铜基SiC、碳洋葱自润滑复合材料的制备及其摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用镀铜纳米SiC颗粒和纳米碳洋葱颗粒,采用粉末冶金的办法制备了Cu/Nano-SiC复合材料和Cu/Nano-SiC+纳米碳洋葱自润滑复合材料。系统研究了纳米SiC颗粒表面镀铜、以及添加纳米碳洋葱对铜基复合材料物理性能、力学性能和耐磨性能的影响,并对其耐磨机理作了初步探究。
     采用化学镀可以在纳米SiC表面成功涂覆致密的铜镀层,之后利用粉末冶金以及复压复烧工艺制备了纳米SiC弥散强化铜基复合材料,之后通过添加固体润滑剂-碳洋葱制备出了Cu/Nano-SiC+纳米碳洋葱自润滑复合材料材料。分析了Nano-SiC颗粒表面修饰铜对复合材料界面结合及其性能的影响,以及纳米碳洋葱的添加对复合材料性能的影响。研究表明:采用复压复烧工艺能有效提高复合材料各项性能,纳米SiC表面镀铜能有效改善界面结合状况,进一步提高了复合材料的密度、硬度和抗弯强度,但导电性能随着增强体的加入而减弱。
     研究了不同载荷下复合材料的摩擦磨损性能,通过SEM、EDS等分析手段对表面磨痕及其成分的变化情况进行了分析,探讨了Cu/SiC复合材料和Cu/SiC+纳米碳洋葱自润滑复合材料的磨损机理。
     结果表明:纳米SiC表面化学镀铜处理可以改善Cu/SiC复合材料的磨损性能。低载荷时磨损机制是以粘着磨损为主;高载荷时则以磨粒磨损为主。
     Cu/SiC+纳米碳洋葱复合材料的磨损研究表明:碳洋葱可有效提高复合材料的耐磨损性能,低载荷时,在磨损表面形成了一层氧化物和碳洋葱润滑层,可降低材料磨损率,磨损界面的高温造成的氧化磨损是此时的主要磨损机制;高载荷时,由于润滑层被破坏,而碳洋葱不能得到有效补充,引起磨损率升高,磨损机制为:碳洋葱低含量时以磨粒磨损为主;高含量时以粘着磨损为主,同时伴有氧化磨损,但是随着碳洋葱的增加,破坏程度得到缓解,磨损率总体趋势逐渐降低。
In this paper, Cu/Nano-SiC and Cu/Nano-SiC+Nano-carbon-onions composites were prepared by powder metallurgy approach with SiC coated by copper. The mechanism of the electroless copper was systematically studied. The mechanical properties of the composites were also tested and analyzed. In addition, the wear behaviors and the wear mechanisms of the composites were initially investigated.
     The Nano-SiC particles were successfully coated with a uniform and compact layer of copper by electroless plating which is simple、feasible and convenient approach. After that, the Cu/Nano-SiC composite and Cu/Nano-SiC+Nano-carbon onions composites were prepared by powder metallurgy and repressing and resintering technique. The influences of Cu-coated SiC on interfacial combination and the properties of composites were analyzed. Besides, the influence of different content of Nano-carbon onions on properties of composites was also studied. The research showed that: repressing and resintering were conducive to properties of composites. Cu-coated SiC resulted in the increase of density、bending strength and hardness of the composites. But the electrical conductivity of the composites with the increase of the reinforcement content gradually weakened.
     After the friction and wear tested under the different loading conditions, the worn surfaces and the regularity for change of compositions and morphologies were studied by SEM and EDS. And the wear behaviors and mechanisms of two composites were systematically investigated.
     We found that the wear experiment of Cu/Nano-SiC composite showed that the wear-resisting properties were improved because of Nano-SiC by eletrocless copper. The wear mechanism of composites was mainly adhesive wear at low load; but high load, it was mainly abrasive wear.
