介孔纳米磷灰石的模板法调控合成及形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用模板法制备了具有介孔结构的磷灰石(HAP)纳米颗粒。通过改变模板剂种类、浓度、反应温度、添加剂等来调控纳米介孔HAP的孔形、孔径及颗粒形貌等,提高纳米HAP的孔体积和比表面积。同时对介孔HAP进行磁性、荧光等功能性掺杂,赋予HAP药物载体磁性靶向和生物标识功能。采用X-射线衍射(XRD/SAXRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FT-IR)、氮气吸附等分析手段研究了各种介孔HAP的显微组织结构。在活性剂自组装的基础上,深入探讨了模板剂引导合成介孔磷灰石的调控机理。并探讨了掺杂纳米介孔HAP的功能性及纳米介孔HAP对模型药物的吸附与体外释放性能。
     以乙烷基、正戊基、正辛基及十二烷基磷酸酯作原位模板剂,合成了高度有序结构的前躯体。400℃煅烧后,仅乙烷基磷酸酯得到的六方排列纳米结构和非高度有序的介观结构仍然保持,形成磷灰石的六方纳米孔道结构和蠕虫状介孔结构,合成的磷灰石比表面积为42m2/g、孔体积为0.0644cm3/g。加入Tween-60作共模板剂时,得到的片层状磷灰石具有大量孔径约为4nm的蠕虫状介孔,且该介孔结构650℃热处理后仍然存在,具有高的热稳定性。
     P123和Tween-60混合模板剂引导合成HAP时,通过P123的量、反应温度和添加剂可很好地调控磷灰石的形貌、表面性质及微观结构。这种混合模板对介孔磷灰石的调控机理为:P123的量、反应温度和添加剂等参数影响混和表面活性剂在水溶液中的自组装行为,这些参数发生变化时活性剂自组装体组装方式和形状发生改变,钙和磷沉积在自组装体后得到不同的介孔磷灰石,达到调控合成介孔磷灰石的目的。P123和Tween-60浓度分别为0.04和0.1mol/L及60℃下合成片层状自组装体,热力学上来讲自组装体活性剂分子亲水链排列有利于羟基磷灰石沿着其长度方向生长,最终导致沿c轴定向生长的竹筏状磷灰石的形成。利用P123高温云点完全不溶和低温完全可溶的特性,结合Tween-60高云点性质,将形成的核-壳胶束作为模板合成磷灰石,能够得到球形的磷灰石空心纳米颗粒。加入柠檬酸作为添加时,可调节胶束的形状,得到棒状状的磷灰石空心纳米颗粒。该空心纳米棒内表面被修饰了厚为1.15nm、具有pH感应性的柠檬酸分子层,具有大的比表面积和孔体积,是一种优良的药物载体。
     利用MDP作模板剂时,能够合成具有层状介孔结构的三斜钙磷石/磷灰石纳米颗粒。MDP加入量、反应温度、乙醇加入量及Ca/P摩尔比调控着合成产物的形状、尺寸、层状介孔结构的层间距。MDP模板合成层状介孔结构的三斜钙磷石/磷灰石调控机理为:温度、乙醇加入量和Ca/P摩尔比使由MDP、钙和磷组合而成的无机-有机复合体的化学位能发生改变,复合体只有通过改变尺寸和层状片晶之间的距离等来改变自身的化学位能,从而与反应体系化学位能的保持平衡。
     在MDP引导下:Sm3+离子掺杂的HAP具有良好的荧光性能,且发光性随掺入量的增加而增强;掺入的Fe2+形成磁性的Fe3O4或γ-Fe2O3颗粒镶嵌在HAP颗粒中,得到的HAP磁性随Fe2+掺入量的增加而增强;Sm3+和Fe2+复合掺杂合成的介孔磁性-荧光多功能HAP纳米颗粒,同时具有很强的磁性和极好的荧光性,且具有高比表面积(153.52m2/g)、大孔体积(0.3286cm3/g)及双孔径的分布(3.64 and 9.014nm)。Sm3+和Fe3+以固溶和氧化物的形式存在于这种介孔磁性-荧光多功能纳米HAP颗粒中。
     在药物吸附装载中,空心结构使空心纳米磷灰石载药量大大提高。表面修饰柠檬酸的空心HAP纳米棒万古霉素装载效率达24.14%,加入PDAD后载药效率增加至35.83%;这种空心HAP纳米棒载药后,在缓冲液中释放时具有明显的pH值感应性,中性环境下药物释放速率快,酸性条件下释放速率慢;而加入PDAD后,在中性环境下药物释放缓慢,20小时后累积药物释放率不到28%,但在弱酸环境下前5个小时药物释放率达到89.28%、20个小时后释放率超过98%。此外,得到的磁性-荧光介孔纳米HAP对万古霉素的吸附效率亦可达33.68%。药物吸附和体外释放结果,表明我们制备的中空直径为介观尺寸的空心纳米磷灰石和磁性-荧光介孔纳米HAP,是一种智能型多功能一体化的药物载体,在生物医学领域具有巨大的应用潜力。
Mesostructured hydroxyapatite (HAP) nanoparticles (NPs) were prepared using various templates. The reaction temperature, the additive, the variety and the concentration of templates were proposed to regulate the pore shape, the pore size and the morphology of the mesostructured HAP, and meanwhile to improve the the specific surface area and the pore volume. And the mesostructured HAP NPs were further fuctionalized with magnetism and luminescence, to endow them with biotargeting and biomarking functions when applied in drug carriers. The morpgolies and microstructures of the obtained mesostrured HAP were analysed by X-ray diffraction (XRD), small angle X-ray diffraction (SAXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and nitrogen absorption, etc. The regulation mechanmisms of mesostrutured HAP by various templates were fully disscussed based on the self-assemly behaviors of surfactants. Furthermore, the functions of the doped mesostructured HAP NPs, drug adsorption property and in-vitro release kinetics for mesostructured HAP NPs were also investigated.
