新型一体化骨与软骨组织嵌层修复材料的设计与研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软骨损伤是骨科较为常见的疾患。创伤、骨软骨炎、骨性关节炎、骸骨软化等均可引起软骨以及软骨下骨的损伤和/或缺损。由创伤和社会老龄化造成的骨与软骨的发病率不断升高,尤其是关节软骨的病变明显增多,因而在世界范围内这类患者人数众多。世界卫生组织已宣言2000-2010年是骨和关节的十年。1743年Hunter提出软骨一旦破坏即不可自身修复,两百多年过去了,至今对软骨缺损的修复仍无理想的办法。研究表明,成年人关节软骨修复能力非常有限,直径<3mm可部分或全部自修复,直径>3mm不能自修复。一系列的实验证实对较深和较大面积的关节透明软骨很难进行修复,长时间将发展成关节炎。
     在我国,创伤引起的软骨损伤每年大约影响十万人的生活;而骨关节炎的发病率约为人口的9.6%,约有1.2亿患者,每年大约有五万人需要做膝关节置换术。软骨假体置换和软骨组织工程的发展将改善人们的生活质量,并将在一定程度上减少社会医疗费用的支出。因此跟踪世界软骨工程技术的发展,并创新制造我国自主产权的软骨假体和软骨组织工程技术和产品是我国软骨工程研究必须解决的问题。
     在骨科临床治疗中,经常遇到患者同时存在骨与软骨组织的缺损,需要同时完成缺损组织的修复,单一成分的人工骨或人工软骨移植因此受到极大的挑战。本研究拟研制一种新型一体化骨与软骨损伤修复材料,设计和制备出能分别长入骨并修复或替代软骨组织的新型嵌层生物材料,该种嵌层生物材料采用多层结构,底层为适合长入骨组织的多孔n-HA/PA66复合材料,上层为能修复或替代软骨组织的PVA或n-HA/PVA复合物多孔材料,上层PVA或n-HA/PVA水凝胶牢固附着在n-HA/PA66多孔基底上。本论文主要包含的研究内容和结果如下:
Cartilage diseases caused by trauma, chondritis, arthrophlogosis and chondromalacia patella are common in department of orthopaedics. With the development of the society, defects in cartilage tissues increase dramatically in clinic because of the growth of trauma and the aging of population. Today there are millions of patients suffering from cartilage diseases throughout the world. The World Health Organization has declaimed that the 21st century is the century of bone and joint.
     Since 1743, when Hunter discovered that cartilage after being damaged cannot repair by itself, no ideal approach has been found to repair cartilage defects. According to the results of numerous researches, the self-repair ability of the arthrodial cartilage is quiet limited. Cartilage defect less than 3 mm in diameter can be partly or completely repaired by itself, while defect more than 3 mm in diameter can not be self-repaired. In the case of huge and deep defect in the arthrodial hyaline cartilage, it is very difficult to repair and after a long time would result in arthrophlogosis.
     Every year in China, 100,000 people suffer from cartilage defects caused by trauma, nearly 120 million patients, 9.6% of the population, suffer from arthrophlogosis and about 50,000 patients need to accept the implantation of knee joint. Therefore, the application of cartilage prosthesis and cartilage tissue engineering will improve the life quality of a great number of people and reduce the medical cost of the society. To catch up with the advanced science and technology of
引文
[l] Ashiku SK, Randolph MA, Vacanti CA, et al. Tissue engineered cartilage.Materials Science Forum, 1997, 250: 129-150.
    [2] Kin KW, Moran ME, Salter RB, et al. The potential of regeneration of articular cartilage in defect created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg (Am), 1991, 73(9): 1301-1315.
    [3] Convery RF, Akeson WH,Keown GH. The repair of large osteochondral defects.An experiment study in horse. Clin Orthop, 1972, 82: 253-262.
    [4] Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg, 1980, 62-A, 1, 79-89.
    [5] Kim HK, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg, 1991, 73A: 1301-1315.
    [6] Springfield DS. Massive autogenous bone grafts. Orthop Clin North Am, 1987, 18(2): 249-256.
    [7] Friedlaender GE, Manikin HJ. Transplantation of osteochondral allografts. Annu Rev Med, 1984, 35: 311-324.
    [8] Mankin HJ, Gebhardt MC, Tomford WW. The use of frozen cadaveric allografts in the management of patients with bone tumors of the extremities. Orthop Clin North Am,1987,18: 275-289.
    [9] Gatti AM, Zaffe D, Poli GP. Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects. Biomaterials, 1990, 11(6): 513-517.
    [10] Roux FX, Brasnu D, Loty B, et al. Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg, 1988, 69(4): 510-513.