     Furthermore, we found that: it could effectively improve the wear resistance of the composites by adding Nano-carbon onions. At low load, a lubricating layer of oxide and carbon onion was formed on the wear surface, which could effectively reduce the wear rate. At this time, the main wear mechanism was the oxidation wear because of high temperature of the surface lubricating layer. At high load, the lubricating layer was destroyed. At this time, the Nano-carbon onions could not be complemented effectively, which could increase of the wear rate. Because of that, the wear mechanism comply with following tendency-the mainly wear mechanism at low contentof carbon onions was the abrasion; while at high content it was the adhesive, accompanied by oxidation wear. But with the increasement of the carbon onions, the overall wear rates decreased gradually.
引文
[1]罗宋靖,复合材料液态挤压[M],北京:冶金工业出版社,2002
    [2]张国定,赵昌正,金属基复合材料[M],上海:上海交通大学出版社,1996
    [3]王玲,赵浩峰,金属基复合材料及其浸渍制备的理论与实践[M],北京:冶金工业出版社,2005
    [4]陶杰,赵玉涛,潘蕾,金属基复合材料制备新技术导论[M],化学工业出版社,2007
    [5]赵浩峰,金属基复合材料的界面研究现象[J],铸造设备研究,1998(3):23-25
    [6] Cook A. J.,Werner P. S.,Pressure Infiltration Casting of MMCs [J],Materials Science and Engineering,1991,A144:189-206
    [7]于化顺,金属基复合材料及制备技术[M],北京:化学工业出版社,2006
    [8]赵玉庭,姚希增,复合材料基体与界面[M],上海:华东化工学院出版社,1991
    [9]郑远谋,黄荣光,爆炸焊接和金属复合材料[J],上海:上海有色金属,1998,19(3):121
    [10]Junwu L.,Zhixiang Z.,Pressureless infiltration of liquid aluminum alloy SiC performs to form near-net-shape SiC/Al composites[J],Journal of Alloys and Compounds ,2008,465:239-243
    [11]Lin Z.,Xuan-hui Q.,Bo-hua D.,Preparation of SiCp/Cu composites by Ti-activated pressureless infiltration[J],Trans,Nonferrous Met.Soc.China ,2008,18:872-878
    [12]张淑英,张二林,喷射共沉积金属基复合材料的发展现状[J],宇航材料工艺,1996,(4):4
    [13]Gui M., Kang S.B. ,Euh K,Thermal conductivity of Al-SiCp composites by plasma spraying[J],Scripta Materialia,2005,52(1):51
    [14]Euh K., Kang S.B.,Effect of rolling on the thermo-physical properties of composites fabricated by plasma spraying[J],Materials Science and Engineering A,2005,395(1-2):47
    [15]王自东,曾松岩,原位接触反应法制取TiC颗粒增强Al复合材料的研究[J],金属学报,1994,30(7):B579
    [16]Gautam R.K.,Ray S. ,Jain S.C.,Tribological behavior of Cu–Cr–SiCp in situ composite[J],Wear,2008,265:902-912
    [17]吴进怡,锡碳化钛增强铜基复合材料[M],北京:冶金工业出版社,2008
    [18]于春田,金属基复合材料[M],北京:冶金工业出版社,1995
    [19]吴树森,日本金属基复合材料的研究与应用[J],兵器材料科学与工程,1999,2:56-66
    [20]张力宁,王俊,颗粒增强金属基复合材料的强化机制研讨[J],东南大学学报,1995,4:77-82
    [21]魏建锋,宋余九,颗粒增强铝基复合材料的增强机制[J],稀有金属材料与工程,1994,3:17-22
    [22]克莱因,威瑟斯,金属基复合材料导论[M],北京:冶金工业出版社,1996
    [23]陈剑锋,武高辉,孙东立,等,金属基复合材料的强化机制[J],航空材料学报,2002,2:49-53
    [24]郑茂盛,赵更申,井新利,等,颗粒增强金属基复合材料的协同效应[J],材料研究学报,1995,9:583-586
    [25]湛永钟,非连续增强铜基复合材料的研究现状[J].材料开发与应用,2005,20(4):42
    [26]高闰丰,梅炳初,朱教群,等,弥散强化铜基复合材料的研究现状与展望[J],稀有金属快报,2005,24(8):1-7
