48] Sauer G, Brehm G, Schneider S, et al. Highly ordered monocrystalline silver nanowire arrays[J]. Journal of Applied Physics. 2002, 91(5): 3243-3247.
    [49] Steinhart M, Wendorff J H, Greiner A, et al. Polymer nanotubes by wetting of ordered porous templates[J]. Science. 2002, 296(5575): 1997.
    [50] Wu Z H, Mei X Y, Kim D, et al. Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy[J]. Applied Physics Letters. 2002, 81(27): 5177-5179.
    [51] Zheng M, Menon L, Zeng H, et al. Magnetic properties of Ni nanowires in self-assembled arrays[J]. Physical Review B. 2000, 62(18): 12282-12286.
    [52] Choi J, Sauer G, Nielsch K, et al. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio[J]. Chemistry of Materials. 2003, 15(3): 776-779.
    [53] Hong Jinfan, Lee W, Scholz R, et al. Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach[J]. Nanotechnology. 2005, 16(6): 913-917.
    [54] Ji Nan, Ruan Weidong, Wang Chunxu, et al. Fabrication of Silver Decorated Anodic Aluminum Oxide Substrate and Its Optical Properties on Surface-Enhanced Raman Scattering and Thin Film Interference[J]. Langmuir. 2009, 25(19): 11869-11873.
    [55] Liao Qing, Mu Cheng, Xu Dongsheng, et al. Gold Nanorod Arrays with Good Reproducibility for High-Performance Surface-Enhanced Raman Scattering[J]. Langmuir. 2009, 25(8): 4708-4714.
    [56] Luo Zhixun, Peng Aidong, Fu Hongbing, et al. An application of AAO template: orderly assembled organic molecules for surface-enhanced Raman scattering[J]. Journal of Materials Chemistry. 2008, 18(1): 133-138.
    [57] Sun Baoliang, Jiang Xiaohong, Dai Shuxi, et al. Single-crystal silver nanowires: Preparation and Surface-enhanced Raman Scattering (SERS) Property[J]. Materials Letters. 2009, 63(29): 2570-2573.
    [58] Du Yabing, Shi Lingfeng, He Tingchao, et al. SERS enhancement dependence onthe diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template[J]. Applied Surface Science. 2008, 255(5): 1901-1905.
    [59] Zhao Wenbo, Zhu Junjie, Chen Hongyuan. Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template[J]. Journal of Crystal Growth. 2003, 258(1-2): 176-180.
    [60] Ji Guangbin, Cao Jieming, Zhang Fang, et al. NixPb1-x nanowire arrays: Effects of annealing[J]. Journal of Physical Chemistry B. 2005, 109(36): 17100-17106.
    [61] Su Hailin, Tang Shaolong, Wang Ruilong, et al. Fe48Co52 Alloy Nanowire Arrays: Effects of Magnetic Field Annealing[J]. Chinese Journal of Chemical Physics. 2009, 22(1): 82-86.
    [62] Lu J G, Chang Paichun, Fan Zhiyong. Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications[J]. Materials Science and Engineering: R: Reports. 2006, 52(1-3): 49-91.
    [63] Lakshmi B B, Patrissi C J, Martin C R. Sol?Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures[J]. Chemistry of Materials. 1997, 9(11): 2544-2550.
    [64] Limmer S J, Seraji S, Forbess M J, et al. Electrophoretic growth of lead zirconate titanate nanorods[J]. Advanced Materials. 2001, 13(16): 1269-1272.
    [65] Zhang Xinyi, Zhang Lide, Meng Guowen, et al. Synthesis of ordered single crystal silicon nanowire arrays[J]. Advanced Materials. 2001, 13(16): 1238-1241.
    [66] Pena D J, Mbindyo J, Carado A J, et al. Template growth of photoconductive metal-CdSe-metal nanowires[J]. Journal of Physical Chemistry B. 2002, 106(30): 7458-7462.
