有机磷类农药中毒的快速检测与诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对一系列抗磷化丝氨酸(anti-phosphorserine, anti-Pser)和丁酰胆碱酯酶(anti-Butyrylcholinesterase, anti-BChE)抗体的筛选,获得了一对能够同时分别与OP-BChE结构中的磷化(OP结构)部分和蛋白(BChE结构)部分结合的抗体,并建立了一套能够快速检测动物血液中OP-BChE(一种有机磷神经毒剂中毒的检测靶标)的夹心ELISA体系。其中,anti-BChE作为捕捉抗体(capture antibody),能够公平识别磷化BChE (OP-BChE,以paraoxon-BChE为代表)和非磷化BChE,这样它能够将样品中的BChE/OP-BChE准确而快速地捕捉出来;另外,anti-Pser作为识别抗体(detection antibody)能够检测到OP-BChE中的OP结构。在组成的夹心ELISA体系中,对一系列因素包括anti-BChE、 anti-Pser的浓度和封闭液种类进行优化;优化后,我们得到一个线性范围在0.03-30nM,检测限处于0.03nM的检测OP-BChE的夹心ELISA系统。同时,我们将该体系成功应用于动物血样的体外检测实验:在大鼠血清中的添加回收率达到99%以上。故此,该方法的建立为能够实现快速,简便,经济的现场检测OP-BChE提供了一定的技术平台。
     在已建立的检测OP-BChE的sELISA体系的基础上,我们建立了一种新型的能够高精确度地检测磷化丁酰胆碱酯酶(OP-BChE)的免疫电化学传感器。在该方法中,纳米材料氧化锆(ZrO2)是一种对“磷氧分子”(OP-)结构有较高特异性识别的物质,我们将它应用于捕捉OP-BChE结构中OP-部分,以达到捕获样品中OP-BChE的目的;并且利用已连有量子点(Quantum dot, QD)标记物的anti-BChE (anti-BChE-QD)来特异性识别被捕获的OP-BChE中的胆碱酯酶(BChE)部分。其中,QD标记物由灵敏度较高的电化学方法测定。本节选定神经毒剂二异丙基氟磷酸(Diisopropylfluorophosphate, DFP)为代表,与不同样品中的BChE结合形成OP-BChE.所建立的传感器的线性范围为0.1--30nM,并且检测限达到0.03nM(以信噪比为3),同时该方法具有较好重复性(相对标准偏差为4.5%)。在此基础上,该传感器成功地运用于实际样品(人血清)中添加的OP-BChE的检出。
     本文同时成功研制了一种能够简便、快速、灵敏地检测由有机磷农药毒死蜱中毒后在动物体内产生的代谢产物----Trichloropyridinol (TCP)的免疫层析电化学生物传感器(Immunochromatographic Electrochemical Biosensor, IEB)。该方法利用IEB将免疫层析试纸条上的竞争性免疫反应和平面印刷碳电极(Screen-Printed Carbon Electrode)中的电化学反应相结合,将免疫层析试纸条上测试区域中捕获的酶标记物(HRP)转换为电化学信号,以达到快速、灵敏检测的目的。在实验过程中,为了获得更为灵敏的检测体系,我们有针对性的地将一系列实验条件包括免疫反应时间、封闭液种类、酶标HTCP的数量以及酶催化底物的浓度进行了优化。在优化条件下,该IEB体系的线性范围为0.1-100ng/ml,检测限为0.1ng/ml。同时,该IEB成功地应用于大鼠的活体实验:所建立的检测体系成功地检测出受Chlorpyrifos-oxon(CPF-oxon)污染的大鼠体内所产生的代谢产物TCP。该方法为能够实现现场快速诊断有机磷农药中毒提供了一条新的思路。
     本文还报道了一种基于磁珠(Magnetic Beads,MB)平台下的免疫电化学传感器,用以定量检测受有机磷神经毒剂污染的样品中BChE的受抑制程度。该实验将anti-BChE和BChE分别与MB结合,并分别利用Ellman assay知competitive immunoassay同时测出样品中仍保留活性的BChE的浓度和BChE(包括失活部分)的总量,并将两者相减而获得样品中BChE的抑制量,从而达到诊断在受到有机磷神经毒剂侵染后动物体中毒情况的目的。其中,在竞争性免疫检测中,样品中的待测BChE与固定在MB上已知浓度的BChE同时竞争量子点(Quantum Dot,QD)标记的anti-BChE(QD-anti-BChE)上的活性位点.之后通过测定QD的电化学信号以确定样品中目标BChE的浓度。该方法能够测定的BChE的浓度范围为0.1-20nM。与此同时,我们利用联有微流控注射器的碳纳米管电极(Screen Printed Carbon nanotube Electrode)来测定被MB-anti-BChE捕获的样品中的BChE的活性来确定样品中仍有活性的BChE的浓度。由此,样品中BChE的受抑制程度便可以通过以上两个测定结果的差异来确定。该种检测方法表现出的灵敏度达到0.5nM,低于体内BChE总量(约50-80nM)的2%。
     利用实验室已合成出的有机磷农药倍硫磷的5种半抗原(H1-H5),制备出能稳定分泌针对有机磷农药倍硫磷的高特异性的单克隆抗体的杂交瘤细胞株;并建立了一套特异性强、灵敏度高的倍硫磷残留免疫检测方法。其中,利用活泼酯法将能够最大程度地暴露芳香环结构的H3(6-{甲氧基[4-(甲硫基)苯氧基]硫代磷酰胺基}己酸)与Bovine Serum Albumin(BSA)偶联,作为免疫原;将H1(4-[2-(二甲氧基硫代磷酰氧基)-4-甲基-5(甲硫基)苯胺基]-4-羰基丁酸、H2(4-[4-(二甲氧基硫代磷酰氧基)-2-甲基苯基胺基]-4-羰基丁酸)、H3、H4(4-(二甲氧基硫代磷酰胺基)丁酸)以及H5(4-[3-甲级-4-(甲硫基)苯氧基]丁酸)与Ovalbumin(OVA)偶联,作为候选包被原。将获得的单克隆抗体分别与5种包被原组合,进行间接竞争ELISA分析,筛选到具备最高特异性与灵敏度的组合。分析结果显示,以H3-BSA为免疫原,以H5-OVA为包被原所组成的间接竞争ELISA体系能够获得较高的灵敏度和特异性。在对ELISA体系优化之后,抗体与农药对硫磷的交叉反应为0.5%,与其它受测类似结构农药的交叉反应更是小于0.2%;对倍硫磷的检测限达到了0.0028ng/ml(IC20)。并且将此体系运用于土、水、米以及大白菜的添加回收实验中,获得的平均回收率为80%--124%。该体系为倍硫磷农药在环境与农产品中的快速检测提供了一条经济与快速的方法。
A sandwich ELISA (sELISA) has been developed for detection of organophosphorylated butyrylcholinesterase (OP-BChE, paraoxon-BChE as a model), a potential biomarker for human exposure to organophophate insecticides and nerve agents. A pair of antibodies specific to OP-BChE adduct were identified through systematic screening of several anti BChE antibodies (anti-BChE) and anti-phosphoserine antibodies (anti-Pser) from different sources. The selected anti-BChE (set as capture antibody) recognized both phosphorylated and nonphosphorylated BChE. The anti-Pser (set as detecting antibody) was used to recognize the OP moiety of OP-BChE adducts. With the combination of the selected antibody pair, several key parameters (such as the concentration of anti-BChE and anti-Pser, and the blocking agent) were optimized to enhance the sensitivity and selectivity of the sELISA. Under the optimal conditions, the sELISA has shown a wide linear range from0.03nM to30nM, with a detection limit of0.03nM. Furthermore, the sELISA was successfully applied to detect OP-BChE from in vitro biological samples such as rat plasma spiked with OP-BChE with excellent adduct recovery (z>99%). These results demonstrate that this novel approach holds great promise to develop an ELISA kit and offers a simple and cost-effective tool for screening/evaluating exposure to organophosphate insecticides and nerve agents.
