微乳法制备Gd_2O_3:Tb~(3+)、Gd_2O_2S:Tb~(3+)纳米粒子及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究纳米Gd_2O_3:Tb~(3+)、Gd_2O_2S:Tb~(3+)的制备、结构表征和性能。用微乳液法合成了纳米Gd_2O_3:Tb~(3+)和Gd_2O_2S:Tb~(3+),对二者的结构、形貌、大小等进行了表征;测定了纳米Gd_2O_3:Tb~(3+)的前驱体纳米草酸钆的热解机理和热分解反应动力学参数;研究了Gd_2O_3:Tb~(3+)和Gd_2O_2S:Tb~(3+)的发光性能以及Tb~(3+)的最佳发光离子浓度。具体工作包括以下几个方面:
     (1)通过滴定作出TX—100/正己醇/正辛烷/水的部分拟三元相图,在W/O型微乳液的纳米反应器中合成了纳米Gd_2O_3:Tb~(3+)荧光粉,结构表征证实其为立方氧化钆。粒子为球形,大小均匀,分散性好。随着w值(w=[H_2O]/[表面活性剂])从0.86减小到0.33,制得的纳米粒子粒径也从20~30nm减小为8~15nm。微乳液法中的晶体形成温度较草酸沉淀法降低了近100℃,具有较快的成晶速度。纳米Gd_2O_3:Tb~(3+)荧光粉的发射光谱显示出Tb~(3+)的4个特征发射,其主要发射峰在543nm处,为~5D_4到~7F_5能级跃迁;并且随着纳米粒子粒径的增大,发光强度逐渐增强。Gd_2O_3:Tb~(3+)中Tb~(3+)的最佳发光离子浓度是1×10~(-3)摩尔/摩尔基质。
     (2)在W/O型微乳液的纳米反应器的水滴中合成了纳米Gd_2O_3:Tb~(3+)的前驱体纳米草酸钆,粒子为球形,大小较均匀,粒径为4~10nm。通过纳米草酸钆的TG—DTA分析、XRD图谱和FT—IR分析,研究得到微乳法制得的纳米草酸钆的热解机理为:Gd_2(C_2O_4)_3.10H_2O→Gd_2(C_2O_4)_3+10H_2O,Gd_2(C_2O_4)_3→Gd_2O_2(CO_3)+3CO+2CO_2,Gd_2O_2(CO_3)→Gd_2O_3+CO_2,比体相草酸钆的热解机理复杂。运用Ozawa方法计算第二、三步的热分解反应的活化能分别为194.6kJ.mol~(-1)和110.9kJ.mol~(-1);由TG曲线法确定了相应的反应级数是3.0和0.43。
     (3)将制得的Gd_2O_3:Tb~(3+)纳米粒子和无水碳酸钠、升华硫在1200℃煅烧后得到纳米Gd_2O_2S:Tb~(3+),XRD分析证实其为六方Gd_2O_2S:Tb~(3+)。纳米粒子为球形,有利于紧密堆积,改善荧光粉的填充度,粒径为10~20nm;由于高温灼烧,纳米小球聚集在一起形成微米小球,其大小在0.2~0.5μm。纳米Gd_2O_2S:Tb~(3+)荧光粉的主要发射峰在540nm,该处发光强度明显高于草酸沉淀制得的Gd_2O_2S:Tb~(3+),并且在~D_4到~7F_6的能级跃迁中发生蓝移现象。
The preparation, characterization and capability of nanosized Gd_2O_3:Tb~(3+) and Gd_2O_2S: Tb~(3+) were studied in the thesis. nanoparticles Gd_2O_3:Tb~(3+) and Gd_2O_2S:Tb~(3+) were prepared in the reverse microemulsions. With the nanoparticles obtained in this way, their crystal structure, shape and size were characterized. The mechanism of thermal decomposition of precursor nanosized oxalate and the kinetic parameters of thermal decomposition reaction-activation energy E and reaction order n were studied. And the photoluminescence of Gd_2O_3:Tb~(3+) and Gd_2O_2S:Tb~(3+), and the best luminescent ionic content of Tb~(3+) were measured.