同轴静电纺丝法制备中空纳米纤维及纳米电缆与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米管状材料由于其独特的物理化学性能以及在催化、医药、纳米电子、光电子器件等领域具有的潜在应用价值引起了研究者们的高度关注。本论文以同轴静电纺丝技术(Coaxial Electrospinning)制备无机/无机同轴纳米电缆为研究重点,制备有机/无机氧化物中空纳米纤维,同轴纳米电缆,并对其结构进行了表征。
     本文首次采用同轴静电纺丝技术成功制备出了聚乙烯吡咯烷酮(PVP)中空纳米纤维、TiO_2中空纳米纤维、TiO_2@SiO_2同轴纳米电缆。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、能谱仪(EDS)、傅立叶变换红外光谱(FTIR)等手段对其结构进行了表征,制备的纳米管直径90nm-1000nm,长度300μm-400μm。对同轴静电纺丝技术中纺丝内外纺丝溶液的流量、互溶性、浓度,以及喷嘴尺寸、电压、接受距离等主要影响因素进行了深入研究。对中空纳米纤维及同轴纳米电缆的形成机理进行了详细讨论,得到了一些很有意义的结果,对一维纳米材料的研究有一定的参考价值。
Nanotubes have attracted great considerable attention recently due to their unique physical chemical properties and their potential applications in catalysis, medicine, nanoelctronics and optoelectronic nanodevices. In this dissertation,coaxial electrospinning was explored to synthesize organic/inor -ganic oxides hollow nanofibres and coaxial nanocables, meanwhile the structures of prepared nanomaterials have also been studied.
    For the first time, PVP hollow nanofibres, TiO_2 hollow nanofibres and TiO_2@SiO_2 coaxial nanocable with diameters ranging from 90nm-1μm, length up to 300μm-400μm have been successfully synthesized by coaxial electrospinning. Their structure have been studied by SEM, TEM, XRD, EDS and FTIR. Some parameters, for example, flow rate, immiscible and miscible properties of electrospun solutions, concentration, spinneret size, voltage, working distance, were also discussed. By discussing the formation mechanisms of hollow nanofibres and coaxial nanocables, some useful results were obtained, which will have some reference value for further study of one-dimensional nanostructures materials.
引文
[1] Morales A M, Lieber C M. A Laser Ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279:208-211
    [2] Huang Y, Duan X F, Wei Q Q, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291: 630-633.
    [3] Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silion nanowire building blocks. Science, 2001, 291: 851-853.
    [4] Trentler T J, Hickman K M, Bubro W E, et al. Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors-An analogy to vapor-liquid-solid growth. Science, 1995, 270: 1791-1794.
    [5] Dai H J, Wong E W, Lieber C M, et al. Synthesis and characterization of carbide nanorods. Nature 1995, 375: 769-772.
    [6] Hart W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotuber-confined reaction. Science, 1997, 277: 1287-1289.
    [7] Fasol G Applied physics-Nanowires: Small is beautiful. Science, 1998, 280: 545-546.
    [8] Zhang Y, Suenaga K, Colliex C,et al, Coaxial nanocables: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science, 1998, 281: 973-975.
    [9] 张立德,牟季羡.纳米材料与纳米结构[M].北京:科学出版社,2001.
    [10] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Sciecce, 2001, 291: 1947-1949
    [11] Y Wu, P Yang. J. Direct Observation of Vapor-Liquid-Solid Nanowire Growth. Am. Chem. Soc., 2001, 123: 3165~3166.
    [12] 张立德.纳米材料[M].北京:化学工业出版社,2000.31.
    [13] Lee S T, Wang N, Zhang Y F, et al. Oxide-assisted semiconductor nanowire growth [J]. MRS Bull, 1999, 24: 36-42.
    [14] G. Gundiah, F. L. Deepak, A. Govindaraj and C.N.R. Rao, Carbothermal synthesis of the nanostructures of Al_2O_3 and ZnO, Topics in Catalysis, 2003, 24: 137-146.
    [15] H Y Peng, X T Zhou, N Wang et al. Bulk-Quantity GaN Nanowires Synthesized from Hot Filament Chemical Vapor Deposition [J]. Chemical Physics Letters, 2000, 327:263-270
    [16] F L Deepak, C P Vinod, K Mukhopadhyay et al. Boron nitride nanotubes and nanowires Chem. Phys. Lett., 2002, 353: 345-352.