     We present a novel disposable electrochemical immunosensor for highly selective and sensitive detection of organophosphorylated butyrylcholinesterase (OP-BChE), a specific biomarker for exposure to organophosphorus nerve agents. In our new approach, the zirconia nanoparticles (ZrO2) were employed to selectively capture the OP moiety of OP-BChE adducts, and followed by quantum dot (QD)-tagged anti-BChE antibodies for amplified quantification. The captured CdSe-QD tags can be sensitively detected by stripping voltammetry. The nerve agent, diisopropylfluorophosphate (DFP), was selected to prepare OP-BChE adducts in various matrices. The developed electrochemical immunosensor demonstrates a highly linear voltammetric response over the range of0.1to30nM OP-BChE, with a detection limit of0.03nM (based on S/N=3) coupled with a good reproducibility (R.S.D=4.5%). Moreover, the immunosensor can be successfully applied for diagnosis of in-vitro OP nerve agent exposure through biomonitoring of OP-BChE adducts in the plasma samples. This novel nanoparticle-based electrochemical immunosensor thus provides an alternative way for designing simple, fast, sensitive, and cost-effective sensing platform for on-site screening/evaluating exposure to a variety of OP nerve agents.
     In this study, we also present a novel potable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has been demonstrated a wide linear range (0.1-100ng/ml) with a detection limit as low as0.1ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorous insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorous insecticides.
     In this study, we also reported a new approach for electrochemical quantification of enzymatic (BChE) inhibition for biomonitoring of exposure to organophosphorous (OP) pesticides and nerve agents based on magnetic beads (MB) immunosensing platform. The principle of this approach is based on the combination of MB immunocapture-based enzyme activity assay and competitive immunoassay of the total amount of BChE for simultaneous detection of enzyme inhibition and phosphorylation in biological fluids. In competitive immunoassay, the target BChE in a sample competes with the BChE immobilized on the MBs to bind to limited sites of anti-BChE antibody labeled with quantum dots (QD-anti-BChE), followed by stripping voltammetric analysis of the bound QD conjugate on the MBs. This assay shows a linear response over the total BChE concentration range of0.1-20nM. Simultaneous real time BChE activity was measured on an electrochemical carbon nanotube-based sensor coupled with a microflow injection system after immunocapture by the MB-anti-BChE conjugate. Therefore, he formed phosphorylated BChE adduct (OP-BChE) can be estimated by the difference values of the total amount of BChE (including active and OP-inhibited) and active BChE from established calibration curves. Under the optimal conditions, it is sensitive enough to detect0.5nM OP-BChE, which is less than2%BChE inhibition.
     A new specific monoclonal antibody (McAb) against the organophosphorous pesticide fenthion was generated based on5synthesized haptens (H1-H5), and a sensitive and specific Enzyme-Linked Immunosorbent Assay (ELISA) for detection of fenthion based on the new immunizing/coating hapten combination was developed. In this study, the H3(6-(methoxy(4-(methylthio) phenoxy) phosphorothioylamino) hexanoic acid) which attempts to expose the aromatic ring group was conjugated with Bovine Serum Albumin (BSA) used as immuogen; and H1(4-(2-(dimethoxyphosphorothioyloxy)-4-methyl-5-(methylthio)phenylamino)-4-oxobutanoic acid, H2(4-(4-(dimethoxyphosphorothioyloxy)-2-methylphenylamino)-4-oxobutanoic acid, H4(4-(dimethoxyphosphorothioylamino)butanoic acid) and H5(4-(3-methyl-4-(methylthio) phenoxy) butanoic acid) were conjugated with ovalbumin (OVA) for the coating antigen.
     The BLAB/C mice were immunized by the BSA conjugation (H3-BSA, immunogen) with the intraperitoneal injection. The hybridoma cell lines which can stable secrete McAb with the high specificity to fenthion were established by hybridoma technology. All of the5OVA conjugations were used as coating antigen. The efficient antibody/coating antigen was selected from the5combinations. Furthermore, the optimal competitive indirect ELISA was developed, with the detection limit (IC20) of0.028ng/ml. The cross reactivity of the antibody with the organophophorous pesticide Parathion was0.5%, even lower than0.2%with the any other tested pesticides. Also, the average recovery of the optimal ELISA from real samples such as soil, water, rice and Chinese cabbages was80%-124%.
引文
1. Arima H, Sobue K, So M, Morishima T, Ando H, Katsuya H.2003. Transient and reversible parkinsonism after acute organophosphate poisoning. J. Toxicol. Clin. Toxicol 41:67-70
    2. Ashani Y, Gentry M K, Doctor B P.1990. Differences in conformational stabilty between native and phosphorylated acetylcholinesterase as evidenced by a monoclonal antibody. Biochemistry.29:2456-2463
    3. Ashani Y, Leader H, Rothschild N, Dosoretz C.1998. Combined effect of organophosphorus hydrolase and oxime on the reactivation rate of diethylphosphoryl-acetylcholinesterase conjugates. Biochem. Pharmacol 55:159-168
    4. Ashani Y, Radic Z, Tsigelny I, Vellom D C, Pickering N A, Quinn D M, et al. 1995. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono-and bisquaternary oximes.J. Biol. Chem.270:6370-6380
    5. Ballantyne B, Marrs T.1992. Clinical and Experimental Toxicology of Organophosphates and Carbamates. Boston:Butterworth Heinemann
    6. Barr D B, Allen R, Olsson A O, Bravo R, Caltabiano L M, Montesano A, et al. 2005. Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environ. Res.99:314-326
    7. Broomfield C A, Millard C B, Lockridge O, Caviston T L.1995. Enzymes of the Cholinesterase Family. New York:Plenum Press
    8. Centers for Disease Control and Prevention.2005. Third National Report on Human Exposure to Environmental Chemicals. Available: http://www.cdc.gov/exposurereport/pdf/thirdreport.pdf [accessed 17 November 2009]
    9. Thompson C M. Prins J M. and George K M.2010. Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts. Environ. Health. Persp. 118(1) 11-19
    10. Costa L G.2006. Current issues in organophosphate toxicology. Clin. Chim. Acta.366:1-13
    11. Dahlgren J G, Takhar H S, Ruffalo C A, Zwass M.2004. Health effects of diazinon on a family.J. Toxicol. Clin. Toxicol.42:579-591
    12. Demar J C, Clarkson E D, Ratcliffe R H, Campbell A J, Thangavelu S G, Herdman C A, Leader H, Schulz S M, Marek E, Medynets M A, Ku T C, Evans S A, Khan F A, Owens R R, Nambiar M P, Gordon R K.2010. Pro-2-Pam therapy for central and peripheral cholinesterases. Chemico-Biological ineractions.187(1-3):191-198.
    13. Doorn J A, Gage D A, Schall M, Talley T T, Thompson C M, Richardson R J. 2000. Inhibition of acetylcholinesterase by (1S,3S)-isomalathion proceeds with loss of thiomethyl:kinetic and mass spectral evidence for an unexpected pri-mary leaving group. Chem. Res. Toxicol.13:1313-1320
    14. Fest C, Schmidt K J.1973. The Chemistry of Organophosphorus Pesticides; Reactivity, Synthesis, Mode of Action, Toxicology. New York:Springer Verlag.