     All the as-prepared precursors in-situ templated by dodecyl, n-octyl, n-pentyl, and ethyl phosphates had ordered nanostructures. But only the ethyl phosphate templated HAP sustained with an orderly hexagonal nanostructure at 400°C, possessing a specific surface area of 42m2/g and a pore volume of 0.0644cm3/g. With Tween-60 as the cosurfactant, the ethyl phosphate in-situ templated HAP had a large amount of 4nm worm-like mesopores which still thermally stable at 650oC.
     The aqueous behavios of Pluronic P123 regulated by the addition of P123, the reaction temperature and the additive were utilized to mediate the biomimetic synthesis of hydroxyapatite (HAP) with controllable morphology, microstructure and surface property in the presence of Tween-60. The thermodynamic calculations proved the demanded energy of HAP nucleation upon lamellar PEO aggregates is less than one twentieth of that on HAP surface, and the nucleation upon lamellar PEO aggregates favors in the longitudinal direction of the lamellar aggregates resulting in the oriented crystal growth along the [001] or c-direction of HAP and forming the oriented raft-like HAP. The characteristic of P123, i.e. insoluble at CP and totally soluble below CMT, was used to prepare mesoscaled hollow HAP nanoparticles in the help of Tween-60 which possesses a much higher CP than P123 does. The resultant hollow HAP has a sphere-like morphology, and it can be transformed to rod-like shape with the addition of polar citric acid. The citrate added HAP hollow nanorods have a layer of citrate molecules with a thickness of 1.15nm coupled upon the inner surfaces, which are pH-responsive and have great potential in smart drug delivery system.
     Monetite/HAP nanoparticles with lamellar mesostructures were prepared using monododecyl phosphate (MDP) as the directing template. The morphology and layer space of the lamellar mesostructured products could be controlled by different Ca/P mol ratio, reaction temperature, addition of MDP and ethanol. These factors changed the chemical potential of the product. Therefore the product had to regulate its morphology and microstructure to keep the potential in banlance.
     In the mediation of MDP: the Sm3+ doped HAP had a excellent luminescence, which increased with the addition of Sm3+; the Fe2+ doped HAP nanoparticles were embeded with Fe3O4 orγ-Fe2O3, and had an increased magnetism with the addition of Fe2+; and multifunctional magnetic and luminescent mesoporous HAP nanoparticles were prepared by doping with Sm3+ and Fe2+, the doped Sm3+ and Fe2+ were found dispersedly embeded and solid-soluted in HAP, and the resultant magnetic and luminescent mesoporous HAP NPs possessed both good magtism and excellent luminescence, a high specific surface area (153.52m2/g) and a large pore volume (0.3286cm3/g) with a bimodal pore size distribution (3.64 and 9.014nm).
     In the drug loading process, the hollow property made all the hollow HAP NPs have a much higher drug payload than the traditional HAP NPs did. The citrate coupled hollow rod-like HAP had a relatively high drug payload of 24.14%, and it was further increased to be 35.83% with the addition of cationic polyelectrolyte poly (dimethyldiallyl ammonium) chloride (PDAD). In in-intro release, the loaded vancomycin was stored inside the citrate chelate hollow rod-like HAP when the pH was at acidity, and released in a neutral environment. Reversely, with the addition of PDAD, the drug was steadily stored at a neutral pH (7.4), the cumulative release was less than 28% for 20h. But the drug linearly released when the pH was at weak acidity, the cumulative release was more than 89% for 5h and 98% for 20h. In addition, the magnetic and luminescent mesoporous HAP NPs also had a high payload ratio of vancomycin, over 33%. The drug loading and in-intro releasing results indicated that the prepared hollow HAP with a mesoscaled hollow diameter and the magnetic and luminescent mesoporous HAP NPs, were smart and multifunction integrated drug carriers, having a great potential in biomedical applications.