    [67] Xia Younan, Rogers J A, Paul K E, et al. Unconventional methods for fabricating and patterning nanostructures[J]. Chemical Reviews. 1999, 99(7): 1823-1848.
    [68] Li Mingtao, Wang Jian, Zhuang Lei, et al. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography[J]. Applied Physics Letters. 2000, 76(6): 673-675.
    [69] Cuisin C, Chelnokov A, Lourtioz J M. Submicrometer resolution Yablonovitetemplates fabricated by x-ray lithography[J]. Applied Physics Letters. 2000, 77(6): 770-772.
    [70] Yan X M, Kwon S, Contreras A M, et al. Fabrication of large number density platinum nanowire arrays by size reduction lithography and nanoimprint lithography[J]. Nano Letters. 2005, 5(4): 745-748.
    [71] Yin Yadong, Lu Yu, Gates B, et al. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures[J]. Journal of the American Chemical Society. 2001, 123(36): 8718-8729.
    [72] Geissler M, Mclellan J M, Chen J Y, et al. Side-by-side patterning of multiple alkanethiolate monolayers on gold by edge-spreading lithography[J]. Angewandte Chemie-International Edition. 2005, 44(23): 3596-3600.
    [73] Spada E R, Da Rocha A S, Jasinski E F, et al. Homogeneous growth of antidot structures electrodeposited on Si by nanosphere lithography[J]. Journal of Applied Physics. 2008, 103(11).
    [74] Lu Lehui, Capek R, Kornowski A, et al. Selective fabrication of ordered bimetallic nanostructures with hierarchical porosity[J]. Angewandte Chemie-International Edition. 2005, 44(37): 5997-6001.
    [75] Duan G T, Cai W P, Luo Y Y, et al. Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition[J]. Journal of Physical Chemistry B. 2006, 110(32): 15729-15733.
    [76] Lu Lehui, Eychmuller A. Oedered macroporous bimetallic nanosctructures: Design, characterization, and applications[J]. Accounts of Chemical Research. 2008, 41(2): 244-253.
    [77] Cong Hailin, Cao Weixiao. Two-dimensionally ordered copper grid patterns prepared via electroless deposition using a colloidal-crystal film as the template[J]. Advanced Functional Materials. 2005, 15(11): 1821-1824.
    [78] Li Xun, Jiang Yuan, Shi Zhiwei, et al. Two growth modes of metal oxide in thecolloidal crystal template leading to the formation of two different macroporous materials[J]. Chemistry of Materials. 2007, 19(22): 5424-5430.
    [79] Yan Hongwei, Blanford C F, Holland B T, et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion[J]. Chemistry of Materials. 2000, 12(4): 1134-1141.
    [80] Zhang X, Yonzon C R, Young M A, et al. Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography[J]. IEE Proceedings Nanobiotechnology. 2005, 152(6): 195-206.
    [81] Dick L A, Mcfarland A D, Haynes C L, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss[J]. Journal of Physical Chemistry B. 2002, 106(4): 853-860.
    [82]刘之景,刘晨.光刻与等离子体刻蚀技术[J].物理.1999(07):45-49.
    [83] Choi D G, Kirn S, Lee E, et al. Particle arrays with patterned pores by nanomachining with colloidal masks[J]. Journal of the American Chemical Society. 2005, 127(6): 1636-1637.
    [84] Weekes S M, Ogrin F Y, Murray W A. Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography[J]. Langmuir. 2004, 20(25): 11208-11212.
    [85] Tan B J Y, Sow C H, Lim K Y, et al. Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles[J]. Journal of Physical Chemistry B. 2004, 108(48): 18575-18579.
    [86] Joseph Y, Besnard I, Rosenberger M, et al. Self-assembled gold nanoparticle/alkanedithiol films: Preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties[J]. Journal of Physical Chemistry B. 2003, 107(30): 7406-7413.