    15. Fukuto T R.1990. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health. Perspect.87:245-254
    16. George K M. Schule T. Sandoval L E. Jennings L L. Taylor P. and Tompson C M. 2003. Differentiation between Acetylcholinesterase and the Organophosphate-inhibited Form Using Antibodies and the Correlation of Antibody Recognition with Reactivation Mechanism and Rate.J. Biol. Chem. 278(46)45512-45518
    17. Harel M, Su C T, Frolow F, Ashani Y, Silman I, Sussman J L.1991. Refined crystal structures of "aged" and "non-aged" organophosphoryl conjugates of gamma-chymotrypsin.J. Mol Biol.221:909-918
    18. Jayawardane P, Dawson A H, Weerasinghe V, Karalliedde L, Buckley N A, Senanayake N.2008. The spectrum of intermediate syndrome following acute organophosphate poisoning:a prospective cohort study from Sri Lanka. PLoS. Med.5(7):1147-1153.
    19. Johal M S, Sharma M L, Ravneet.2007. Impact of low dose of organophosphate, monocrotophos on the epithelial cells of gills of Cyprinus carpio communis Linn.-SEM study.J. Environ. Biol.28:663-667
    20. Langenberg J P, De Jong L P, Otto M F, Benschop H P.1988. Spontaneous and oxime-induced reactivation of acetylcholinesterase inhibited by phosphoramidates. Arch. Toxicol.62:305-310
    21. Lanks K W, Seleznick M J.1981. Spontaneously reactivation of acetylcholinesterase inhibited by diisopropylfluorophosphate. Biochim. Biophys. Acta.660:91-95.
    22. Lockridge O, Masson P.2000. Pesticides and susceptible populations:people with butyrylcholinesterase genetic variants may be at risk. Neurotoxicology. 21:113-126.
    23. Lotti M, Becker C E, Aminoff M J.1984. Organophosphate polyneuropathy: pathogenesis and prevention. Neurology.34:658-662.
    24. Niven A S, Roop S A.2004. Inhalational exposure to nerve agents. Respir. Care. Clin.N.Am.10:59-74
    25. Rowsey P J, Gordon C J.1999. Tumor necrosis factor is involved in chlorpyrifos-induced changes in core temperature in the female rat. Toxicol. Lett 109:51-59.
    26. Slotkin T A, Ryde I T, Levin E D, Seidler F J.2008. Developmental neurotoxicity of low dose diazinon exposure of neonatal rats:effects on serotonin systems in adolescence and adulthood. Brain. Res. Bull.75:640-647.
    27. Solomon C, Poole J, Palmer K T, Peveler R, Coggon D.2007. Acute symptoms following work with pesticides. Occup. Med (Lond) 57:505-511.
    28. Stephens R, Spurgeon A, Calvert I A, Beach J, Levy L S, Berry H, et al.1995. Neuropsychological effects of long-term exposure to organophosphates in sheep dip. Lancet 345:1135-1139.
    29. Sultatos L G.1994. Mammalian toxicology of organophosphorus pesticides.J. Toxicol. Environ. Health.43:271-289.
    30. Timofeeva O A, Roegge C S, Seidler F J, Slotkin T A, Levin E D.2008. Persistent cognitive alterations in rats after early postnatal exposure to low doses of the organophosphate pesticide, diazinon. Neurotoxicol. Teratol. 30:38-45.
    31. Tokuda Y, Kikuchi M, Takahashi O, Stein G H.2006. Prehosptial management of sarin nerve gas terrorism in urban settings:10 years of progress after the Tokyo subway sarin attack. Resuscitation.68 (2):193-202.
    32. Tu A T.2007. Toxicological and chemical aspects of sarin terrorism in Japan in 1994 and 1995. Toxin. Reviews.26 (3):231-274
    33. Protor S P, Heaton K J, Heeren T, White R F.2006. Effects of sarin and cyclosarin exposure during the 1991 Gulf War on neurobehavioral functioning in US army veterans. Neurotoxicology.27 (6):931-939.
    34. U.S. EPA.2006. Organophosphorus Cumulative Risk Assessment (2006 Update). EPA-HQ-OPP-2006-0618-0002. Washington, DC:U.S. Environmental Protection Agency. Available:http://www.regulations.gov/search/Regs/home. html#documentDetail?R=09000064801ac312 [accessed 17 November 2009].
    35. Wilson B W, Henderson J D.1992. Blood esterase determinations as markers of exposure. Rev. Environ. Contam. Toxicol.128:55-69.
    36. Wilson B W, Hooper M J, Hansen M E, Nieberg P S.1992. Reactivation of organophosphorus inhibited AChE with oximes. In:Organophosphates: Chemistry, Fate, and Effects (Chambers JE, Levi PE, eds). San Diego, CA:Academic Press,107-137.
    37. Yanagisawa N, Morita H, Nakajima T.2006. Sarin experiences in Japan:acute toxicity and long-term effects.J. Neurol. Sci.249:76-85.
    38. Zaim M, Jambulingam P.2007. Global Insecticide Use for Vector-Borne Disease Control. Geneva:World Health Organization. Available: http://whqlibdoc.who.int/HQ/2007/WHO_CDS_NTD_WHOPES_GCDPP_2007 .2_eng.pdf [accessed 17 November 2009].
    39. Zwiener R J, Ginsburg C M.1988. Organophosphate and carbamate poisoning in infants and children. Pediatrics 81:121-126.
    40. Fukuto, T R.1990 Environ. Health. Perspect.87,245-254
    41. Wilson, B W., Hooper, M J., Hansen, M E., and Nieberg, P S.1992 in Organophosphates:Chemistry, Fate, and Effects (Chambers, J. E., and Levi, P. E., eds) pp.107-137, Academic Press, Inc., San Diego, CA
    1. Alcocer M J C, Dillon P P, Manning B M, Doyen C, Lee H A, Daly S J, O'Kennedy R, Morgan Mecificity anti-organophosphate pesticide antibody. J.Agric.Food.Chem.48 (6) 2228-2233
    2. Banks J N, Chaudhry M Q, Matthews W A, Haverly M, Watkins T, Northway B J. 1998. Production and characterization of polyclonal antibodies to the common moiety of some organophosphorous pestici R A.2000. Use of phosphonic acid as a generic hapten in the production of broad spdes and development of a generic type ELISA. Food.Agric.Immuno.10 (4):349-461
    3. BRUN E M, GARCES-GARVIA M, PUCHADES R, Maquieira A.2004. Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure. J Immunological Methods.295:21-35
    4. Centeno E R., Johnson W J., Sehon A.H.1970. Antibodies to two common pesticides, DDT and malathion. Int. Arch. Allergy.37:1-13