引文
1俞耀庭,王连永,王深琪.生物医用材料发展状况与对策//二零零三高技术发展报告.科学出版社,2003:1~18
    2 S. A. Costas Kaparissides, K. Kotti, S. Chaitidou. Recent Advances in Novel Drug Delivery Systems. Azojono-Journal of Nanotechnology Online. 2006, 2:1~11
    3 T. C. Yih, M. Al-Fandi. Engineered nanoparticles as precise drug delivery systems. Journal of Cellular Biochemistry. 2006, 97:1184~1190
    4 J. Park, G. von Maltzahn, E. Ruoslahti, S. Bhatia, M. J. Sailor. Micellar Hybrid Nanoparticles for Simultaneous Magnetofluorescent Imaging and Drug Delivery. Angewandte Chemie International Edition. 2008, 47:7284~7288
    5 W. Lin, Y. W. Huang, X. D. Zhou, Y. Ma. In-Vitro Toxicity of Silica Nanoparticles in Human Lung Cancer Cells. Toxicology and Applied Pharmacology. 2006, 217:252~259
    6 C. M. Sayes, A. M. Gobin, K. D. Ausman, J. Mendez, J. L. West, V. L. Colvin. Nano-C60 Cytotoxicity is Due to Lipid Peroxidation. Biomaterials. 2005, 26:7587~7595
    7 Z. Tao, M. P. Morrow, T. Asefa, K. K. Sharma, C. Duncan, A. Anan, H. S. Penefsky, J. Goodisman, A. Souid. Mesoporous Silica Nanoparticles Inhibit Cellular Respiration. Nano Letter. 2008, 8:1517~1526
    8 X. Zhu, O. Eibl, L. Scheideler, J. Geis-Gerstorfer. Characterization of Nano Hydroxyapatite/Collagen Surfaces and Cellular Behaviors. Journal of Biomedical Materials Research Part A. 2006, 79A:114~127
    9 X. Zhu, O. Eibl, C. Berthold, L. Scheideler, J. Geis-Gerstorfer. Structural Characterization of Nanocrystalline Hydroxyapatite and Adhesion of Pre-osteoblast Cells. Nanotechnology. 2006, 17:2711~2721
    10 Y. R. Cai, Y. K. Liu, W. Q. Yan, Q. H. Hu, J. H. Tao, M. Zhang, Z. L. Shi, R. K. Tang. Role of Hydroxyapatite Nanoparticle Size in Bone Cell Proliferation. Journal of Materials Chemistry. 2007, 17:3780~3787
    11 P. Sibilla, A. Sereni, G. Aguiari, M. Banzi, E. Manzati, C. Mischiati. Effects of a Hydroxyapatite-based Biomaterial on Gene Expression in Osteoblast-like Cells. Journal of Dental Research. 2006, 85:354~358
    12 T. Matsumoto, M. Okazaki, M. Inoue, S. Yamaguchi, T. Kusunose, T. Toyonaga. Hydroxyapatite Particles as A Controlled Release Carrier of Protein. Biomaterials. 2004, 25:3807~3812
    13 T. Y. Liu, S. Y. Chen, D. M. Liu, S. C. Liou. On the Study of BSA-Loaded Calcium-Deficient Hydroxyapatite Nano-Carriers for Controlled Drug Delivery. Journal of Controlled Release. 2005, 107:112~121
    14 B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C. L. Bianchi. Biomimetic Hydroxyapatite-Drug Nanocrystals as Potential Bone Substitutes with Antitumor Drug Delivery Properties. Advanced Functional Materials. 2007, 17:2180~2188
    15 M. Hasegawa, A. Sudo, V. S. Komlev, S. M. Barinov, A. Uchida. High Release of Antibiotic from A Novel Hydroxyapatite with Bimodal Pore Size Distribution. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2004, 70: 332~339
    16 D. H. Everett. International Union of Pure and Applied Chemistry-IUPAC Manual of Symbols and Terminology. Pure and Applied Chemistry.1972, 31:578
    17 Q. S. Huo, D. I. Margolese, G. D. Stucky. Surfactant Control of Phases in The Synthesis of Mesoporous Silica~based Materials. Chemistry of Materials. 1996, 8:1147~1160
    18 C. G. Wu, T. Bein. Synthesis of CdSe/CdS with a Simple Non-TOP-based Route. Chemical Communications. 1996, 925~926
    19 W. Y. Lin, J. Chen, Y. Sun, W. Q. Pang. Bimodal Mesopore Distribution in a Silica Prapared by Calcining a Wet Surfactant-containing Silicate Gel. Journal of Chemical Society: Chemical Communications. 1995, 23:2367~2368
    20 C. A. Fyfe, G. Fu. Structure Organization of Silicate Polyanions with Surfactants: A New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials. Journal of the American Chemical Society. 1995, 117: 9709~9714
    21 Y. F. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. L. Gong, Y. G. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink. Continuous Formation of Supported Cubic and Hexagonal Mesoporous Films by Sol Gel Dip-Coating. Nature. 1997, 389:364~368
    22 J. C. Vartuli, C. T. Kresge, M. E. Leonowicz, A. S. Chu, S. B. McCullen, I. D. Johnson, E. W. Sheppard. Synthesis of Mesoporous Materials: Liquid-Crystal Templating versus Intercalation of Layered Silicates. Chemistry of Materials. 1994, 6:2070~2077
    23 J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Roth, M. E. Leonowicz, S. B. McCullen, S. D. Hellring, J. S. Beck, J. L. Schlenker. Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases andMechanistic Implications. Chemistry of Materials.1994, 6:2317~2326
    24 F. Hoffmann, M. Cornelius, J. Morell, M. Fr?ba. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials. Angewandte Chemie International Edition. 2006, 45:3216~3251