    [87] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers[J]. Journal of theAmerican Chemical Society. 1992, 114(13): 5221-5230.
    [88] Baum T, Ye S, Uosaki K. Formation of self-assembled monolayers of alkanethiols on GaAs surface with in situ surface activation by ammonium hydroxide[J]. Langmuir. 1999, 15(25): 8577-8579.
    [89] Kanaras A G, Wang Zhenxin, Bates A D, et al. Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems[J]. Angewandte Chemie-International Edition. 2003, 42(2): 191.
    [90] Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies[J]. Nature. 1996, 380(6572): 325-328.
    [91] Sone E D, Zubarev E R, Stupp S I. Semiconductor nanohelices templated by supramolecular ribbons[J]. Angewandte Chemie-International Edition. 2002, 41(10): 1705-1709.
    [92] Sun Y, Kiang C H. DNA-based artificial nanostructures:fabrication, properties and applications. In Handbook of nanostructured biomaterials and their applications in nanotechnology[M]. American Scientific Publishers, 2005, 224-226.
    [93] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature. 1996, 382: 607-609.
    [94] Mucic R C, Storhoff J J, Mirkin C A, et al. DNA-Directed Synthesis of Binary Nanoparticle Network Materials[J]. Journal of the American Chemical Society. 1998, 120(48): 12674-12675.
    [95] Coffer J L, Bigham S R, Pinizzotto R F, et al. Characterization of quantum-confined CdS nanocrystallites stabilized by deoxyribonucleic acid (DNA)[J]. Nanotechnology. 1992, 3(2): 69-76.
    [96] Martin B R, Dermody D J, Reiss B D, et al. Orthogonal self-assembly on colloidal gold-platinum nanorods[J]. Advanced Materials. 1999, 11(12): 1021-1025.
    [97]王秀丽,曾永飞,卜显和.模板法合成纳米结构材料[J].化学通报.2005(10):723-730.
    [98] Orendorff C J, Hankins P L, Murphy C J. pH-triggered assembly of goldnanorods[J]. Langmuir. 2005, 21(5): 2022-2026.
    [99] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chemical Communications. 2001(7): 617-618.
    [100]王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超细颗粒的研究进展[J].化学通报.1995(09):1-5.
    [101] Zehner R W, Lopes W A, Morkved T L, et al. Selective Decoration of a Phase-Separated Diblock Copolymer with Thiol-Passivated Gold Nanocrystals[J]. Langmiur. 1998, 14(2): 241-244.
    [102] Wood R W. On a remarkable case of uneven distrubution of light in a diffration grating spectrum[J]. Philosophical Magazine Series 6. 1902, 4(21): 396-402.
    [103] Fano U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)[J]. Journal of the Optical Society of America. 1941, 31(3): 213-222.
    [104] Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review. 1957, 106(5): 874-881.
    [105] Powell C J, Swan J B. Origin of the characteristic electron energy losses in aluminum[J]. Physical Review. 1959, 115(4): 869-875.
    [106] Stern E A, Ferrell R A. Surface plasma oscillations of a degenerate electron gas[J]. Physical Review. 1960, 120(1): 130-136.
    [107] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift für Physik. 1968, 216(4): 398-410.
    [108] Kretschmann E, Raether H. Radiative decay of nonradiative surface plasmons excited by light[J]. Z. Naturforsch A. 1968, 23: 2135-2136.
    [109] Liedberg B, Nylander C, Lundstrom I. Surface plasmons resonance for gas detection and biosensing[J]. Sensors and Actuators. 1983, 4: 299-304.
    [110] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature. 2003, 424(6950): 824-830.
    [111] Raether H. Surface plasmons[M]. Berlin : Springer, 1988.
    [112] Sambles J R, Bradbery G W, Yang Fuzi. Optical-excitation of surface plasmons: an introduction[J]. Contemporary Physics. 1991, 32(3): 173-183.