( 1 ) Gd_2O_3:Tb~(3+) luminescent nanoparticles were prepared in the reverse microemulsions based on triton X-100/n-hexyl alcohol, n-octane, and water. The particles has pure cubic structure proved by XRD, and has shown good dispersion and light agglomeration. With the water-to-surfactant molar(w=[H_2O]/[surfactant]) decreased, the nanoparticles' diameter are reduced from 20~30nm to 8~15nm. Compared with the products which prepared by oxalate precipitation, the nanoparticles' size is small and the crystal forming temperature is decreased. The emission spectra of Gd_2O_3:Tb~(3+) include four characteristic peak which are located in 485、 543、 586 and 621nm. These emission peaks show the transition from ~5D_4 to ~7F_6、 ~7F_5、 ~7F_4 and ~7F_3 of Tb~(3+) respectively. And the major emission peak is 543nm. The intensity of the peaks in the emission spectra are connected with the particles size of the powders. With the increase of nanoparticles' diameter, the intensity are enhanced. And the best luminescent ionic content of Tb~(3+) is 1 × 10~(-3) mol/mol.(2) Proved by TG-DTA 、 XRD and FT-IR analyse of nanosized oxalate, the mechanism of thermal decomposition of precursor nanosized oxalate prepared by microemulsions are: Gd_2(C_2O_4)_3.10H_2O → Gd_2(C_2O_4)_3 + 10H_2O, Gd_2(C_2O_4)_3 → Gd_2O_2(CO_3) + 3CO+2CO_2, Gd_2O_2(CO_3) → Gd_2O_3 + CO_2. Which are complicated than bulk materials. The kinetic parameters of thermal decomposition
    reaction-activation energy E of stage 2 and 3 are 194.6 kJ.mor1, 110.9 kJ.mol"1 by using Ozawa method. And the reaction order n are 3.0 and 0.43, respectively, according to the TG curves.( 3 ) Nanosized Gd2O2S:Tb3+ can be prepared by the calcinations of nanoparticles Gd2O3:Tb3\ Na2CO3 and S in 1200°C. According to the PDF, the products has pure hexagonal structure. TEM photo show the nanoparitcles are sphere, having uniform diameter size of 10~20nm. And Because of high temperature calcinations, the nanoparticles conglomerate to form micron balls, whose diameter size are 0.2-0.5um. Compared with the microemulsion, the products prepared by oxalate deposition are anomaly micron flake. In addition, the emission spectra of nanosized Gd2O2S:Tb + are different to the micron materials. The intensity of the major emission peaks is enhanced obviously. And blue-shift are happened in the transition from 5D4 to 7F6.