    [17] F L Deepak, G Gundiah, A Govindaraj et al. Nanowires and nanotubes of. BN, GaN and Si_3N_4. Bull Polish. Acad. Sci., 2002, 50: 165-174.
    [18] C N R Rao, F L Deepak, A Govindara. Carbon-assisted Synthesis of Inorganic Nanowires. J. Mater. Chem., 2004, 14(4): 440-450.
    [19] Yang P D,et al. Stucky block copolymer template synthesis of mesoporous metal oxides with large ordering lengths and semicrystalline framework J. Chem Mater, 1999, (11):2 813.
    [20] Xu Shi-ming,et al. Template synthesisof the nanowire arrays of cadmium chalcogenides J. Electrochemistry, 2000, 6 (2): 151.
    [21] Han WQ, et al. Synthesisof gallium nitride nanorods through a carbon nanotube-confined reaction J. Science, 1997, 277: 1287.
    [22] 朱建新,汪子丹,蒋祺,等.弹道区的电子输运.物理学进展,1997,17(3):233-249.
    [23] Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395: 780-783.
    [24] Yanson A I, Rubio Bollinger G, Van Den Brom H E, et al. Formation and manipulation of a metallic wire of single gold atoms. Nature, 1998, 395: 783-785.
    [25] Kondo Y, Takayanagi K. Synthesis and characterization of helical multi shell gold nanowires. Science, 2000, 289: 606-608.
    [26] Thornton T J. Ballistic transport in GaAs quantum wires-A short history. Superlattices Microstruct, 1998, 23: 601-610.
    [27] Abillan J, Chicon R, Arenas A. Properties of nanowires in air: Controlled Values of conduntance. Surf Sci, 1998, 418:493-501
    [28] 严东生,冯端.材料新星—纳米材料科学[M].湖南:湖南科学技术出版社,1997.
    [29] Dubios s, Michel A, Eymery J P, er al. Fabrication and properties of arrays of superconducting nanowires. J Mater Res, 1999, 14:665-671.
    [30] Huang M H, Mao S, Yang P D, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292: 1897-1899.
    [31] Duan X F, Huang Y, Lieber C M, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409:66-69
    [32] Duan X F, Huang Y, Lieber C M, et al. Single-nanowire electrically driven lasers.Nature, 2003, 421: 241-245.
    [33] Zhou X T, Lai H L, Peng H Y, et al. Thin β-SiC nanorods and their field emission properties. Chem Phys Lett, 2000, 318:58-62
    [34] Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl Phys Lett, 2002, 81: 3648-3650.
    [35] Menon V P, Martin C R. Fabrication and evaluation of nanoelectrode ensembles. Anal Chem, 1995, 67: 1920-1928.
    [36] Wirtz M, Martin C R. Template-fabricated gold nanowires and nanotubes. Adv Mater, 2003, 15: 455-458.
    [37] PennerR.M, Martin C R. Preparation and electrochemical characterization of uttramicroelectrode ensembles. Anal. Chem, 1987, 59: 2625-2630.
    [38] Hulteen J C, Menon V P, Martin C R. Template preparation of nanoelectrode ensembles. J Chem Soc, Faraday Trans, 1996, 92: 4029-4023.
    [39] Forrer P, Schlottig F, SieGenthaler H, et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. J Appl Electrochem, 2000, 30: 533-541.
    [40] Brunetti B, Ugo P, Martin C R, et al. Electrochemistry of phenothiazine and methyiviologen biosensor electron-transfer mediators at nanoelectrode ensembles. J Electronanal Chem, 2000, 491: 166-174.
    [41] 孔景临,薛宽宏,何春建,等.镍纳米线电极的电化学氧化还原行为及其对乙醇的电化学氧化催化作用.应用化学,2001,18(6):462-465.
    [42] 孔景临,薛宽宏,邵颖,等.镍纳米线电极对乙醇的电催化氧化动力学参数的测定.物理化学学报,2002,18(3):268-271.
    [43] 孔景临,薛宽宏,何春建,等.镍纳米线电极的交流阻抗研究.应用化学,2002,19(4):313-316.
    [44] Kong J, Franklin N R, Dai H J, et al. Nanotube molecular wires as chemical sensor. Science, 2000, 287: 622-625.