    5. CHO Y A, SEOK J A, LEE H S, Kim Y J, Park Y C, Lee Y T.2004. Synthesis of haptens of organophosphorus pesticides and development of immunoassays for fenitrothion.Anal.Chim.Acta.522:215-222
    6. Demar J C, Clarkson E D, Ratcliffe R H, Campbell A J, Thangavelu S G, Herdman C A, Leader H, Schulz S M, Marek E, Medynets M A, Ku T C, Evans S A, Khan F A, Owens R R, Nambiar M P, Gordon R K.2010. Pro-2-Pam therapy for central and peripheral cholinesterases. Chem.Biol. Ineract.187 (1-3): 191-198
    7. Denise W, Dana B B, Pauline M.2003. Use of Biomarkers to Indicate Exposure of Children to Organophosphate Pesticides:Implications for a Longitudinal Study of Children's Environmental Health. Enviorn. Health. Perspect.111(16): 1939-1946
    8. Du D, Wang J, Wang L M, Lu D L, Smith J N, Timchalk C, Lin Y H.2011. Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorous Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity. Analy.Chem.83. 3770-3777
    9. Fengsheng H.1999. Biological monitoring of exposure to pesticides:current issues. Toxicol. Lett.108 277-283
    10. LEE E K, KIM Y J, Park W C, CHUNG T W, Lee Y T. Monoclonal antibody-based enzyme-linked immunosorbent assays for the detection of the organophosphorus insecticide diazinon. Analy. Chim. Acta.2005,530 (1): 143-153
    11. Li X J, Gan P S, Peng R F, Huang C, Yu H.2010. Dertermination of 23 Organophosphorous Pesticides in Surface Water Using SPME Followed by GC-MS. J.Chromatogr.Sci.48(3):183-187
    12. Li Y X, Xu Z L, Wang H, Lei H T, Sun Y M, Shen D, Yang JT, Shen Y D.2010. Development of Broad-specificity Immunoassay for Detection of O, O-Dimethyl Organophosphorous Pesticides. Chin. J. Analy. Chem..38 (11):1550-1555
    13. Liu G D, Wang J, Barry R, Petersen C, Timchalk C, Gassman P L, Lin Y H. 2008. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase:An Exposure Biomarker of Organophosphate Pesticides and Nerve Agents. Chem-Eur. J.14 (32): 9951-9959
    14. Kim D H, Heo G S, Lee D W.1998. Determination of organophosphorus pesticides in wheat flour by supercritical fluid extraction and gas chromatography with mtrogen-phosphorus detection.J. Chromatogr. A.824 (1):63-70
    15. KIM M J, LEE H S, CHUNG D H, Lee Y T.2003. Synthesis of haptens of organophosphorus pesticides and development of enzyme-linked immunosorbent assays for parathion-methyl. Anal.Chim.Acta.493:47-62
    16. KIM Y J, CHO Y A, LEE H S, et al.2003. Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme linked immunosorbent assay for the organophosphorus insecticidefenthion. Anal. Chim. Acta.494:29-40
    17. Protor S P, Heaton K J, Heeren T, White R F.2006. Effects of sarin and cyclosarin exposure during the 1991 Gulf War on neurobehavioral functioning in US army veterans. Neurotoxicology.27 (6):931-939
    18. Tokuda Y, Kikuchi M, Takahashi O, Stein G H.2006. Prehosptial management of sarin nerve gas terrorism in urban settings:10 years of progress after the Tokyo subway sarin attack. Resuscitation.68 (2):193-202
    19. Tu A T.2007. Toxicological and chemical aspects of sarin terrorism in Japan in 1994 and 1995. Toxin. Rev.26 (3):231-274
    20. Wang L M, Du D, Lu D L, Lin C T, Smith J N, Timchalk C, Liu F Q, Wang J, Lin Y H.2010. Enzyme-Linked immunosorbent assay for detection of organophosphorylated butyrylcholinesterase:A biomarker of exposure to organophosphate agents. Anly. Chim.Acta.2011693 (1-2) 1-6
    21. Xu Z L, Shen Y D, Zheng W X, Beler R C, Xie G M, Dong J X, Yang J Y, Wang H, Lei H T, She Z G, Sun Y M.2010. Broad-Specificity Immunoassay for O, O-Diethyl Organophosphorus Pesticides:Application of Molecular Modeling to Improve Assay Sensitivity and Study Antibody Recognition. Analy. Chem.82 (22)9314-9321
    22. Xu Z L, Wang H, Shen Y D, Michkova M, Lei H T, Beier R C, Zheng W X, Yang J Y, She Z G, Sun Y M.2011. Conformational changes of hapten-protein conjugates resulting in improved broad-specificity and sensitivity of an ELISA for organophosphorus pesticides. Analyst.136 (12):2512-2520
    23. Zhang Q, Wang L B, Ahn K C, Sun Q, Hu B S, Wang J, Liu F Q.2007. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorous insecticide fenthion. Analy. Chim. Acta.596(2): 303-311
    24. Zhang Q, Wu Y R, Wang L M, Hu B S, Li P W, Liu F Q.2008. Effect of hapten structures on specific and sensitive enzyme-linked immunosorbent assays for N-methylcarbamate insecticide metolcarb. Analy. Chim. Acta.625 (1):87-94
    25.陈道勇,杨略,郭嘉,李先福,池汝安.2011.有机磷农药残留的分析检测及最新研究进展.河南化工28(1):7-12
    26.董静,潘玉香,朱莉萍,孙军,潘守奇.2008果蔬中54种农药残留的QuEChERS/GC-MS快速分析.分析测试学报.27(1):66—69
    27.韩丽君,贾明宏,钱传范,李成文,张冰.2005.甲基对硫磷的酶联免疫吸附分析(ELISA)研究.农业环境科学学报.24(1):187-190
    28.刘曙照,钱传范.(1998).九十年代农药残留分析新技术.农药.37(6):11-13
    29.杨依军,王勇,杨秀荣,郭永泽,张玉婷.2001免疫分析法在农药残留分析中的应用.华北农学报.16(4):119-124.
    30.闫实.2011.蔬菜中有机磷农药残留量测定方法研究.农业环境与发展28 (2):83-85
    31.殷祥刚,尹丽梅,胥传来.2008.有机磷农药多残留免疫分析方法研究进展.食品科学.29(10):684-688
    32.朱将伟,赵燕,刘军,李凌.2011.气相色谱法测定土壤中有机磷农药残留.中国卫生检查杂志.21(4):863-867
    1.Ahn K C, Gee S J, Tsai H J, Bennett D, Nishioka M G, Blum A, Fishman E, Hammock B D.2009. Immunoassay for Monitoring Environmental and Human Exposure to the Polybrominated Diphenyl Ether BDE-47. Environ. Sci. Technol.43, (20),7784-7790
    2. Amitay M, Shurki A.2009. The structure of G117H mutant of butyrylcholinesterase:Nerve agents scavenger. Proteins.77, (2),370-377
    3. Ashani Y.2000. Prospective of human butyrylcholinesterase as a detoxifying antidote and potential regulator of controlled-release drugs. Drug Dev. Res.50, (3-4),298-308
    4. Black R M, Clarke R J, Read R W, Reid M T J.1994. Application of gas-chromatography mass-spectrometry and gas-chromatography tandem mass-spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulfur mustard and their degradation products.J. Chromatogr. A 662, (2),301-321.