    [11] Rozema FR, Bos RR, Pennings AJ, et at. Poly(L-1actide) implants in repair of defects of the orbital floor: an aninal study. J Oral Maxllofac Surg, 1990, 48 (12): 1305-1309.
    [12] Zhang YP, Gao JCh, Wang Y. The research and prospect of artificial articular material. The Review of Science and Technology, 2000, 22 (1) :47
    [13] Dowson D, Fisher J, Jim ZM, et al. Design considerations for cushion from bearings in artificial hip joints. Proc Instn Mech Engrs, 1991, 205∶59-68.
    [14] Li ShP. Biomaterial Introduction. Wuhan University of Technology Publishing Company, Wuhan, 2000, 85-250.
    [15] Stokes K, McVenes R. Polyurethane elastomer biostability. J Biomater Appl, 1995, 9:321–354.
    [16] Gu ZQ, Xiao JM, Zhang XG.. The development of artificial cartilage PVA hydrogel. Biomed Mater Eng, 1998, 8(2): 75-81.
    [17] Bentley G, Greer R, Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature, 1971: 230(5293): 385-388.
    [18] Chesterman PJ, Smith AU. Homotransplantation of articular cartilage and isolated chondrocytes. J Bone Joint Surg (Br), 1968, 50(2): 184-197.
    [19] Grande DA, Pitman MI, Peterson L, et al. The repair of expermentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res, 1989, 7(2): 208-218.
    [20] Green WT. Articular cartilage repair: behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin Orthop Relat Res, 1977, 124: 237-250.
    [21] Itay S. Abramovici A, Newo Z. Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clni Orthop, 1987, 220: 284-303.
    [22] Wakitani S, Kimura T. Hirooka A, et al. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg (Br), 1989, 71B:74-80.
    [23] Upton J, Sohn SA, Glowacki J, et al. Neocartilage derived from transplanted perichondrium: what is it? Plast Reconstr Surg, 1981, 68(2): 166-174.
    [24] Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science, 1988, 242(4886): 1528-1534.
    [25] Vacanti CA, Langer R, School B, et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plastic and Reconstr Surg, 1991, 88: 753-759.
    [26] Temenoff JS, Mikos AG. Review: Tissue engineering for regeneration of articular cartilage. Biomaterials. 2000, 21(5): 431-440.
    [27] Vacanti CA, Upton J. Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clin Plast Surg , 1994,21: 445–62.
    [28] Alsberg, E, Anderson, KW, Albeiruti A, et al. Engineering growing tissues. Proc Natl Acad Sci USA, 2002, 99(19): 12025-12030.
    [29] 马克昌. 骨生理学[M]. 北京: 高等教育出版社,2000.
    [30] 崔福斋,冯庆玲编著. 生物材料学[M]. 北京: 科学出版社,1996.11.
    [31] JC Elliott. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates,Elsevier Science RV,1994.
    [32] KA Khor, L Fu, VJP Lim, P Cheng.The effects of ZrO2 on the phase compositions of plasma sprayed HA/YSZ composite coatings. Materials Science and Engineering A276, 2000: 160-166.
    [33] 冯庆玲,崔福斋,张伟. 纳米羟基磷灰石/胶原骨修复材料,中国医学科学院学报,2002, 24(2): 124-128.
    [34] Li YB, Wei J, Klein CPAT, et al. Preparation and characterization of nanograde osteoapatite-like rod crystals. Journal of Material Science: Material in Medicine, 1994, 5(5): 252- 257.
    [35] 王学江, 汪建新, 李玉宝等. 常压下纳米级羟基磷灰石针状晶体的合成. 高技术通讯,2000(11): 92-94.
    [36] 姚晖,杨韶华,杜昶等. 纳米羟晶-胶原仿生骨修复家兔颅颌缺损的实验研究. 96 中国材料研讨会论文集,1996,3 (1): 325-327.
    [37] Itoh S, Shinomiya K, Kawauchi T. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagen composite biomaterial, and its function as a carrier of rh-BMP-2. Journal of Biomedical Materials Research, 2001, 54(3): 445-453.
    [38] Mcgee MA, Howise DW, Neale SD, et at. The role of polyethylene wears in joint replacement failure. Proc Instn Mech Engrs Part H, 1997, 211: 65-72.
    [39] Xiong DS, Ge SR. Research Status of Bio-Tribological Behaviors of UHMWPE. Journal of China University of Mining &. Technology, 1999 28(monograph): 49-52.
    [40] Wang A. Lin R, Stark C, et al. Suitability and limitations of carbon fibre reinforced PEEK composites as bearing surfaces for total joint replacements. Wear, 1999, 225-229: 724-727.