    [45] Favier F, Walter E C, Penner R M, et al. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science, 2001, 293: 2227-2231
    [46] Walter E C, Favier F, Penner R M. Palladium mesowire arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal Chem, 2002, 74: 1546-1533.
    [47] Cui Y, Wei Q Q, Lieber C M, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289-1292
    [48] Formhals A. US patent 1,975,504, 1934.
    [49] Formhals A. US patent 2,160,962, 1939.
    [50] Formhals A. US patent, 2,187,306, 1940.
    [51] Formhals A. US patent, 2,323,025, 1943.
    [52] Formhals A. US patent, 2,349,950, 1944.
    [53] Vonnegut B, Neubauer RL. J of Colloid Science, 1952, 7: 616.
    [54] Simons HL. US patent 3, 280, 229, 1966.
    [55] Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys, 2001, 89(9): 4836-46.
    [56] Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. Ⅰ. Stability theory. Physics of Fluids 2001, 13: 2201-20.
    [57] Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. Ⅱ. Applications. Physics of Fluids 2001, 13: 2221-36.
    [58] Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 2000, 87: 4531-47.
    [59] Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl Phys Lett 2001, 78: 1149-51.
    [60] Shin YM, Hohman MM, Brenner MP, Rutledge GC. Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001, 42: 9955-67.
    [61] Yarin AL, Koombhongse S, Reneker DH. Bendinginstability in electrospinning of nanofibers. J Appl Phys 2001, 89(5): 3018-26.
    [62] 黄争鸣,张彦中.共轴复合连续纳/微米纤维及其制备方法[P].中国发明专利,200310108130.2003-09.
    [63] 黄争鸣,董国华.制备共轴复合连续纳/微米纤维的多喷头静电纺丝装置[P].中国发明专利,20031010922219.2003-12.
    [64] 黄争鸣.一种有效包含功能材料的涂装层及其制备方法[P].中国发明专利,申请号:20041001650618.2004-02
    [65] Lopez-Herrera J M, Barrero A, Lopez A, et al. Coaxial jets generated from electrified taylor cones: Scaling laws[J]. J Areosol Sci, 2003, 34: 535-552.
    [66] Z. sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, Adv. Mater. 2003, 15, 1929.
    [67] Eyal Zussman,*Alexander L. Yarin, Alexander V. Bazitevsky, Adv. Mater. 2006, 18, 348-353]
    [68] Yanzhong Zhang, Zheng-Ming Huang, Xiaojing Xu, Preparation of Core Shell Structured-PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning, Chem. Mater, 2004, 16, 3406-3409.
    [69] Hongliang Jiang, Yingqian Hu, Yan Li, et al, A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents, [J] controlled release, 2005 108 237-243.
    [70] Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J]. Nano Lett, 2004, 4(5): 933-938.
    [71] Li D, Xia Y N. Electrospinning of nanofibers: Reinventing the wheel?[J]. Adv Mater, 2004, 16(14): 1151-1170.
    [72] Larsen G, Spretz R, Velarde O R. Templating of inorganic and organic solids with electrospun fibres for the synthesis of large-pore materials with near-cylindrical pores [J]. J Mater Chem, 2004, 14(10): 1533-1539.
    [73] Sun Z, Zussman E, Yarin A L, et al. Compound core-shell polymer nanofibers by coelectrospinning[J]. Advanced Materials, 2003, 15(22) : 1929-1932.
    [74] Tao Song, Yanzhong Zhang, Tiejun Zhou, et al. Eancapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning [J]. Chem. Phy. Let. 2005, 415, 317-322.
    [75] Ignacio G. Loscertales, A. Barrero, Manuel Marquez. Production of complex nano-structures by electro-hydro-dynamics. In: proc of Mater. Res. Soc. Symp. 860, 591-596.
    [76] Cepak V M, Martin C R. Preparation of polymeric micro-and nanostructures using a template-based deposition method. Chem. Mater, 1999, 11, 1363-1367.
    [77] Michael Bognitzki, Hou H Q, Michael Ishaque. Polymer, Metal, and Hybrid Nano- and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process). Adv. Mater, 2000, 12(9): 637-640.
    [78] Sankaranarayanan K, Ramasamy P. Microtube-czochralski technique (uT-CZ): a novel way of seeding the melt to grow bulk single crystal [J]. J Cryst Growth, 1998, 193(122): 252-256.