    [113] Ditlbacher H, Krenn J R, Felidj N, et al. Fluorescence imaging of surface plasmon fields[J]. Applied Physics Letters. 2002, 80(3): 404-406.
    [114] Hecht B, Bielefeldt H, Novotny L, et al. Local excitation, scattering, and interference of surface plasmons[J]. Physical Review Letters.1996, 77(9): 1889-1892.
    [115] Ritchie R H, Arakawa E T, Cowan J J, et al. Surface-plasmon resonance effect in grating diffraction[J]. Physical Review Letters. 1968, 21(22): 1530-1533.
    [116] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters. 2003, 90(2): 027402.
    [117] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry. 2007, 58: 267-297.
    [118] Kelly K L, Coronado E, Zhao Linlin, et al. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment[J]. Journal of Physical Chemistry B. 2003, 107(3): 668-677.
    [119]周吉.银纳米材料可控合成及其在表面增强光谱中的应用研究[D].吉林大学,2009.
    [120] Kiston S C, Barnes W L, Sambles J R. A full photonic band gap for surface modes in the visible[[J]. Physical Review Letters. 1996, 77(13): 2670-2673.
    [121] Kelf T A, Sugawara Y, Baumberg J J, et al. Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces[J]. Physical Review Letters. 2005, 95(11): 116802.
    [122] Maaroof A L, Cortie M B, Harris N, et al. Mie and Bragg Plasmons in Subwavelength Silver Semi-Shells[J]. Small. 2008, 4(12): 2292-2299.
    [123] Kelf T A, Sugawara Y, Cole R M, et al. Localized and delocalized plasmons in metallic nanovoids[J]. Physical Review B. 2006, 74(24): 245415.
    [124] Lamprecht B, Schider G, Lechner R T, et al. Metal nanoparticle gratings:Influence of dipolar particle interaction on the plasmon resonance[J]. Physical Review Letters. 2000, 84(20): 4721-4724.
    [125] Felidj N, Aubard J, Levi G, et al. Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering[J]. Physical Review B. 2002, 65(7): 075419.
    [126] Rechberger W, Hohenau A, Leitner A, et al. Optical properties of two interacting gold nanoparticles[J]. Optics Communications. 2003, 220(1-3): 137-141.
    [127] Riboh J C, Haes A J, Mcfarland A D, et al. A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion[J]. Journal of Physical Chemistry B. 2003, 107(8): 1772-1780.
    [128] Huo Shengjuan, Xue Xiaokang, Li Qiaoxia, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy[J]. Journal of Physical Chemistry B. 2006, 110(51): 25721-25728.
    [129] Lakowicz J R, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy[J]. Analyst. 2008, 133(10): 1308-1346.
    [130] Brolo A G, Germain P, Hager G. Investigation of the adsorption of L-cysteine on a polycrystalline silver electrode by surface-enhanced Raman scattering (SERS) and surface-enhanced second harmonic generation (SESHG)[J]. Journal of Physical Chemistry B. 2002, 106(23): 5982-5987.
    [131] Baldelli S, Eppler A S, Anderson E, et al. Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays[J]. Journal of Chemical Physics. 2000, 113(13): 5432-5438.
    [132]丁松园,吴德印,杨志林,等.表面增强拉曼散射增强机理的部分研究进展[J].高等学校化学学报.2008,29:2569-2581.
    [133] Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chemical Society Reviews. 1998, 27(4): 241-250.
    [134] Moskovits M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics. 1985, 57: 783-826.
    [135] Felidj N, Truong S L, Aubard J, et al. Gold particle interaction in regular arrays probed by surface enhanced Raman scattering[J]. Journal of Chemical Physics. 2004, 120(15): 7141-7146.
    [136] Mcfarland A D, Young M A, Dieringer J A, et al. Wavelength-scanned surface-enhanced Raman excitation spectroscopy[J]. Journal of Physical Chemistry B. 2005, 109(22): 11279-11285.