    25 C. Rodríguez-Abreu, J. Esquena, K. Aramaki, M. A. López-Quintela. Mesoporous Silica from Reverse Lyotropic Liquid Crystals: A Novel Approach. Microporous and Mesoporous Materials. 2009, 119:338~343
    26 D. Y. Zhao, J. L. Feng, Q. S. Huo. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998, 279:548~552
    27 G. S. A ttard, P. N. Bartlett, N. R. B. Coleman. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases. Science. 1997, 278:838~840
    28 C. Y. Chen, S. L. Burkett, H. X. Li, M. E. Davis. Studies on Mmesoporous Mmaterials II. Synthesis Mechanism of MCM-41. Microporous Materials. 1993, 2:27~34
    29 A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, B. F. Chmelka. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science. 1995, 267: 1138~1143
    30 B. T. Holland, P. K. Isbester, C. F. Blanford, E. J. Munson, A. Stein. Synthesis of Ordered Aluminophosphate and Galloaluminophosphate Mesoporous Materials with Anion-Exchange Properties Utilizing Polyoxometalate Cluster/Surfactant Salts as Precursors. Journal of the American Chemical Society. 1997, 119:6796~6803
    31 M. Tiemann, M. Schulz, C. J?ger, M. Fr?ba. Mesoporous Aluminophosphate Molecular Sieves Synthesized under Nonaqueous Conditions. Chemistry of Materials. 2001, 13:2885~2891
    32 Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array. Science. 1995, 268:1324~1327
    33 Z. R. Zhang, R. W. Hicks, T. R. Pauly, T. J. Pinnavaia. Mesostructured Forms ofγ-Al2O3. Journal of the American Chemical Society. 2002, 124:1592~1593
    34 Q. S. Huo, D. I. Margolese, U. Ciesla, P. G. Feng, T. Gire, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. Stucky. Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials. Nature. 1994, 368:317~321
    35 S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science. 1995, 269:1242~1244
    36 P. T. Tanev, M. Chibwe, T. J. Pinnavaia. Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds. Nature. 1994, 368:321~323
    37 P. T. Tanev, T. J. Pinnavaia. A Neutral Templating Route to Mesoporous Molecular Sieves. Science. 1995, 267:865~867
    38 D. M. Antonelli, A. Nakahira, J. Y. Ying. Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves. Inorganic Chemistry. 1996, 35:3126~3136
    39 T. Sun, J. Y. Ying. Synthesis of Microporous Transition-Metal-Oxide Molecular Sieves by A Supramolecular Templating Mechanism. Nature. 1997, 389:704~706
    40 S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, K. Kuroda. Syntheses of Highly Ordered Mesoporous Materials, FSM-16, Derived from Kanemite. Bulletin of the Chemical Society of Japan.1996, 69:1449~1457
    41 B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao. Self-Adjusted Synthesis of Ordered Stable Mesoporous Minerals by Acid-Base Pairs. Nature Materials. 2003, 2:159~163
    42 T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato. The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Maerials. Bulletin of the Chemical Society of Japan. 1990, 63:988~992
    43 T. Kimura, T. Kamata, M. Fuziwara, Y. Takano, M. Kaneda, Y. Sakamoto, O. Terasaki, Y. Sugahara, K. Kuroda. Formation of Novel Ordered Mesoporous Silicas with Square Channels and Their Direct Observation by Transmission Electron Microscopy. Angewandte Chemie International Edition. 2000, 39:3855~3859
    44 Y. H. Sakamoto, M. Kaneda, O. Terasaki. Direct Imaging of The Pores and Cages of Three-Dimensional Mesoporous Materials. Nature. 2000, 408:449~453
    45韩宇.高水热稳定的介孔分子筛的合成与表征.吉林大学博士论文, 2003:35~68
    46 A.Corma, M.T.Navarno, P. J. Perez. Silicate Isomorphous to MCM-41 and Its Application as a Catalyst for Selective Oxidation of Hydrocarbons. Journal of the Chemical Society, Chemical Communications. 1994, 147~148
    47 A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures .Science. 1993, 261:1299~1303
    48 X. Liu, B. Tian, C. Yu, F. Gao, S. Xie, B.Tu, R. Che, L. M. Peng, D. Zhao. Room-Temperature Synthesis in Acidic Media of Large-Pore Three-Dimensional Bicontinuous Mesoporous Silica with Ia3d Symmetry. Angewandte Chemie International Edition. 2002, 41:3876~8
    49 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society. 1998, 120:6024~6036
    50 Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin, R. Ryoo. Direct Imaging of the Pores and Cages of Three-Dimensional Mesoporous Materials. Nature. 2000, 408:449~453
    51 W. Z. Zhou, H. M. A. Hunter, P. A. Wright, Q. F. Ge, J. M. Thomas. Imaging the Pore Structure and Polytypic Intergrowths in Mesoporous Silica. The Journal of Physical Chemistry B. 1998, 102:6933~6936