    [79] Kaneko E, Isoe J, Iwabuchi T, et al. In-vessel extraction using a microtube and its application to the fluorimetric determination of trace lead [J]. Analyst, 2002, 127: 219-222.
    [80] Dykstra R W. The use of symmetrical microtube for increased sensitivity in carbon-13NMR measurements [J]. J Magn Reson, Ser A, 1995, 112: 255-257.
    [81] Doty F D, Hosford G, Spitzmesser J B, et al. Themicrotube strip heat exchanger [J]. Heat Transfer Eng, 1991, 12(3): 31-41.
    [82] Huang Z M, Zhang Y Z. Micro-structures and tensile performance of coaxial nanofibers with drug and protein cores and polycaprolactone shells [J]. Chemical Journal of Chinese Universities, 2005, 26(5) : 968 - 972.
    [83] Liu G, Qiao L, Guo A. Diblock copolymer nanofibers [J]. Macromolecules, 1996, 29: 5508- 5510.
    [84] Morales. A. M, Lieber C M. Laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279: 208-211.
    [85] Jang J , Lim B , Lee J , et al. Fabrication of a novel poly-pyrrole/poly (methyl methacrylate) coaxial nanocable using mesoporous silica as a nanoreactor [J]. Chemical Communications, 2001,1:83-84.
    [86] Bognitzki M , Hou H , Ishaque M , et al. Polymer , metal, and hybrid nano-and mesotubes by coating degradable polymer template fibers (TUFT process) [J]. A dvanced Materials, 2000, 12(9): 637-640.
    [87] Dong H, Nyame V, MacDiarmid A G et al. Polyaniline/poly (methyl methacrylate) coaxial fibers: The fabrication and effects of the solution properties on the morphology of electrospun core fibers [J]. J Polym Sci Part B: Polym Phys, 2004, 42(21): 3934-3942.
    
    [88] Zhang Y Z, Huang Z M, Xu X, et al. Preparation of core-shell structured PCL/Gelatin bicomponent nanofibers by coaxial electrospinning [J]. Chem Mater, 2004, 16 (18) :3406-3409.
    
    [89] Zhang Y Z, Ouyang H W, Lim C T, Ramakrishna S, Huang Z M. Electrospinning of gelatin fibers and gelatin/ PCL composite fibrous scaffolds [J]. J Biomed Mater Res Part B:A ppl Biomater, 2005, 72B: 156-165.
    [90] Huang Z M , Zhang Y Z, Ramakrishna S, et al. Electrospinning and mechanical characterization of gelatin nanofibers [J]. Polymer. 2004, 45(15): 5361-5368.
    [91] Mounir S, Madiha B, et al. Oral and subcutaneous absorption of insulin poly(isobutylcyanoacry- late) nanoparticle[J]. International Journal of Pharmaceutics, 2005, 28(2) : 289-293.
    [92] Prego C. Garcia M, Tones D, et al. Transmucosal macro-molecular drug delivery [J). Journal of Controlled Release, 2005, 301(1-3): 151-162.
    [93] Morin C, Barratt G, Fessi H , et al. Improved intracellular delivery of a muramyl dipeptide analog by means of nanocapsules [J]. Int J Immunopharmacol, 1994 , 16(5-6) : 451-456.
    [94] Loscertales I G, Barrero A, Guerrero I, et al. Micro/ nanoncapsulation via electrified coaxial liquid jets [J]. Science, 2002, 295: 1695-1698.
    [95] Bocanegra R, Loscertales I G, Gaonkar , et al. Micromen-capsulation of food-grade substances using an electrospray technique [J]. Abstracts of the European Aerosol Conference, 2003, S491- S492.
    [96] GW. Meng, L.D. Zhang, and C.M. Mo, "Synthesis Of "Aβ-Sic Nanorod Within A SiO_2 Nanorod One Dimensional Composite Nanostructures," Solid State Commun.106, 1998, 215.
    [97] Suenaga K, Colliex C, Demoncy N, et al. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science, 1997, 278: 653-655
    [98] Zhang Y, Suenaga K, Colliex C, et al. Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon. Science, 1998, 281: 973-975
    
    [99] X.C.Wu, W.H. Song, B. Zhao, et al. Synthesis of coaxial nanowires of silicon nitride sheathed with silicon and silicon oxide. Solid State Communications, 2000,115 683-686

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700