    [41] Small IA, Brown S, Kobernick SD, et al. Teflon and silastic for mandibular replacement, experimental studies and reports of cases. J Oral Surg, 1964, 22: 377-390.
    [42] Freedman GL, Gordon RL. Unilateral bony alkylosis of the temporomandibular joint: report of case. J Oral Surg, 1968, 26(12): 807-810.
    [43] Estabrooks LN, Murnane TW, Doku HC. The role of condylotomy with interpositional silicon rubber in temporomandibular joint ankylosis. Oral Surg, 1972, 34(1): 2-6.
    [44] Alpert B. Silastic Tubing for interpositional Arthroplasty. J Oral Surg 1978, 43: 153.
    [45] Moorthy AP, Finch LD. Interpositional arthroplasty for ankylosis of the temporomandibular joint. Oral Surg Oral Med Oral Path, 1983, 55: 545-551.
    [46] Gu ZQ, Xiao JM, Zhang XH. The development of artificial articular cartilage-PVA hydrogel. Biomed Mater Eng, 1998, 8(2)75-81.
    [47] Malmonge S. Artificial articular cartilage: developments and challenges. Int J Artif Organs, 2001,24(3), 119-122.
    [48] Oka M, Ushio K, Kumar P, et al. Development of artificial articular cartilage. Proc Inst Mech Eng [H], 2000, 214(1): 59-68.
    [49] Oka M, Noguchi T, Kumar P, et al. Development of an artificial articular cartilage. Clin Mater, 1990, 6(4) 361-381.
    [50] Kobayashi M, Toguchida J, Oka M. Development of an artificial meniscus using polyvinyl alcohol-hydrogel for early return to, and continuance of, athletic life in sportspersons with severe meniscus injury. I: mechanical evaluation. Knee, 2003, 10(1): 47-51.
    [51] Stammen JA, Williams S, Ku DN, et al. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials, 2001, 22(8): 799-806.
    [52] Goldsmith AA, Cift SE. Investigation into the biphasic properties of a hydrogel for use in a cushion form replacement joint, Trans ASME Journal of Biomech Eng, 1998, 120(3): 362-369.
    [53] Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels; Biomaterials, 2001, 22: 619-626.
    [54] Marijnissen WJCM, Van Osch GJVM, Aigner J, et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials, 2002, 23: 1511-1517.
    [55] Pavlansky R, SlavikM , Jirko P, et al. An attempt to replace joint cartilage using synthetic hydrogel. Orthop Traum Czech, 1986, 53( 2)∶94-102.
    [56] 顾正秋, 肖久梅, 张湘虹. 人工软骨材料-聚乙烯醇水凝胶的研制. 生物医学工程学杂志, 1999, 16 (1)∶13-18.
    [57] 翟喜成,王英振. Pluronic F-127 负载同种异体细胞修复兔全厚关节软骨缺损的实验研究. 中国矫形外科杂志,2003,11: 1053~1055.
    [58] Corkhill PH, Fitton JH, Tighe BJ. Towards a sythetic articular cartilage. J Biomater Sci Polymer Edn, 1993, 4(6)∶615-630.
    [59] Elisseeff J, Anseth K, Sims D, et al. Transdermal Photopolymerization of poly (ethylene Oxide) based injectable hydrogels for tissue engineered cartilage. Plast and Reconstr Surg, 1999, 104(4)∶1014-1022.
    [60] Bryant SJ, Anseth KS. Photocrosslinkable poly(ethylene oxide) and poly (vinyl alcohol) hydrogels for tissue engineering cartilage. In: Proceedings of the A nnual International Conference of the IEEE Engineering in Medicine and Biology. Atlanta, USA , 1999,751.
    [61] Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res, 1999,47(2)∶152-169.
    [62] Loty S, Sautier JM, Loty C, et al. Cartilage formation by fetal rat chondrocytes cultured in alginate beads: A proposed model for investigating tissue biomaterial interactions. J Biomed Mater Res, 1998,42∶213-222.
    [63] Enobakhare B, Bader D, Lee DA. Novel system for the production of chondrocyte seeded alginate constructs. In: Proceedings of the 1996 5th World Biomaterials Congress. Toronto, Can.1996, St. Louis Park, USA , 1996,905
    [64] Lindenhayn K, Perka C, Spitzer R, et al. Retention of hyaluronic acid in alginate beads: aspects for in vitro cartilage engineering. J Biomed Mater Res, 1999,44∶149-155.
    [65] Metters AT, Anseth KS, Bowman CN, et al. Fundamental studies of biodegradable hydrogels as cartilage replacement materials. Biomed Sci Instrum, 1999, 35∶33-38.
    [66] 马祖伟,高长有. 软骨组织工程用材料进展. 生物医学工程学杂志, 2001, 18 (4) : 638- 641.