    52 Y. Sakamoto, I. Diaz, O. Terasaki, D. Y. Zhao, J. Perez-Pariente, J.M. Kim, G. D. Stucky. Three-dimensional Cubic Mesoporous Structures of SBA-12 and Related Materials by Electron Crystallography. The Journal of Physical Chemistry B. 2002, 106, 3118~3123
    53 Y. Liu, A. Karkamkar, T. J. Pinnavaia. Redirecting The Assembly of Hexagonal MCM-41 into Cubic MCM-48 from Sodium Silicate without The Use of An Organic Structure Modifier. Chemical Communications. 2001, 1822~1825
    54肖进新,赵振国.表面活性剂应用原理.化学工业出版社,2003:137~140
    55 S. L. Burkett, S. D. Sims, S. Mann. Synthesis of Hybrid Inorganic-Organic Mesoporous Silica by Co-Condensation of Siloxane and Organosiloxane Precursors. Chemical Communications. 1996, 1367~1368
    56 X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner. Functionalized Monolayers on Ordered Mesoporous Supports. Science. 1997, 276:923~926
    57 T. Asefa, M. J. MacLachan, N. Coomba, G. A. Ozin. Periodic Mesoporous Organosilicas with Organic Groups Inside The Channel Walls. Nature. 1999, 402:867~871
    58 B. J. Melde, B. T. Holland, C. F. Blandford, A. Stein. Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials. 1999, 11:3302~3308
    59 S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society. 1999, 121:9611~9614
    60 W. P. Guo, J. Y. Park, M. O. Oh, H. W. Jeong, W. J. Cho, I. Kim, C. S. Ha. Triblock Copolymer Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilicas with the Aid of Inorganic Salts. Chemistry of Materials. 2003, 15:2295~2298
    61 Z. D. Zhang, B. Z. Tian, X. X. Yan, S. D. Shen, X. Y. Liu, D. H. Chen, G. S. Zhu, D. Y. Zhao, S. Qiu. An Easy Route for the Synthesis of Ordered Three-Dimensional Large-Pore Mesoporous Organosilicas with Im-3m Symmetry. Chemistry Letters. 2004, 33:1132~1133
    62 Z. C. Zhou, X. Y. Bao, X. S. Zhao. Synthesis, Characterization and Optical Properties of Ordered Macroporous Organosilicas. Chemical Communications. 2004, 1376~1377
    63 W. P. Guo, I. Kim, C. S. Ha. Highly Ordered Three-Dimensional Large-Pore Periodic Mesoporous Organosilica with Im3m Symmetry. Chemical Communications. 2003, 2692~2693
    64 C. Q. Liu, J. B. Lambert, L. Fu. A Novel Family of Ordered, Mesoporous Inorganic/Organic Hybrid Polymers Containing Covalently and Multiply Bound Microporous Organic Hosts. Journal of the American Chemical Society. 2003, 125:6452~6461
    65 J. Y. Ying, C. P. Mehnert, M. S. Wong. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition. 1999, 38:56~77
    66 A. Taguchi, Ferdi Schuth. Ordered Mesoporous Materials in Catalysis. Microporous and Mesoporous Materials. 2005, 77:1~45
    67 Y. J. Han, J. M. Kim, G. D. Stucky. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chemistry of Materials. 2000, 12:2068~2069
    68 S. Dai, M. C. Burleigh, Y. H. Ju, H. J. Gao, J. S. Lin, S. J. Pennycook, C. E. Barnes, Z. L. Xue. Hierarchically Imprinted Sorbents for The Separation of Metal Ions. Journal of the American Chemical Society. 2000, 122:992~993
    69 J. Liu, X. D. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, M. Gong. Hybrid Mesoporous Materials with Functionalized Monolayers. Advanced Materials. 1998, 10:161~165
    70 J. Brown, L. Mercier, T. J. Pinnavaia. Selective Adsorption of Hg2+ by Thiol-Functionalized Nanoporous Silica. Chemical Communications. 1999, 69~70
    71 Q. Yang, S. Wang, P. Fan, L. Wang, Y. Di, K. Lin, F. Xiao. pH-Responsive Carrier System Based on Carboxylic Acid Modified Mesoporous Silica and Polyelectrolyte for Drug Delivery. Chemistry of Materials. 2005,17:5999~6003
    72 Z. Li, S. Xu, L. Wen, F. Liu, A. Liu, Q. Wang, H. Sun, W. Yu, J. Chen. Controlled Release of Avermectin from Porous Hollow Silica Nanoparticles: Influence of Shell Thickness on Loading Efficiency, Uv-shielding Property and Release. Journal of Controlled Release. 2006, 111:81~88
    73 M. Arruebo, M. Galán, N. Navascués, C. Téllez, C. Marquina, M. R. Ibarra, J. Santamaría. Development of Magnetic Nanostructured Silica-Based Materials as Potential Vectors for Drug-Delivery Applications. Chemistry of Materials. 2006, 18:1911~1919
    74 S. Zhu, D. Zhang, N. Yang. Hydrophobic Polymers Modification of Mesoporous Silica with Large Pore Size for Drug Release. Journal of Nanoparticle Research. 2009, 11:561~568
    75 J. Lu, M. Liong, J. I. Zink, F. Tamanoi. Mesoporous Silica Nanoparticles as a Delivery System for Hydrophobic Anticancer Drugs. Small. 2007, 3:1341~1346
    76 A. Tan, S. Simovic, A. K. Davey, T. Rades, C. A. Prestidge. Silica-Lipid Hybrid (SLH) Microcapsules: A Novel Oral Delivery System for Poorly Soluble Drugs. Journal of Controlled Release. 2009, 134:62~70
    77 I. I. Slowing, J. L. Vivero-Escoto, C. Wu, V. S. Y. Lin. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gen Transfection Carriers. Advanced Drug Delivery Reviews. 2008, 60:1278~1288