    5. Black R M, Read R W.2007. Environmental and biomedical sample analysis in support of allegations of use of chemical warfare agents. Toxin Rev.26, (3), 275-298
    6. Busby-Hjerpe A L, Campbell J A, Smith J N, Lee S, Poet T S, Barr D B, Timchalk C.2010. Comparative pharmacokinetics of chlorpyrifos versus its major metabolites following oral administration in the rat. Toxicology.268, (1-2),55-63
    7. Byer J D, Struger J, Klawunn P, Todd A, Sverko E.2008. Low cost monitoring of glyphosate in surface waters using the ELISA method:An evaluation. Environ. Sci. Technol.42, (16),6052-6057
    8. Canchi D R, Paschek D, Garcia A E.2010. Equilibrium Study of Protein Denaturation by Urea. J.Am. Chem. Soc.132, (7),2338-2344
    9. Carletti E, Aurbek N, Gillon E, Loiodice M, Nicolet Y, Fontecilla-Camps J C, Masson P, Thiermann H, Nachon F, Worek F.2009. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Biochem. J.421,97-106
    10. Dejong L P A, Wolring G Z.1985. Aging and stereospecific reactivation of mouse erythrocyte and brain acetycholinesterases inhitited by soman. Biochem. Pharmacol.34, (1),142-145
    11. Dejong L P A, Kossen S P.1985. Stereospecific reactivation of human-brain and erythrocyte acetylcholinesterase inhibited by 1,2,2-trimethylpropyl methylphosphonofluoridate (soman). Biochim. Biophys. Acta.830, (3), 345-348
    12. Ellman G L, Courtney K D, Andres V, Featherstone R M.1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol.7, (2),88-&
    13. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E. 2003. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem.312, (2),224-227
    14. Fidder A, Hulst A G, Noort D, de Ruiter R, van der Schans M J, Benschop H P, Langenberg J P.2002. Retrospective detection of exposure to organophosphorus anti-cholinesterases:Mass spectrometric analysis of phosphylated human butyrylcholinesterase. Chem. Res. Toxicol.15, (4), 582-590
    15. George K M, Schule T, Sandoval L E, Jennings L L, Taylor P, Thompson C M. 2003.Differentiation between acetylcholinesterase and the organophosphate-inhibited form using antibodies and the correlation of antibody recognition with reactivation mechanism and rate.J. Biol. Chem. 278, (46),45512-45518
    16. Greene R F, Pace C N.1974. Urea and guanidine-hydrochloride denaturation of ribonuclease, lysozyme, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin.J. Biol. Chem.249, (17),5388-5393
    17. Harel M, Sussman J L, Krejci E, Bon S, Chanal P, Massoulie J, Silman I.1992. Conversion of acetylcholinesterase to butyrylcholinesterase-modeling and mutagenesis. Proc. Natl.Acad. Sci. U. S.A.89, (22),10827-10831
    18. Hendrickson R G, Hedges J R.2005. Introduction-What critical care practitioners should know about terrorism agents. Crit. Care Clin.21, (4), 641-+
    19. Holland K E, Solano M I, Johnson R C, Maggio V L, Barr J R.2008. Modification to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures.J. Anal. Toxicol.32, (1),116-124
    20. Hossain S M Z, Luckham R E, Smith A M, Lebert J M, Davies L M, Pelton R H, Filipe C D M, Brennan J D.2009. Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Sol-Gel-Derived Bioinks. Anal. Chem.81, (13),5474-5483
    21. Kurosaki T, Shinohara H, Baba Y.2010. B Cell Signaling and Fate Decision. Annu. Rev. Immuno. Vol.28, pp 21-55
    22. Lee S, Poet T S, Smith J N, Busby-Hjerpe A L, Timchalk C.2010. Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats. Chem.-Biol. Interact.2010,184, (3),449-457
    23. Li P W, Zhang Q, Zhang W.2009. Immunoassays for aflatoxins. Trac-Trends Anal. Chem.28, (9),1115-1126
    24. Liu G D, Wang J, Barry R, Petersen C, Timchalk C, Gassman P L, Lin Y H. 2008. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase:An Exposure Biomarker of Organophosphate Pesticides and Nerve Agents. Chem.-Eur. J.14, (32), 9951-9959
    25. Lockridge O, Masson P.2000. Pesticides and susceptible populations:People with butyrylcholinesterase genetic variants may be at risk. Neurotoxicology. 21,(1-2),113-126
    26. Masson P, Carletti E, Nachon F.2009. Structure, Activities and Biomedical Applications of Human Butyrylcholinesterase. Protein Pept. Lett.16, (10), 1215-1224
    27. Macilwain C. Study proves iraq used nerve-gas. Nature 1993,363, (6424),3-3
    28. Muthuselvi L, Miller R, Dhathathreyan A.2008. How does urea really denature myoglobin? Chem. Phys. Lett.465, (1-3),126-130
    29. Myers D K.1952. Studies on cholinesterase.7. determination of the molar concentration of pseudo-cholinesterase in serum. Biochem. J.51, (3),303-311
    30. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps J C, Nachon F.2003. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem.278, (42),41141-41147
    31. Noort D, Benschop H P, Black R M.2002. Biomonitoring of exposure to chemical warfare agents:A review. Toxicol. Appl. Pharmacol.184, (2), 116-126
    32. Noort D, Fidder A, van der Schans M J, Hulst A G.2006. Verification of exposure to organophosphates:Generic mass spectrometric method for detection of human butyrylcholinesterase adducts. Anal. Chem.78, (18), 6640-6644
    33. Polhuijs M, Langenberg J P, Benschop H P.1997. New method for retrospective detection of exposure to organophosphorus anticholinesterases: Application to alleged sarin victims of Japanese terrorists. Toxicol. Appl. Pharmacol.146, (1),156-161
    34. Quinn D M.1987. Acetylcholinesterase-enzyme structure, reaction dynamics, and virtual transition-states. Chem. Rev.87, (5),955-979
    35. Read R W, Black R M.1999. Rapid screening procedures for the hydrolysis products of chemical warfare agents using positive and negative ion liquid chromatography-mass spectrometry with atmospheric pressure chemical ionisation.J. Chromatogr. A.862, (2),169-177
    36. Saad F A, Salih E, Glimcher M J.2008. Identification of osteopontin phosphorylation sites involved in bone remodeling and inhibition of pathological calcification. J. Cell. Biochem.103, (3),852-856
    37. Saxena A, Sun W, Dabisch P A, Hulet S W, Hastings N B, Jakubowski E M, Mioduszewski R J, Doctor B P.2008. Efficacy of human serum butyrylcholinesterase against sarin vapor. Chem.-Biol. Interact.175, (1-3), 267-272
    38. Sui S H, Wang J L, Yang B, Song L, Zhang J Y, Chen M, Liu J F, Lu Z, Cai Y, Chen S, Bi W, Zhu Y P, He F C, Qian X H.2008. Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Proteomics.8, (10),2024-2034
    39. Thompson C M, Prins J M, George K M.2010. Mass Spectrometric Analyses of Organophosphate Insecticide Oxon Protein Adducts. Environ. Health Perspect.118, (1),11-19
    40. Tu A T.2007. Toxicological and chemical aspects of sarin terrorism in japan in 1994 and 1945. Toxin Rev.26, (3),231-274
    41. Wang H, Wang J, Timchalk C, Lin Y H.2008. Magnetic Electrochemical Immunoassays with Quantum Dot Labels for Detection of Phosphorylated Acetylcholinesterase in Plasma. Anal. Chem.80, (22),8477-8484.
    42. Wang H, Wang J, Choi D W, Tang Z W, Wu H, Lin Y H.2009. EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosens. Bioelectron.24, (8),2377-2383
    43. Wessels D, Barr D B, Mendola P.2003. Use of biomarkers to indicate exposure of children to organophosphate pesticides:Implications for a longitudinal study of children's environmental health. Environ. Health Perspect.111, (16), 1939-1946
    44. Wang J, Timchalk C, Lin Y H.2008. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity:An exposure biomarker of organophosphate pesticides and nerve agents. Environ. Sci. Technol.42, (7),2688-2693
    45. Worek F, Koller M, Thiermann H, Szinicz L.2005. Diagnostic aspects of organophosphate poisoning. Toxicology.214, (3),182-189
    46. Young S, Balluz L, Malilay J.2004. Natural and technologic hazardous material releases during and after natural disasters:a review. Sci. Tota.l Environ.322, (1-3),3-20
    47. Zhao W, Ge P Y, Xu J J, Chen H Y.2009. Selective Detection of Hypertoxic Organophosphates Pesticides via PDMS Composite based Acetylcholinesterase-Inhibition Biosensor. Environ. Sci. Technol.43, (17), 6724-6729
    1. Canchi D R, Paschek D, Garcia A E.2010. Equilibrium Study of Protein Denaturation by Urea. J. Am. Chem. Soc.132, (7),2338-2344
    2. Greene R F, Pace C N.1974. Urea and guanidine-hydrochloride denaturation of ribonuclease, lysozyme, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin.J. Biol. Chem.249, (17),5388-5393
    3. Ellman G L, Courtney K D, Andres V, Featherstone R M.1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol.7, (2),88-&
    4. Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E. 2003. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312 (2):224-227.