    [27]丁俭,赵乃勤,师春生,等,纳米相增强铜基复合材料制备技术的研究进展[J],兵器材料科学与工程,2005,28(5):66
    [28]Islamgaliev R.K.,Buchgraler W., Kolobov Y.R.,et al,Deformation behavior of Cu-based nanocomposite processed severe plastic deformation[J],Material Science and Engineering A,2001,872: 319-321
    [29]Shehata F.,Fathy A., Abdelhanmeed M.,Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing[J],Materials and Design, 2009,30:2756-2762
    [30]吴玉程,王涂根,AlN和Al2O3纳米颗粒增强铜基复合材料[J],合肥工业大学学报,2005,28(9):1034
    [31]徐玉松,孙建科,不同工艺方法制备Cu/Al2O3复合材料的组织和性能[J],材料开发与应用,2001,16(1):14
    [32]于艳梅,杨根仓,李华伦,内氧化制备Cu- Al2O3复合材料新工艺的研究[J],粉末冶金技术,2000,4(18):256
    [33]高晶,郑冀,李群英,等,纳米氧化锆增强铜基复合材料[J],金属热处理,2006,31(1):42
    [34]宗跃,吴玉程,汪峰涛,SiC和SiO2纳米颗粒弥散强化铜基复合材料的制备和性能研究[J],功能材料,2007,38,511-513
    [35]张瑾瑾,王志法,张霞,等,机械合金化制备SiC弥散强化铜基复合材料[J],湖南有色金属,2005,21(1):22-26
    [36]田素贵,张禄廷,王桂华,等,AIN颗粒增强铜基复合材料内氧化的研究[J],材料工程,2000,(10):28
    [37]张红霞,胡树兵,涂江平,等,机械合金化制备颗粒增强铜基复合材料的研究进展[J],湖北汽车工业学院学报,2004,18(2):44-46
    [38]Dongdong G.,Yifu S.,Zhijian L.,Microstructural characteristics and formation mechanism of direct laser-sintered Cu-based alloys reinforced with Ni particles [J],Materials and Design ,2009,30:2099-2107
    [39]Moustafa S.F., El-Badr S.A.,Sanad A.M.,Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders[J],Wear ,2002,253:699-710
    [40]Jaroslav Kov′aˇcik,Sˇtefan Emmer,et al,Effect of composition on friction coefficient of Cu-graphite composites[J],Wear,2008,265:417-421
    [41]Min Z.,Gaohui W.,Longtao J.,Friction and wear properties of TiB2P/Al composite[J],Composites:Part A ,2006,37:1916-1921
    [42]Shu L., Yi F.,Xiting Y.,Structure and Formation Mechanism of Surface Film of Ag-MoS2 Composite during Electrical Sliding Wear[J],Rare Metal Materials and Engineering,2009,38(11):1881-1885
    [43]Chuanbing H.,Lingzhong D.,Weigang Z.,Effects of solid lubricant content on the microstructure and properties of NiCr/Cr3C2-BaF2·CaF2 composite coatings[J],Journal of Alloys and Compounds ,2009,479:777-784
    [44]Baiming C.,Qinling B.,Jun Y.,Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites[J],Tribology International, 2008,41:1145-1152
    [45]Iijima S.,Helical microtubules of graphitic carbon [J],Nature,1991,354(6348):56
    [46]Sano N.,Wang H.,Chhowalla M.,et a1,synthesis of carbon‘onions’in water [J],Nature,2001,414(6863):506-507
    [47]Bingshe X.,Prospects and research progress in nano onion-like fullerenes [J], New Carbon Materials,2008,23(4):289-301
    [48]卫英慧,侯利锋,林丽霞,等,纳米碳洋葱的研究进展[J],兵器材料科学与工程,2007,30(6):74-78
    [49]Street K.W.,Marchetti M.,Vander Wal R. I.,et a1,NASA Report[J],NASA/TM 2003:212-301
    [50]Girishkumar G.,Vinodgopal K.,Kamat P.V.,Carbon nanostructures in portable fuel cells:Single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction [J],JPhys Chem B,2004,108(52):19960-19966.