    78 J. Yao, W. Tjandra, Y. Z. Chen, K. C. Tam, J. Ma, B. Soh. Hydroxyapatite Nanostructure Material Derived Using Cationic Surfactant as a Template. Journal of Materials Chemistry. 2003, 13:3053~3057
    79 Y. F. Zhao, J. Ma. Triblock Co-Polymer Templating Synthesis of Mesostructured Hydroxyapatite. Microporous and Mesoporous Materials. 2005, 87:110~117
    80 B. Prelot and T. Zemb. Calcium Phosphate Precipitation in Catanionic Templates. Materials Science and Engineering C. 2005, 25:553~559
    81 M. Kitamura, C. Ohtsuki, S. Ogata, M. Kamitakahara, M. Tanihara. Mesoporous Calcium Phosphate Via Post-Treatment ofα-TCP. Journal of the American Ceramic Society. 2005, 88:822~826
    82 M. Uota, H. Arakawa, N. Kitamura, T. Yoshimura, J. Tanaka, T. Kijima. Synthesis of High Surface Area Hydroxyapatite Nanoparticles by Mixed Surfactant-Mediated Approach. Langmuir. 2005, 21:4724~4728
    83 Y. J. Wang, J. D. Chen, K. Wei, S. H. Zhang, X. D. Wang. Surfactant-Assisted Synthesis of Hydroxyapatite Particles. Materials Letters. 2006, 60:3227~3231
    84 S. H. Zhang, Y. J. Wang, K. Wei, X. J. Liu, J. D. Chen, X. D. Wang.Template-Assisted Synthesis of Lamellar Mesostructured Hydroxyapatites. Materials Letters. 2007, 61:1341~1345
    85 S. M. Schmidt, J. McDonald, E. T. Pineda, A. M. Verwilst, Y. Chen, R. Josephs, A. E. Ostafin. Surfactant Based Assembly of Mesoporous Patterned Calcium Phosphate Micro-Sized Rods. Microporous and Mesoporous Materials. 2006, 94:330~338
    86 A. Slosarczyk, J. Szymura Oleksiak, B. Mycek. The Kinetics of Pentoxifylline Release from Drug-Loaded Hydroxyapatite Implants. Biomaterials. 2000, 21:1215~1221
    87 M. Itokazu, T. Sugiyama, T. Ohno, E. Wada, Y. Katagiri. Development of Porous Apatite Ceramic for Local Delivery of Chemotherapeutic Agents. Journal of Biomedical Materials Research. 1998, 39:536~538
    88 A. Barroug, M. J. Glimcher. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. Journal of Orthopaedic Research. 2002, 20:274~380
    89 T. Y. Liu, S. Y. Chen, D. M. Liu, S. C. Liou. On the study of BSA-Loaded Calcium-Deficient Hydroxyapatite Nano-Carriers for Controlled Drug Delivery. Journal of Controlled Release. 2005, 107:112~121
    90 Y. Mizushima, T. Ikoma, J. Tanaka, K. Hoshi, T. Ishihara, Y. Ogawa, A. Ueno. Injectable Porous Hydroxyapatite Microparticles as A New Carrier for Protein and Lipophilic Drugs. Journal of Controlled Release. 2006, 110:260~265
    91 P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin. Bioactive, Luminescent and Mesoporous Europium-Doped Hydroxyapatite as A Drug Carrier. Biomaterials. 2008, 29:4341~4347
    92 S. Sebti, R.Tahir, R.Nazih, S. Boulaajaj. Comparison of Different Lewis Acid Supported on Hydroxyapatite as New Catalysts of Friedel-Crafts Alkylation. Applied Catalysis A: General. 2001, 218:25~30
    93 S. Sebti, R. Tahir, R. Nazih, A. Saber, S.Boulaajaj. Hydroxyapatite as A New Solid Support for The Knoevenagel Reaction in Heterogeneous Media without Solvent . Applied Catalysis A: General. 2002, 228:155~159
    94 J. Yamawaki, T. Kawate, T. Ando, T. Hanafusa. Potassium Fluoride on Alumina. An Efficient Solid Base for Elimination, Addition, and Condensation. Bulletin of the Chemical Society of Japan. 1983, 56:1885~1886
    95 J. A. Cabello, J. M. Campelo, A. Garcia, D. Luna, J. M. Marinas. Knoevenagel Condensation in The Heterogeneous Phase Using Aluminum Phosphate-Aluminum Oxide as A New Catalyst. The Journal of Organic Chemistry. 1984, 49:5195~5197
    96 T. I. Reddy, R. S. Varma. Rare-Earth (RE) Exchanged NaY Zeolite PromotedKnoevenagel Condensation. Tetrahedron Letters. 1997, 38:1721~1724
    97 S. Sebti, A. Solhy, R. Tahir, A. Smahi. Modified Hydroxyapatite with Sodium Nitrate: An Efficient New Solid Catalyst for The Claisen-Schmidt Condensation. Applied Catalysis A: General. 2002, 235:273~281
    98 M. Zahouily, Y. Abrouki, B. Bahlaouan, A. Rayadh, S. Sebti. Hydroxyapatite: New Efficient Catalyst for The Michael Addition. Catalysis Communicaions. 2003, 4:521~524
    99 R. Tahir, K. Banert, S. Sebti. Natural and Synthetic Phosphates: New and Clean Heterogeneous Catalysts for The Synthesis of 5-Arylhydantoins. Applied Catalysis A: General. 2006, 298:261~264
    100 R. Tahir, K. Banert, A. Solhy, S. Sebti. Zinc Bromide Supported on Hydroxyapatite as A New and Efficient Solid Catalyst for Michael Addition of Indoles to Electron-Deficient Olefins. Journal of Molecular Catalysis A: Chemical. 2006, 246:39~42
    101 S. Sugiyama, J. B. Moffat. The Conversion of Methanol: a Probe Reaction for Hydroxyapatite. Catalysis Letters. 2001, 76:75~80