    5. Hernandez F, Sancho J V, Pozo O J.2005. Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Anal Bioanal Chem.382 (4):934-946
    6. Hossain S M Z, Luckham R E, Smith A M, Lebert J M, Davies L M, Pelton R H, Filipe C D M, Brennan J D.2009. Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Sol-Gel-Derived Bioinks. Anal. Chem.81, (13),5474-5483
    7. Karnati C, Du H W, Ji H F, Xu X H, Lvov Y.2007. Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosens. Bioelectron.22 (11):2636-2642
    8. Lu D L, Cagan A, Munoz R A A, Tangkuaram T, Wang J.2006. Highly sensitive electrochemical detection of trace liquid peroxide explosives at a Prussian-blue'artificial-peroxidase'modified electrode. Analyst.131 (12), 1279-1281
    9. Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q.2010. Nature. Shell-isolated nanoparticle-enhanced Raman spectroscopy.464 (7287):392-395
    10. Lawrence D T, Kirk M A.2007. Chemical terrorism attacks:Update on antidotes. Emerg. Med. Clin. N. Am.25:567
    11. Liu G D, Lin Y H.2005. Electrochemical stripping analysis of organophosphate pesticides and nerve agents. Electrochem. Commun.7(4),339-343
    12. Liu G D, Wang J, Barry R, Petersen C, Timchalk C, Gassman P L, Lin Y H. 2008. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase:An Exposure Biomarker of Organophosphate Pesticides and Nerve Agents. Chem.-Eur. J.14, (32), 9951-9959
    13. Muthuselvi L, Miller R, Dhathathreyan A.2008. How does urea really denature myoglobin? Chem. Phys. Lett.465, (1-3),126-130
    14. Noort D, Fidder A, Van der Schans M J, Hulst A G.2006. Verification of exposure to organophosphates:Generic mass spectrometric method for detection of human butyrylcholinesterase adducts. Anal. Chem.78, (18), 6640-6644
    15. Spaulding R S, George K M, Thompson C M.2006. Analysis and sequencing of the active-site peptide from native and organophosphate-inactivated acetylcholinesterase by electrospray ionization, quadrupole/time-of-flight (QTOF) mass spectrometry. J Chromatogr B.830 (1):105-113
    16. Sun J C, Lynn B C.2007. Development of a MALDI-TOF-MS method to identify and quantify butyrylcholinesterase inhibition resulting from exposure to organophosphate and carbamate pesticides. J. Am. Soc. Mass. Spectr.18 (4): 698-706
    17. Spruit H E T, Trap H C, Langenberg J P, Benschop H P.2001. Bioanalysis of the enantiomers of (+/-)-sarin using automated thermal cold-trap injection combined with two-dimensional gas chromatography.J. Anal. Toxicol.25: 57-61
    18. Schulze H, Vorlova S, Villatte F, Bachmann T. T, Schmid R. D.2003. Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron.18 (2-3), 201-209
    19. Wang H, Wang J, Timchalk C, Lin Y H.2008. Magnetic Electrochemical Immunoassays with Quantum Dot Labels for Detection of Phosphorylated Acetylcholinesterase in Plasma. Anal. Chem.80, (22),8477-8484
    20. Timchalk C, Busby A, Campbell J A, Needham L L, Barr D B.2007. Comparative pharmacokinetics of the organophosphorus insecticide chlorpyrifos and its major metabolites diethylphosphate, diethylthiophosphate and 3,5,6-trichloro-2-pyridinol in the rat. Toxicology.237 (1-3):145-157
    21. Timchalk C, Poet T S, Kousba A A, Campbell J A, Lin Y H.2004. Noninvasive biomonitoring approaches to determine dosimetry and risk following acute chemical exposure:Analysis of lead or organophosphate insecticide in saliva. J. Toxicol. Env. Heal. A.67 (8-10):635-650
    22. Wang J, Lu D L, Thongngamdee S, Lin Y H,. Sadik O A.2006. Catalytic adsorptive stripping voltammetric measurements of trace vanadium at bismuth film electrodes. Talanta.69 (4),914-917
    23. Wang J, Timchalk C, Lin Y H.2008. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity:An exposure biomarker of organophosphate pesticides and nerve agents. Environ. Sci. Technol.42, (7),2688-2693
    1. Abu-Qare, A.W., Abou-Donia, M.B.,2001a. Development of a high-performance liquid chromatographic method for the quantification of chlorpyrifos, pyridostigmine bromide, N, N-diethyl-m-toluamide and their metabolites in rat plasma and urine. J. Chromatogr. B 754 (2):533-538.
    2. Abu-Qare, A.W., Abou-Donia, M.B.,2001b. Quantification of nicotine, chlorpyrifos and their metabolites in rat plasma and urine using high-performance liquid chromatography.J. Chromatogr. B 757 (2):295-300.
    3. Blazkova, M., Rauch, P., Fukal, L.,2010. Strip-based immunoassay for rapid detection of thiabendazole. Biosens. Bioelectron.25 (9):2122-2128.
    4. Busby-Hjerpe, A.L., Campbell, J.A., Smith, J.N., Lee, S., Poet, T.S., Barr, D.B., Timchalk,C.,2009. Comparative pharmacokinetics of cholorpyifos versus its major metabolites following oral administration in the rat. Toxicology 268 (1-2):55-63.
    5. Caldas, E.D., Rebelo, F.M., Heliodoro, V.O., Magalhaes, A.F.A., Rebelo, R.M., 2008. Poisonings with pesticides in the Federal District of Brazil. Clin. Toxicol 46(10):1058-1063.
    6. Chanda, S.M., Mortensen, S.R., Moser, V.C., Padilla, S.,1997. Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats:An in vitro and in vivo comparison Fundam. Appl. Toxicol.38 (2): 148-157.
    7. Chen, J., Yan, F., Dai, Z., Ju, H.X.,2005. Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosens. Bioelectron.21 (2): 330-336.
    8. Choi, K., Joo, H., Rose, R.L., Hodgson, E.,2006. Metabolism of chlorpyrifos and chlorpyrifos oxon by human hepatocytes. J. Biochem. Mol. Toxic.20 (6): 279-291.
    9. Diaz-Cruz, A.S., Barcelo, D.,2006. Highly selective sample preparation and gas chromatographic-mass spectrometric analysis of chlorpyrifos, diazinon and thir mayor metabolites in sludge and sludge-fertilized agricultural soils. J. Chromatogr. A 1132 (1-2):21-27.
    10. Engvall, E., Perlmann, P.,1971. Enzyme-Linked Immunosorbent Assay (ELISA) quantitative assay of immunoglobulin-G. Immunochem.8 (9):871-&.
    11. Jiang, X.S., Li, D.Y., Xu, X., Ying, Y.B., Li, Y.B., Ye, Z.Z., Wang, J.P.,2008. immunosensors for detection of pesticide residues. Biosens. Bioelectron.23 (11):1577-1587.
    12. Ju, H.X., Yan, G.F., Chen, F., Chen, H.Y.,1999. Enzyme-Linked immunoassay of alpha-1-fetoprotein in serum by differential pulse voltammetry. Electroanalysis 11 (2):124-128.
    13. Kamataki, T., Leelin, M.C.M., Belcher, D.H., Neal, R.A.,1976. Studies of metabolism of parathion with an apparently homogeneous preparation of rabbit liver cytochrome-P-450. Drug Metab. Dispos.4 (2):180-189.
    14. Lee, S., Poet, T.S., Smith, J.N., Busby-Hjerpe, A.L., Timchalk, C.,2010. Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats. Chem.-Biol. Interact.184 (3):449-457.
    15. Lin, J.H., Ju, H.X.,2005. Electrochemical and chemiluminescent immunosensors for tumor markers. Biosens. Bioelectron.20 (8):1461-1470.