    [51]Joly-Pottuz L.,Matsumoto N., Kinoshita H.,et al,Diamond-derived carbon onions as lubricant additives[J],Tribology International,2008,41:69-78
    [52]Matsumoto N.,Joly-Pottuz L.,Kinoshita H., et al,Application of onion-like carbon to micro and nanotribology[J],Diamond & Related Materials,2007,16: 1227-1230
    [53]Qin S. ,Temperature-dependent Young′s modus of an SiCw/A l2O3 composite [J],Journal of Materials Sci,1995,30 (20):5223-5225
    [54]Delannay F.,Review the wetting of solids by molten metals and its relation to the preparation of metal matrix composites [J],Mater Sic,1987, (22):1111-1115
    [55]Yujin C.,Maosheng C.,Qiang X.,et al,Electroless nickel plating on silicon carbide nanoparticles [J],Surface and Coatings Technology,2003,172:90-94
    [56]邹桂真,曹茂盛,康玉清,等,化学镀制备Ni包覆纳米SiC核壳颗粒及其介电响应[J],无机材料学报,2006,21(4):797-802
    [57]薛群基,吕晋军,高温固体润滑研究的现状及发展趋势[J],摩擦学学报,1999,19(1):91-96
    [58]Sadykov F.A. ,Barykinnp,Aslanyan L.R.,Wear of copper and its alloys with submicrocrystalline structure [J],Wear,1999:225-229
    [59]王静波,吕晋军,宁莉萍,等,锡青铜基自润滑材料的摩擦学特性研究[J],摩擦学学报,2001,21(2):110-113
    [60]宁莉萍,王齐华,王璜,等,锡青铜网增强锡青铜基自润滑复合材料的机械和摩擦学性能研究[J],摩擦学学报,2003,23(5):380-384
    [61]肯尼思,金属基复合材料[M],北京:国防工业出版社,1982
    [62]黄培云,金展鹏,陈振华,粉末冶金基础理论与新技术[M],长沙:中南工业出版社,1985
    [63]古托夫斯基,先进复合材料制备技术[M],北京:化学工业出版社,2004
    [64]吴人杰,复合材料[M],天津:天津大学出版社,2000
    [65]拉科夫斯基,工程烧结材料[M],北京:冶金工业出版社,1982
    [66]韩凤麟,粉末冶金实用设备手册[M],北京:冶金工业出版社,1997
    [67]张锐,无机复合材料[M],北京:化学工业出版社,2000
    [68]熊春林,汤中华,李松林,粉体材料成形设备与模具设计[M],北京:化学工业出版社,2007
    [69]鲍洛克,粉末冶金学普通教程[M],北京:机械工业出版社,1955
    [70]廖为鑫,粉末冶金过程热力学分析[M],北京:冶金工业出版社,1984
    [71]梁淑华,范志康,Al2O3颗粒增强铜基复合材料的组织[J],复合材料学报,1998,(15):3
    [72]黄培云,粉末冶金原理[M],北京:冶金工业出版社,2000
    [73]薛群基,吕晋军,高温固体润滑研究的现状及发展趋势[J],摩擦学学报,1999,19(1):91-96
    [74]李溪滨,龚雪冰,刘如铁,等,添加CaF2的Ni-Cr-Cu基固体自润滑材料的研究[J],润滑与密封,2003(1):30-32
    [75]鲍崇高,王恩泽,高义民,等,颗粒体积分数对Al2O3/钢基复合材料的高温抗磨性的影响[J],复合材料学报,2001,18 (2):61-64
    [76]薛茂权,熊党生,闫杰,高温固体润滑材料的研究现状[J],兵器材料科学与工程,2003(6):58-61
    [77]刘家浚,材料磨损原理及其耐磨性[M],清华大学出版社,1993
    [78]K.-H.哈比希著,严立译,材料的磨损与硬度[M],机械工业出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700