引文
[1] 李建宇编.稀土发光材料及其应用.北京.化学工业出版社.2003
    [2] 郑子樵、李红英主编.稀土功能材料.北京.化学工业出版社.2003
    [3] 王世敏、许祖勋等 编纳米材料制备技术 化学工业出版社 2002
    [4] 张立德 纳米材料和纳米结构 北京 科学出版社 2001
    [5] Wang Ying, Herron Nornam. Photoluminescence and relaxation dynamics of CdS superclusters in zeolites. J. Phys. Chem., 1988,92:4988~4994
    [6] Bhargava R N, Gallagher D, Welker T. Doped nanocrystals of semiconductors—a new class of luminescence materials. J Lumin, 1994, 60&61:275~280
    [7] Likawa F, Bemussi A A, et al. J. Appl. Phys., 1994,75(6):3071~3074
    [8] Mo Chi-mei, Zhang Lide, et al. J. Appl. Phys., 1993, 73(10):5185~5188
    [9] Banerjee S. Bull. Mater. Sci., 1994, 17(5):533~550
    [10] Mufit Akinc, Ahmet Celikkaya. Advances in Ceramics, Ceramic Powder Science, 1987, 21
    [11] Gary L Messing, Edwin R Fuller Jr. Hans. Hausner, Ceramics Tramsactions, Ceramic Powder Science Ⅳ, 1988, 17
    [12] Blasse G, Grabmaier B C. Luminescent Materials, Springer-Verlag, 1994
    [13] Welker T, J. Luminescence, 1991, 48/49, 49
    [14] 汪丽都等 稀土荧光材料新进展 稀有金属 1996 Vol.20(2)
    [15] R. Bazzi, M. A. Flores-Gonzalez, C. Louis, et al., Synthesis and luminescent properties of sub-Snm lanthanide oxide nanoparitcles, Journal of Luminescence, 2003, 102-103:445~450
    [16] 王继业、石士考 精细粒度Y_3Al_5O_(12):Tb荧光材料的燃烧法合成及其特性 无机材料学报,2003,18(1):246~250
    [17] 李强,高濂,严东生.纳米Y_2O_3:Eu3+的荧光特性,无机材料学报,1997,12(2):237~241.
    [18] Sharma P K, Jilavi M H, Nass R, et al. Tailoring the particle size from um→nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. J Lumin., 1999,82:187~193
    [19] Williams D K, Bihari B, Tissue B M. Preparation and fluorescence spectroscopy of bulk monoclinic Eu~(3+): Y_2O_3 and comparison to Eu~(3+): Y_2O_3 nanocrystals. J Phys Chem B, 1998, 102:916~920
    [20] Bihari B, Eilers H, Tissue B M. Spectra and dynamics of monoclinic Eu_2O_3 and Eu~(3+): Y_2O_3 nanocrystals. J Lumin., 1997, 75:1~10
    [21] Hong K S, Meltze R S, et al. Spectral hole burning in crystalline Eu_2O_3 and Y_2O_3: Eu~(3+) nanoparitcles. J Lumin., 1998, 76&77:234~237
    [22] 谢平波,段昌奎,张慰萍等,纳米Y_2O_3:Eu~(3+)荧光粉的光致发光研究.发光学报,1998,19 (2):123~127
    [23] 李强、高濂、严东生纳米Y_2O_3:Eu~(3+)粉体荧光强度的增强无机材料学报1998,13(6):899~903
    [24] Lingdong Sun, Cheng Qian, Chunsheng Liao, et al., Luminescence properties of Li~+ doped manosized Y_2O_3: Eu, Solid State Communications, 2001,119:393-396
    [25] Lingdong Sun, Jiang Yao, et al., Rare earth activated nanosized oxide phosphors: synthesis and optical properties, Journal of Luminescence ,2000,87-89:447~450
    [26] 于敏,林君等溶胶—凝胶法合成Sr_2CeO_4及其发光性能的研究 发光学报 2003,24(1):177~180
    [27] Lin Jun, Yu Min, et al., Luminescent Films Prepared by Sol-gel Process 发光学报 2001, 22 (4):373~383
    [28] 于敏,林君等 柠檬酸—凝胶法合成ZnGa_2O_4:Mn~(2+)/Eu~(3+)及其发光性能的研究 发光学报 2002,23 (3):91~94
    [29] 李强、高濂、严东生 稀土化合物纳米荧光材料研究的新进展无机材料学报 2001,16(1):17~21
    [30] C. Louis, R. Bazzi, et al., Synthesis and characterization of Gd_2O_3:Eu~(3+) phosphor nanoparticles by a Sol-lyophilization technique, Journal of Solid Chemistry ,2003, 173:335~341