    16. Lin, Y.Y., Wang, J., Liu, G.D., Wu, H., Wai, C.M., Lin, Y.H.,2008. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens.Bioelectron.23 (11):1659-1665.
    17. Liu, G D., Lin, Y.Y., Wang, J., Wu, H., Wai, C.M., Lin, Y.,2007. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem.79 (20):7644-7653.
    18. Lu, F., Wang, K.H., Lin, Y.H.,2005. Rapid, quantitative and sensitive immunochromatographic assay based on stripping voltammetric detection of a metal ion label. Analyst 130 (11):1513-1517.
    19. Pond, A.L., Chambers, H.W., Coyne, C.P., Chambers, J.E.,1998. Purificatin of two rat hepatic proteins with A-esterase activity toward chlorpyrifos-oxon and paraoxon.J. Pharmacol. Exp. Ther.286 (3):1404-1411.
    20. Qian, G.L., Wang, L.M., Wu, Y.R., Zhang, Q., Sun, Q., Liu, Y., Liu, F.Q.,2009. A monoclonal antibody-based sensitive enzyme-linked immunosorbent (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chem.117 (2):364-370.
    21. Raina, R., Sun, L.,2008. Trace level determination of selected organophosphorous pesticides and their degradation products in environmental air samples by liquid chromatography-positive ion electrospray tandem mass spectrometry.J. Environ. Sci. Health Part B-Pesticides Food Contaminants and Agricultural Wastes 43 (4):323-332.
    22. Randhawa, M.A., Anjum, F.M., Ahmed, A., Randhawa, M.S.,2007. Field incurred chlorpyrifos and 3,5,6-trichloro-2-pyridinol residues in fresh and processed vegetables. Food. Chem.103 (3):1016-1023.
    23. Singh, B.K., Walker, A.,2006. Microbial degradation of organophosphorus compounds. Fems. Microbio. Rev.30 (3):428-471.
    24. Smith, J.N., Wang, J., Lin, Y.H., Timchalk, C.,2010. Pharmacokinetics of the chlorpyrifos metabolite 3,5,6-trichloro-2-pyridinol (TCPy) in rat saliva. Toxicol. Sci.113 (2):315-325.
    25. Strategic Diagnostics Inc., Trichloropyridinol RaPID Assay, http://www.sdix. com/PDF/Products/ratcp.pdf.
    26. Thompson, C.M., Prins, J.M., George, K.M.,2010. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts. Health Perspect.118 (1): 11-19
    27. Timchalk, C., Campbell, J.A., Liu, G.D., Lin, Y.H., Kousba, A.A.,2007. Development of a non-invasive biomonitoring approach to determine exposure to the organophosphorus insecticide chlorpyrifos in rat saliva. Toxicol. Appl. Pharmacol.219 (2-3):217-225
    28. Wang, J., Timchalk, C., Lin, Y.H.,2008. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity:An exposure biomarker of organophosphate pesticides and nerve agents. Environ. Sci. Technol. 42 (7):2688-2693
    29. Wille, T., Thiermann, H., Worek, F.,2010. Development of a high-throughput screening for nerve agent detoxifying materials using a fully-automated robot-assisted biological assay. Toxicol. In Vitro 24 (3):1026-1031
    30. Zhang, Q., Wu, Y.R., Wang, L.M., Hu, B.S., Li, P.W., Liu, F.Q.,2008. Effect of hapten structures on specific and sensitive enzyme-linked immunosorbent assays for N-Methylcabamate insecticide metolcarb. Anal. Chim. Acta.625 (1):87-94
    31. Zou, Z.X., Du, D., Wang, J., Smith, J.N., Timchalk, C., Li, Y.Q., Lin, Y.H., 2010. Quantum Dot-Based Immunochromatographic Fluorescent Biosensor for Biomonitoring Trichloropyridinol, a Biomarker of Exposure to Chlorpyrifos. Anal. Chem.82 (12):5125-5133
    1. Acharya, G.; Chang, C. L.; Doorneweerd, D. D.; Vlashi, E.; Henne, W. A.; Hartmann, L. C.; Low, P. S.; Savran, C. A.2007. Immunomagnetic diffractometry for detection of diagnostic serum markers.J. Am. Chem. Soc. 129,15824-15829
    2. Adams, T. K.; Capacio, B. R.; Smith, J. R.; Whalley, C. E.; Korte, W. D.2004. The application of the fluoride reactivation process to the detection of sarin and Soman nerve agent exposures in biological samples. Drug Chem. Toxicol.27, 77-91
    3. Bartels, C. F.; Xie, W.; Miller-Lindholm, A. K.; Schopfer, L. M; Lockridge, O. 2000. Determination of the DNA sequences of acetylcholinesterase and butyrylcholinesterase from cat and demonstration of the existence of both in cat plasma. Biochem. Pharmacol.60,479-487
    4. Black, R. M.; Noort, D. In Chemical Warfare Agents:Toxicology and Treatment; Marrs, T. C.; Maynard, R. L.; Sidell, F. R., Eds.; John Wiley & Sons Ltd:New York,2007; Chapter 5, pp 127-156
    5. Darain, F; Gan, K. L.; Tjin, S. C.2009. Antibody immobilization on to polystyrene substrate-on-chip immunoassay for horse IgG based on fluorescence. Biomed. Microdevices 11,653-661
    6. Du, D.; Wang, J.; Smith, J. N.; Timchalk, C.; Lin, Y. H.2009. Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection. Anal. Chem.81,9314-9320
    7. Du, D.; Huang, X.; Cai, J.; Zhang, A. D.; Ding, J. W.; Chen, S. Z.2007. An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linked chitosan composite. J. Anal. Bioanal. Chem.387,1059-1065
    8. Ellin, R. I.; Burkhardt, B. H.; Hart, R. D.1973. A time-modified method for measuring red blood cell cholinesterase activity. Arch. Environ. Health.27, 48-49
    9. Ellman, G. L.; Courtney, K. D.; Andres, V., Jr.; Feather-Stone, R. M.1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol.7,88-95
    10. Gordon, R. K.; Haigh, J. R.; Garcia, G. E.; Feaster, S. R.; Riel, M. A.; Lenz, D. E.; Aisen, P. S.; Doctor, B. P.2005. Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman. Chem. Biol. Interact.157-158,239-246
    11. Gordon, R. K.; Doctor, B. P.; Chiang, P. K.1982. A RADIOACTIVE ASSAY FOR ACETYLCHOLINESTERASE USING ANION-EXCHANGE DISK. Anal. Biochem.124,333-337
    12. Haigh, J. R.; Lefkowitz, L. J.; Capacio, B. R.; Doctor, B. P.; Gordon, R. K. 2008. Advantages of the WRAIR whole blood cholinesterase assay: Comparative analysis to the micro-Ellman, Test-mate ChE (TM) and Michel (Delta pH) assays. Chem. Biol. Interact.175,417-420
    13. Holland, K. E.; Solano, M. I.; Johnson, R. C.; Maggio, V. L.; Barr., J. R. J. 2008. Modification to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures. Anal. Toxicol.32,116-124
    14. Li, H.; Ricordel, I.; Tong, L.; Schopfer, L. M.; Baud, F.; Megarbane, B.; Maury, E.; Masson, P.; Lockridge, O. J.2009. Carbofuran poisoning detected by mass spectrometry of butyrylcholinesterase adduct in human serum. Appl. Toxicol. 29,149-155
    15. Liu, G. D.; Wang, J.; Barry, R.; Petersen, C.; Timchalk, C.; Gassman, P. L.; Lin, Y. H.2008. Nanoparticle-Based Electrochemical Immunosensor for the Detection of Phosphorylated Acetylcholinesterase:An Exposure Biomarker of Organophosphate Pesticides and Nerve Agents. Chem.-Eur. J.14,9951-9959