    102 K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani, K. Kaneda. Catalysis of a Hydroxyapatite-Bound Ru Complex: Efficient Heterogeneous Oxidation of Primary Amines to Nitriles in The Presence of Molecular Oxygen. Chemical Communications. 2001, 461~462
    103 S. Wuyts, D.E. De Vos, F. Verpoort, D. Depla, R. De Gryse, P.A. Jacobs. A Heterogeneous Ru-Hydroxyapatite Catalyst for Mild Racemization of Aalcohols. Journal of Catalysis. 2003, 219:417~424
    104 K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda. Hydroxyapatite-Bound Cationic Ruthenium Complexes as Novel Heterogeneous Lewis Acid Catalysts for Diels-Alder and Aldol Reactions. Journal of the American Chemical Society. 2003, 125:11460~11461
    105 J. H. Jun, T. J. Lee, T. H. Lim, S. W. Nam, S. A. Hong, K. J. Yoon. Nickel-Calcium Phosphate/Hydroxyapatite Catalysts for Partial Oxidation of Methane to Syngas: Characterization and Activation. Journal of Catalysis. 2004, 221:178~190
    106 J. H. Jun, T. H. Lim, S. W. Nam, S. A. Hong, K. J. Yoon. Mechanism of Partial Oxidation of Methane over A Nickel-Calcium Hydroxyapatite Catalyst. Applied Catalysis A: General. 2006, 312:27~34
    107高正中.实用催化.化学工业出版社,1996:43~312
    108 D. R. Bachvarov, I. G. Ivanov. Large Scale Purification of Plasmid DNA. Preparative Biochemistry. 1983, 13:161~6
    109 K. Aoyama, J. Chiba. Separation of Different Molecular Forms of Mouse IgAand IgM Monoclonal Antibodies by High-Performance Liquid Chromatography on Spherical Hydroxyapatite Beads. Journal of Immunological Methods. 1993, 162:201~210
    110 E. Boschetti, A.Jungbauer. Handbook of Bioseparation. San Diego: Academic Press. 2000, 2, Edn.1, p431~451
    111 A. Jungbauer, R. Hahn, K. Deinhofer, P. Luo. Performance and Characterization of A Nanophased Porous Hydroxyapatite for Protein Chromatography. Biotechnology and bioengineering. 2004, 87:364~375
    112 K. Ohta, M. Kikuchi, T. Ikoma. Mesoporous Structure and Protein Adsorption Property of C-Axis Oriented Apatite Aggregates. Key Eng. Mater, 2006, 309~311:77~80
    113 M. Inagaki, H. Nakashima, T. Saito, T. Kameyama. Protein Adsorption of Highly (001) Oriented Hydroxyapatite Coating Using Rf-Plasma Spraying. Key Engineering Materials. 2008, 361~363:705~708
    114 A. G. Leyva, J. Marrero, P. Smichowski, D. Cicerone. Sorption of Antimony onto Hydroxyapatite. Environmental Science & Technology. 2001, 35:3669~3675
    115 M. Prasad, S. Saxena. Sorption Mechanism of Some Divalent Metal Ions Onto Low-Cost Mineral Adsorbent. Industrial & Engineering Chemistry Reseach. 2004, 43:1512~1522
    116 M. Srinivasan, C. Ferraris, T. White. Cadmium and Lead Ion Capture wit Three Dimensionally Ordered Macroporous Hydroxyapatite. Environmental Science & Technology. 2006, 40:7054~7059
    117 N. C. C. D. Rocha, R. C. D. Campos, A. M. Rossi, E. L. MOoreira, A. D. F. Barbosa, G. T. Moure. Cadmium Uptake by Hydroxyapatite Synthesized in Different Conditions and Submitted to Thermal Treatment. Environmental Science & Technology. 2002, 36:1630~1635
    118 O. G. da Silva, E. C. da Silva Filho, M. G. da Fonseca, L. N. H. Arakaki, C. Airoldi. Hydroxyapatite Organofunctionalized with Silylating Agents to Heavy Cation Removal. Journal of Colloid and Interface Science. 2006, 302:485~491
    119 L. Yang, X. Ning, Q. Xiao, K. Chen, H. Zhou. Development and Characterization of Porous Silver-Incorporate Hydroxyapatite Ceramic for Separation and Elimination of Microorganisms. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2007, 81B:50~56
    120 K. Lin, J. Pan, Y. Chen, R. Cheng, X. Xua. Study the Adsorption of Phenol from Aqueous Solution on Hydroxyapatite Nanopowders. Journal of Hazardous Materials. 2009, 161:231~240
    121 D. J. Tracy, R. L. Reierson. Commercial Synthesis of Monoalkyl Phosphates.Journal of Surfactants and Detergents. 2002, 5:169~172
    122 S. B. McFarlane. The Estimation of Mono and Dialkyl Phosphate in the Presence of Phosphoric Acid and Alcohol. Journal of the American Oil Chemists' Societ. 1946, 23:337~339
    123 C. Liu, X. J. Ji, G. X. Cheng. Template Synthesis and Characterization of Highly Ordered Lamellar Hydroxyapatite. Applied Surface Science. 2007, 253: 6840~6843
    124 H. Tanaka, A. Yasukawa, K. Kandori. Modification of Calcium Hydroxyapatite Using Alkyl Phosphates. Langmuir, 1997, 13: 821~826
    125 H. S. Yun, S. E. Kim, Y. T. Hyun. Preparation of 3D Cubic Ordered Mesoporous Bioactive Glasses. Solid State Science. 2008, 10:1083~1092
    126 Y. S. Li, Y. Q. Yang, J. L. Shi. Synthesis and Characterization of Hollow Mesoporous Carbon Spheres with a Highly Ordered Bicontinuous Cubic Mesostructure. Microporous and Mesoporous Materials. 2008, 112:597~602