    [31] Teng-Ming Chen, S. C. Chen, and Chao-Jung Yu, Preparation and Characterization of Garnet Phosphor Nanoparticles Derived from Oxalate Coprecipitation, Journal of State Chemistry, 1999, 144:437~441
    [32] Wenxiu Que, S. Buddhudu, L. H. Gan, et al. Preparation and characterization of erbium oxalate and erbium oxide nanoparticles by microemulsion technique. Materials Science and Engineering C. 2001, 16:51~54
    [33] Wenxiu Que, Y. Zhou, L. H. Gan, et at Fluorescence characteristics from microemulsion technique derived erbium(Ⅲ) oxide nanocrystals. Material Research bulletin, 2001, 36:889~895
    [34] Wenxiu Que, S. Buddhudu, L. H. Gan, et al. Up-conversion emission in violet from neodymium oxalate and neodymium, oxide phosphors obtained by microemulsion technique. Materials Science and Engineering C. 2001, 16:153~156
    [35] 李振钢,张韵慧,李岚等.掺杂硫化锌纳米晶的制备和光学量子效应.中国稀土学报,1999,17:744~745
    [36] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [37] Goldburt E T, Kulkarni B, Bhargava R N, et al. Size dependent efficiency in Tb doped Y_2O_3 nanocrystalline phosphor. J Lumin, 1997, 190:72~74
    [38] Meyssamy H, Riwotzki K W. et al. Chemical synthesis of doped colloidal nanomaterials: Particles and Fibers of LaPO4: Eu, LaPO4: Ce, and LaPO4: Ce, Tb. A dv Mater, 1999,11(10): 840~844
    [39] T. P. Hoar and J. H. Schulman, Nature, 1943, 152:102
    [40] M. K. Sharman and D. O. Shah, in "Macroemulsion and Microemulsion, Theory and Applications", Paper No.1, ACS Symposium Series 272, American Chemical Society, Washington D.C. 985
    [41] P. A. Winsor, Trans. Faraday Soc., 1948,44:376
    [42] S. R. Palit, et al., Trans. Faraday Soc., 1959,55:463
    [43] J. H. Schulman, W. Stoeckenius, and L. M. Prince, J. Phys. Chem. 1959,63:1677
    [44] M. Prince, in "microemulsion, Theory and Practice", Preface, Academic Press, New York 1977
    [45] 微乳化技术及应用 崔正刚 殷福珊,中国轻工业出版社,1999,75
    [46] Thomas Hellweg. Phase structures of microemulsions. Current Opinion in Colloid & Interface Science. 2002, 7:50~56
    [47] Langevin D. Micells and microemulsion. Annu Rev Phys Chem. 1992,43:341~369, Review
    [48] Strey R. Microemulsion microstructure and interfacial curvature. Coll Polymer Sci 1994; 272: 1005~1019
    [49] Strey R. Phase behaviour and interfacial curvature in water-oil-surfactant systems. Current Opinion in Colloid & Interface Science. 1996;1:402~410. Review
    [50] Hao J. Effect of the structures of microemulsion on chemical reactions. Colloid Polymer Science. 2000;278:150~154
    [51] 冯悦兵,卢文庆,曹剑瑜等 纳米碳酸锌的制备和热分解动力学参数的测定 无机化学学报,2003,19 (4):428~432
    [52] 冯悦兵,卢文庆,曹剑瑜等 纳米氧化锌的微乳液法合成和吸收性能 南京师范大学学报,2002,2 (4):23~25
    [53] 曹剑瑜,卢文庆,焦程敏等 纳米TiO_2的合成、表征及紫外吸收性能 南京师范大学学报,2004,27 (1):51~54
    [54] Schmidt-Winkel P, Glinka CJ, Stucky DD. Microemulsion templates for mesoporous silica. Langmuir 2000; 16:356~361
    [55] Bagwe RP, Khilar KC. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir 2000;16: 905~910