    16. Lockridge, O.; Schopfer, L. M.; Masson, P. In Handbook of Toxicology of Chemical Warfare Agents; Gupta, R. C., Ed.; Academic Press:New York,2009; Chapter 56, pp 847-858
    17. Jun, D.; Bajgar, J.; Kuca, K.; Kassa, J. In Handbook of Toxicology of Chemical Warfare Agents; Gupta, R. C., Ed.; Academic Press:New York,2009; Chapter 58, pp 877-886
    18. Jun, D.; Bajgar, J.; Kuca, K.; Kassa, J. In Handbook of Toxicology of Chemical Warfare Agents; Gupta, R. C., Ed.; Academic Press:New York,2009; Chapter 58, pp 877-886
    19. Kim, B. C.; Ju, M. K.; Yu-Dan-Chin, A.; Sommer, P.2009. Quantitative Detection of HIV-1 Particles Using HIV-1 Neutralizing Anti body-Conjugated Beads. Anal. Chem.81,2388-2393
    20. Khattab, A. D.; Ali, I. S.2007. Immunoassays for avian butyrylcholinesterase: Implications for ecotoxicological testing and clinical biomonitoring. Environ. Toxicol. Pharmacol.24,275-285
    21. Noort, D.; Fidder, A.; van der Schans, M. J.; Hulst, A. G.2006. Verification of exposure to organophosphates:Generic mass spectrometric method for detection of human butyrylcholinesterase adducts. Anal. Chem.78,6640-6644
    22. Mani, V.; Chikkaveeraiah, B. V.; Patel, V.; Silvio Gutkind, J.; Rusling, J. F. 2009. Ultrasensitive Immunosensor for Cancer Biomarker Proteins Using Gold Nanoparticle Film Electrodes and Multienzyme-Particle Amplification. ACS Nano.3,585-594
    23. Masson, P.; Lockridge, O.2010. Butyrylcholinesterase for protection from organophosphorus poisons:Catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys.494,107-120
    24. Parvari, R.; Pecht, I.; Soreq, H.1983. A MICRO-FLUOROMETRIC ASSAY FOR CHOLINESTERASES, SUITABLE FOR MULTIPLE KINETIC DETERMINATIONS OF PICOMOLES OF RELEASED THIOCHOLINE. Anal. Biochem.133,450-456
    25. Quinn, D. M.1987. ACETYLCHOLINESTERASE-ENZYME STRUCTURE, REACTION DYNAMICS, AND VIRTUAL TRANSITION-STATES. Chem. Rev.87,955-979
    26. Shen, G.; Anand, M. F. G.; Levicky, R.2004. X-ray photoelectron spectroscopy and infrared spectroscopy study of maleimide-activated supports for immobilization of oligodeoxyribonucleotides. Nucleic Acids Res.32, 5973-5980
    27. Sporty, J. L. S.; Lemire, S. W.; Jakubowski, E. M.; Renner, J. A.; Evans, R. A.; Williams, R. F.; Schmidt, J. G.; van der Schans, M. J.; Noort, D.; Johnson, R. C. 2010. Immunomagnetic Separation and Quantification of Butyrylcholinesterase Nerve Agent Adducts in Human Serum. Anal. Chem.82,6593-6600
    28. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M.2006. Chemistry of carbon nanotubes. Chem. Rev.106,1105-1136
    29. Tu, A. T.2007. Toxicological and chemical aspects of sarin terrorism in japan in 1994 and 1945. Toxin Rev.26,231-274
    30. Wang, J.; Timchalk, C.; Lin, Y. H.2008. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity:An exposure biomarker of organophosphate pesticides and nerve agents. Environ. Sci. Technol.42,2688-2693
    31. Wang, H.; Wang, J.; Timchalk, C.; Lin, Y. H.2008. Magnetic Electrochemical Immunoassays with Quantum Dot Labels for Detection of Phosphorylated Acetylcholinesterase in Plasma. Anal. Chem.80,8477-8484
    32. Yu, X.; Munge, B.; Patel, Y.; Jensen, G.; Bhirde, A.; Gong, J. D.; Kim, S. N.; Gillespie, J.; Gutkind, J. S.; Papadimitrakopoulos, F.; Rusling, J. F. J.2006. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc.128,11199-11205
    1. Arrebola, F J., Vidal J L M., Gonzalez-Rodriguez M J., Garrido-Frenich A.,& Morito N S.2003. Reduction of analysis time in gas chromatography. Application of low-pressure gas chromatography-tandem mass spectrometry to the determination of pesticide residues invegetables. J. Chromatogr. A,1005 (1-2),131-141
    2. Brun, E M., Garces-Garcia M., Puchades, R.,& Maquieira, A.2004. Enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Influence of hapten structure. J Immunol. Methods,295 (1-2),21-35
    3. Cho, Y A., Kim, Y J., Hammock, B D., Lee, Y T.,& Lee, H S.2003. Development of a microtiter plate ELISA and a dipstick ELISA for the determination of the organophosphorus insecticide fenthion.J. Agric. Food. Chem,51 (27),7854-7860.
    4. Diaz, T G., Cabanillas, A G., Soto, M D L., and Ortiz J M.2008. tive-stripping volammetry. Td fenthion-sulfoxide, in olive oil and in river water, by square-wave adsorptive-stripping voltammetry. Talanta 76 (4):809-814.
    5. Kim, Y J., Cho, Y. A., Lee, H. S., Lee, Y. T., Gee, S. J.,& Hammock, B. D. (2003a). Synthesis of haptens for immunoassay of organophosphorus pesticides and effect of heterology in hapten spacer arm length on immunoassay sensitivity. Anal. Chim. Acta,475,85-96.
    6. Kim, Y. J., Cho, Y. A., Lee, H-S.,& Lee, Y. T. (2003b). Investigation of the effect of hapten heterology on immunoassay sensitivity and development of an enzyme-linked immunosorbent assay for the organophosphorus insecticide fenthion. Anal. Chim. Acta,494,29-40.
    7. KOHLER, G.,& MILSTEIN C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256,495-497
    8. Lee, H.S., Kim, Y. A., Cho, Y. A.,& Lee, Y. T. (2002). Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosphere,46(4),571-576.
    9. Mcadam, D. P., Hill. A. S., Beasley, H. L.,& Skerritt, J. H. (1992). Mono-and polyclonal antibodies to the organophosphate fenitrothion.1. Approaches to hapten-protein conjugation.J. Agric. Food Chem.40 (8),1466-1470.
    10. Raab, G. M. (1983). Comparison of a logistic and a mass action curve for radioimmunoassay data. Clin. Chem.29,1757-1761.
    11. Tsatsakis, A. M., Tsakiris, I. N., Tzatzarakis, M. N., Agourakis, Z. B., Tutudaki, M.,& Alegakis, A. K. (2003). Three-year study of fenthion and dimethoate pesticides in olive oil from organic and conventional cultivation. Food Addit. Contam.20(6),553-559.
    12. Wang, C. M., Liu, Y. H., Guo, Y. R., Liang, C. Z., Li, X. B.,& Zhu, G. N.(2009). Development of a McAb-based immunoassay for parathion and influence of the competitor structure. Food Chem.115,365-370.
    13. Zhang, Q., Sun, Q., Hu, B. S., Shen, Q., Yang, G., Liang, X., Sun, X.,& Liu, F.Q. (2008) Development of a sensitive ELISA for the analysis of the organophosphorous insecticide fenthion in fruit samples. Food Chem.106, 1278-1284.
    14. Zhang, Q., Wang, L., Ahn, K. C., Sun, Q., Hu, B., Wang, J., et al. (2007). Hapten heterology for a specific and sensitive indirect ELISA for organophosphorus insecticide fenthion. Anal. Chim. Acta,596,303-311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700