    127 B. J. Ravoo, J. B. F. N. Engberts. Single-Tail Phosphates Containing Branched Alkyl Chains. Synthesis and Aggregation in Water of a Novel Class of Vesicle-Forming Surfactants. Langmuir. 1994, 10: 1735~1736
    128 A. Spernath, A. Aserin, N. Garti. Fully Dilutable Microemulsions Embedded with Phospholipids and Stabilized by Short-Chain Organic Acids and Polyols. Journal of Colloid and Interface Science. 2006, 299:900~909
    129 X. Wang, J. Zhuang, Q. Peng, Y. D. Li. Liquid-Solid-Solution Synthesis of Biomedical Hydroxyapatite Nanorods. Advanced Materials. 2006, 18:2031~2034
    130 S. S. Soni, G. Brotons, M. Bellour, T. Narayanan, A. Gibaud. Journal of Physical Chemistry B. 2006, 110:15157~15165
    131 S. Mackeben, C. C. Müller-Goymann. Solubilization of Timolol Maleate in Reversed Micellar Systems: Measurement of Particle Size Using SAXS and PCS. International Journal of Pharmaceutics. 2000, 196:207~210
    132 H. L. Chen, U. S. Jeng. Polymer Nanostructures Studied by Small Angle X-Ray Scattering. Instruments Today. 1996, 29:18~28
    133 X. Lu, Y. Leng. Theoretical Analysis of Calcium Phosphate Precipitation in Simulated Body Fluid. Biomaterials. 2005, 26:1097~1108
    134 J. W. Mullin. Crystallization. Butterworth-Heinemann. 2001, 86~214
    135 G. A. Jeffrey, M. E. Gress, S. Takagi. Some Experimental Observations on H-O Hydrogen-bond Lengths in Carbohydrate Crystal Structures. Journal of the American Chemical Society. 1977, 99:609~611
    136 Y. Wang, J. Wang, H. Z. Liu. FTIR Spectroscopic Study on Effects of Temperature and Polymer Composition on the Structural Properties ofPEO-PPO-PEO Block Copolymer Micelles. Langmuir. 2002, 18:5370~5374
    137 M. Kumbhakar, T. Goel, S. Nath, T. Mukherjee, H. Pal. Microenvironment in the Corona Region of Triblock Copolymer Micelles: Temperature Dependent Solvation and Rotational Relaxation Dynamics of Coumarin Dyes. The Journal of Physical Chemistry B. 2006, 110:25646~2555
    138 R. Ganguly, N. Choudhury, V. K. Aswal, P. A. Hassan. Pluronic L64 Micelles Near Cloud Point: Investigating the Role of Micellar Growth and Interaction in Critical Concentration Fluctuation and Percolation. The Journal of Physical Chemistry B. 2009, 113:668~675
    139 M. C. Burleigh, M. A. Markowitz, E. M. Wong, J. S. Lin, B. P. Gaber. Synthesis of Periodic Mesoporous Organosilicas with Block Copolymer Templates. Chemistry of Materials. 2001, 13:4411~4412
    140 L. Sierra, S. Valange, J. Barrault, J. L. Guth. Templating Behavior of a Triblock Copolymer Surfactant with Very Long Hydrophilic PEO Chains (PEO140PPO39PEO140) for the Synthesis of Cubic Mesoporous Silica with Large Cage-like Cavities. Microporous and Mesoporous Materials. 2008,113:352~361
    141 J. G. Huddleston, H. D. Willauer, S. T. Griffin, R. D. Rogers. Aqueous Polymeric Solutions as Environmentally Benign Liquid/liquid Extraction Media. Industrial & Engineering Chemistry Reseach. 1999, 38:2523~2539
    142 H. Tani, Y. Suzuki, A. Matsuda, T. Kamidate. Enhancement of the Excluded-Volume Effect in Protein Extraction Using Triblock Copolymer-Based Aqueous Micellar Two-phase Systems. Analytica Chimica Acta 2001, 429:301~309
    143 B. Bharatiya, C. Guo, J. H. Ma, P. A. Hassan, P. Bahadur. Aggregation and Clouding Behavior of Aqueous Solution of EO-PO Block Copolymer in Presence of n-alkanols. European Polymer Journal. 2007, 43:1883~1891
    144 J. Hirschfelder, D. Stevenson, H. Eyring. A Theory of Liquid Structure, Journal of Chemical Physics. 1937, 5:896~912
    145 L. D. Schuler, P. W. Walde, P. L. Luisi, W. F. van Gunsteren. Molecular Dynamics Simulation of N-Dodecyl Phosphate Aggregate Structures. European Biophysics Journal. 2001, 30:330~343
    146刘超.模板法制备长程有序层状羟基磷灰石及其海藻酸盐基复合微球的研究.天津大学博士论文. 2004:84~91
    147 B. C. Stephenson, A. Goldsipe, K. J. Beers, D Blankschtein. Quantifying the Hydrophobic Effect. 1. A Computer Simulation-Molecular-Thermodynamic Model for the Self-Assembly of Hydrophobic and Amphiphilic Solutes inAqueous Solution. The Journal of Physical Chemistry B. 2007, 111:025~1044
    148 C. H. Evans, B. J. Drouven. The Promotion of Collagen Polymerization by Lanthanide and Calcium ions. Biochemical Journal. 1981, 195:677~684
    149 G. Helmlinger, A. Sckell, M. Dellian, N. S. Forbes, R. K. Jain Acid Production in Glycolysis-impaired Tumors Provides New Insights into Tumor Metabolism. Clinical Cancer Research. 2002, 8:1284~1291
    150 Il-S. Kim, P. N. Kumta. Sol-Gel Synthesis and Characterization of Nanostructured Hydroxyapatite Powder. Materials Science and Engineering B. 2004, 111:232~236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700