    [56] Lee M-H, Oh S-G, Yi S-C. Preparation of Eu-doped Y_2O_3 luminescent nanoparticles in non-ionic reverse microemulsions. Journal of Colloid Interface Science. 2000; 226:65~70
    [57] Wu M-L, Dong D-H, Huang T-C. Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions. Journal of Colloid Interface Science. 2001 ; 243:102~108
    [58] Lade O, Beizai K, Sottmann T, Strey R. Polymerizable non-ionic microemulsions: phase behaviour of H_2O-n-alkylmethacrylate-n-alkyl poly(ethylene glycol) ether(C_iE_j). Langmuir 2000; 16:4122~4130
    [59] J. H. "Clint, Surfactant Aggregation" Blackie, Glasgow and London; Chapman and Hall, New York, 1992
    [60] S.Ross & I.D. Morrison, "Colloidal System and Interfaces" ,John Wiley and Sons, New York, 1988
    [61] 王晓黎、蒋雪涛、李干佐、牟建海 非离子型表面活性剂微乳的基础研究 解放军药学学报 2001,17 (6):297~331
    [62] P. A. Winsor, Trans. Faraday Soc., 1984, 44:376
    [63] Paleos C M. Polymerization in Organized Media. Gordon and Breach Science Publishers, 1992
    [64] 覃兴华、卢迪芳 化工新型材料 1998,26 (2):27
    [65] 施利毅,华彬,张剑平 微乳液的结构及其在制备超细颗粒中的应用 功能材料 29(2):136~139 1998
    [66] Pileni M P. Reverse micelles as microreactors. J Phys Chem, 1993, 97:6961
    [67] Qiu Sunqing, Dong Junxiu, Chen Guoxu. Journal of Colloid and Interface Science, 1999, 216:230~234
    [68] 李艳、张明侠、赵斌、张世民、阳明书 纳米反应器的研究进展 高分子通报,2002,1:24~33
    [69] Rajdip Bandyopadhyaya, Kumar R, Gandhi K S. Modeling of precipitation in reverse micellar systems. Langmuir, 1997, 13:3610
    [70] Ernesto J, Itamar W. Photosensitization of quantum-size TiO_2 particles in water-in-oil microemulsion. J Phys Chem, 1994, 98:7628
    [71] Thomas F, Abld K L. J Chem Soc Faraday Trans, 1990,86: 37~57
    [72] Motte L, Petit C, et al. Synthesis of Cadmium Sulfide in situ in Cadmium Bis(ethyl-2-hexyl)Sulfosuecinate reverse micelle: polydispersity and photochemical. Langmuir, 1992, 8(4): 1049~1053
    [73] 赵国玺 表面活性剂物理化学 北京:北京大学出版社 1991:194
    [74] Boutonnet Magali, Kizling Jerzy, Stenius Per, et al. The Prepartion of Monodisperse Colloidal Metal Particles from Microemulsions, Colloids and Surfaces, 1982, 5(3),209~225
    [75] Myung Han Lee, Seong Geun Oh, et.al Characterization of Eu-Doped Y_2O_3 nanoparticles prepared in nonionic reverse microemulsions in relations to their application for field emission display Journal of The Electrochemical Society , 2000, 147(8): 3139~3142
    [76] Myung Han Lee, Seong Geun Oh, and Sung Chul Yi Preparation of Eu-Dopde Y_2O_3 Luminescent Nanoparticles in Nonionic Reverse Microemulsions , Colloid and Interface Science, 2000, 226: 65~70
    [77] 张韵慧,李磊等 微乳液法制备ZnS∶Mn纳米晶及性能的表征 功能材料 2001,32(4):405~409
    [78] 张韵慧,李磊微乳液法制备ZnS∶Cu纳米微粒及其光学性能的表征 材料工程 2000,12:31~33
    [79] ZHANG Yun-hui, LI Lei Preparation and Optical Properties of Copper-Doped ZnS Nanoparticles Transactions of Tianjin University , 2002, 8 (3):152~155
    [80] 冉蕊 韩恩山 朱令之 王缚鹏 电解质对非离子型微乳液的影响 高等学校化学学报,
    ?2001,22 (10):21~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700