    [137] Baumberg J J, Kelf T A, Sugawara Y, et al. Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals[J]. Nano Letters. 2005, 5(11): 2262-2267.
    [138] Lakowicz J R. Radiative decay engineering: Biophysical and biomedical applications[J]. Analytical Biochemistry. 2001, 298(1): 1-24.
    [139] Farcau C, Astilean S. Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization[J]. Applied Physics Letters. 2009, 95(19): 193110.
    [140] Demirel G, Malvadkar N, Demirel M C. Control of protein adsorption onto core-shell tubular and vesicular structures of diphenylalanine/parylene[J]. Langmuir. 2010, 26(3): 1460-1463.
    [141] Singh S, Bozhilov K, Mulchandani A, et al. Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals[J]. Chemical Communications. 2010, 46(9): 1473-1475.
    [142] Khalid M, Wasio N, Chase T, et al. In situ generation of two-dimensional Au-Pt core-shell nanoparticle assemblies[J]. Nanoscale Research Letters. 2010, 5(1): 61-67.
    [143] Jackson J B, Halas N J. Surface-enhanced raman scattering on tunable plasmonic nanoparticle substrates [J]. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101(52): 17930-17935.
    [144] Scodeller P, Flexer V, Szamocki R, et al. Wired-enzyme core-shell Au nanoparticle biosensor[J]. Journal of the American Chemical Society. 2008, 130(38): 12690-12697.
    [145] Fang Pingping, Li Jianfeng, Yang Zhilin, et al. Optimization of SERS activitiesof gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness[J]. Journal of Raman Spectroscopy. 2008, 39(11): 1679-1687.
    [146] Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers[J]. Journal of Chemical Physics. 2004(120): 357-366.
    [147] Ruan Weidong, Lu Zhicheng, Ji Nan, et al. Facile fabrication of large area polystyrene colloidal crystal monolayer via surfactant-free Langmuir-Blodgett technique[J]. Chemical Research in Chinese Universities. 2007, 23(6): 712-714.
    [148] Haginoya C, Ishibashi M, Koike K. Nanostructure array fabrication with a size-controllable natural lithography[J]. Applied Physics Letters. 1997, 71(20): 2934-2936.
    [149] Ganeev R A, Ryasnyansky A I, Stepanov A L, et al. Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm[J]. Optical and Quantum Electronics. 2004, 36(10): 949-960.
    [150] Cortie M, Ford M. A plasmon-induced current loop in gold semi-shells[J]. Nanotechnology. 2007, 18(23):235704.
    [151] Liu Xuefeng, Sun C H, Linn N C, et al. Wafer-scale surface-enhanced raman scattering substrates with highly reproducible enhancement[J]. Journal of Physical Chemistry C. 2009, 113(33): 14804-14811.
    [152] Oubre C, Nordlander P. Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers[J]. Journal of Physical Chemistry B. 2005, 109(20): 10042-10051.
    [153] Song Wei, Wang Yunxin, Zhao Bing. Surface-enhanced raman scattering of 4-mercaptopyridine on the surface of TiO2 nanofibers coated with Ag nanoparticles[J]. Journal of Physical Chemistry C. 2007, 111(34): 12786-12791.
    [154] Yang L, Du C, Luo X. Numerical study of optical properties of single silver nanobowtie with anisotropic topology[J]. Applied Physics B: Lasers and Optics. 2008, 92(1): 53-59.
    [155] S?nnichsen C, Reinhard B M, Liphardt J, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles [J]. Nature Biotechnology.2005, 23(6): 741-745.
    [156] Jain P K, Huang Wenyu, El-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation[J]. Nano Letters. 2007, 7(7): 2080-2088.
    [157] Ning Xiaohua, Xu Shuping,Dong Fengxia,et al. Gold-silver framework monolayer nanostructure prepared by in-situ sacrificial template reaction and their application for SERS[J]. Chemical Journal of Chinese Universities-Chinese. 2009, 30(1): 159-163.
    [158] Knoll W. Interfaces and thin films as seen by bound electromagnetic waves[J]. Annual Review of Physical Chemistry. 1998, 49(1): 569-638.
    [159] Hanarp P, Kall M, Sutherland D S. Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography[J]. Journal of Physical Chemistry B. 2003, 107(24): 5768-5772.
    [160] Barnes W L. Surface plasmon-polariton length scales: a route to sub-wavelength optics[J]. Journal of Optics A: Pure and Applied Optics. 2006, 8(4): S87-S93.
    [161] Khlebtsov N G, Melnikov A G, Dykman L A, et al. Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates. In NATO Science Series II: Mathematics, Physics and Chemistry[M]. Springer Netherlands, 2004, 265-308.
    [162] Gunnarsson L, Rindzevicius T, Prikulis J, et al. Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions[J]. Journal of Physical Chemistry B. 2005, 109(3): 1079-1087.
    [163] Jain P K, Eustis S, El-Sayed M A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model[J]. Journal of Physical Chemistry B. 2006, 110(37): 18243-18253.
    [164] Su K H, Wei Q H, Zhang X. Interparticle coupling effects on plasmon resonances of nanogold particles[J]. Nano Letters. 2003, 3(8): 1087-1090.
    [165] Felidj N, Aubard J, Levi G, et al. Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays[J]. Physical Review B. 2002, 66(24).
    [166] Laurent G, Felidj N, Aubard J, et al. Evidence of multipolar excitations in surface enhanced Raman scattering[J]. Physical Review B. 2005, 71(4): 045430.
    [167] Link S, Ei-Sayes M A. Optical properties and ultrafast dynamics of metallic nanocrystals[J]. Annual Review of Physical Chemistry. 2003, 54: 331-366.
    [168] Evanoff D D, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays[J]. ChemPhysChem. 2005, 6(7): 1221-1231.
    [169] Baia L, Baia M, Popp J, et al. Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR[J]. Journal of Physical Chemistry B. 2006, 110(47): 23982-23986.
    [170] Xu Hongxing, Aizpurua J, Kall M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering[J]. Physical Review E. 2000, 62(3B): 4318-4324.
    [171] Grand J, de la Chapelle M L, Bijeon J L, et al. Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays[J]. Physical Review B. 2005, 72(3): 033407.
    [172] Chen Jianfeng, Ding Haomin, Wang Jiexin, et al. Preparation and characterization of porous hollow silica nanoparticles for drug delivery application[J]. Biomaterials. 2004, 25(4): 723-727.
    [173] Cheng Kai, Peng Sheng, Xu Chenjie, et al. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin[J]. Journal of the American Chemical Society. 2009, 131(30): 10637-10644.
    [174] Cheng Fangyi, Ma Hua, Li Yueming, et al. Ni1-xPtx (x=0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane[J]. Inorganic Chemistry. 2007, 46(3): 788-794.
    [175] Sun Yugang, Xia Younan. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm[J]. Analyst. 2003, 128(6): 686-691.
    [176] Lu Yu, Liu G L, Kim J, et al. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect[J]. Nano Letters. 2005, 5(1): 119-124.
    [177] Chou S Y, Krauss P R, Zhang Wei, et al. Sub-10 nm imprint lithography and applications[J]. Journal of Vacuum Science & Technology B. 1997, 15(6): 2897-2904.
    [178] Heyderman L J, Solak H H, David C, et al. Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization[J]. Applied Physics Letters. 2004, 85(21): 4989-4991.
    [179]张锦.激光干涉光刻技术[D].四川大学, 2003.
    [180] Perney N M B, Baumberg J J, Zoorob M E, et al. Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering[J]. Optics Express. 2006, 14(2): 847-857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700