    [67] Woo SK, Vacanti JP, Linda C, et al. Cartilage engineering in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plastic And Reconstructive Surgery, 1994, 94(2): 233-237.
    [68] 王常勇, 赵强, 王会信等. 同种异体兔软骨细胞体内培育组织工程化人工软骨的实验研究. 生物医学工程学杂志, 1999, 16∶132-133.
    [69] Cao YL, Vacanti JP, Paige KT, et al. Transplantation of chondrocytes utilizing a polymer cell construct to produce tissue-engineered cartilage in the shape of a human of ear. Plastic and Reconstructive Surgery, 1997, 100(2)∶297-304.
    [70] Pandit AS, Feldman DS, Caulfield J, et al. In vivo wound healing response to a modified degradable fibrin scaffold. J Biomat App, 1998, 12∶222-236.
    [71] Hutmacher DW. Polymeric Scaffolds in Tissue Engineering Bone and Cartilage. Biomaterials,2000, 21(24): 2529-2543.
    [72] Matsumoto T, Kawakami M, Kuribayashi K, et al. Effects of sintered bovine bone on cell proliferation, collagen synthesis, and osteoblastic expression in MC3T3-E1 osteoblast-like cells. J Orthop Res, 1999, 17(4) : 586-592
    [73] Lahiji A, Sohrabi A, Hungerford DS, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res, 2000, 51(4) : 586-595.
    [74] Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997, 18(8) : 583~593.
    [75] Aigner J, Tegeler J, Hutzler P, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res, 1998, 42(2): 172-181.
    [76] Buma P, Pieper JS, Van Tienen T, et al. Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects-a study in rabbits. Biomaterials,2003, 24(19) : 3255-3263.
    [77] Rodrigues CV, Serricella P, Linhares AB, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials, 2003, 24(27): 4987-4997.
    [78] Lee YM, Park YJ, Lee SJ, et al. Tissue engineered bone. formation using chitosan/tricalcium phosphate sponges. J Periodontol, 2000, 71(3): 410-417.
    [79] Puumanen KA, Ruuskanen MM, Ashammakhi N, et al. Tissue engineering of bone in muscle by using free periosteal grafts with a self-reinforced polyglycolide membranescaffold. An experimental study in growing rabbits. Eur J Plast Surg, 2003, 23(1):39-44.
    [80] Kim H, Kim HW, Suh H. Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells. Biomaterials, 2003, 24(25): 4671-4679.
    [81] Yaylaoglu MB, Yildiz C, Korkusuz F, et al. A novel tissue engineered osteochondral implant. Biomaterials, 1999, 20(16): 1513–1520.
    [82] Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 2002, 23: 4739-4751.
    [83] Kreklau B, Sittinger M, Mensing MB, et al. Tissue engineering of biphasic joint cartilage transplants. Biomaterials, 1999, 20(18): 1743-1749.
    [84] Schaefer D, Martin I, Shastri P, et al. In vitro generation of osteochondral composites. Biomaterials, 2000, 21(24) : 2599-2606.
    [85] Schaefer D, Martin I, Jundt G, et al. Tissue engineered composites for the repair of large osteochondral defects. Arthritis Rheum, 2002, 46 (9): 2524-25 34.
    [86] Isogai N, Landis WJ, Kim TH, et al. Formation of phalanges and small joints by tissue engineering. J Bone Joint Surg, 1999, 81(3) : 306–316.
    [87] 严永刚, 李玉宝, 汪建新等. 聚酰胺-66/羟基磷灰石复合材料的制备和性能研究.塑料工业, 2000, 28(3): 38-40.
    [88] 王学江, 汪建新, 李玉宝等.常压下纳米级羟基磷灰石针状晶体的合成. 高技术通讯, 2000, 11(6): 92-94.
    [89] 郭 颖, 李玉宝, 严永刚.纳米磷灰石晶体/聚酰胺 66 复合材料的制备和界面研究.四川大学学报(自然科学版), 2002, 39(3): 479-483.
    [90] 王学江, 李玉宝. 羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究. 高技术通讯, 2001, 11(5): 1-5.
    [91] Xuejiang Wang, Yubao Li, Jie Wei, et al. Development of biomimetic nano-hydroxyapatite/poly (hexamethylene adipamide) composites. Biomaterials, 2002, 23: 4787-4791.
    [92] Wei Jie, Li Yubao. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. European Polymer Journal, 2004, 40: 509-515. [93 ] 李玉宝. 纳米生物医药材料[M]. 北京:化学工业出版社, 2004,47.
    [94] Wei Jie, Li Yubao, Yan Yonggang, et al. Development of clinical cement of nanoapatite and polyamide composite. High Technology Letters, 2001, 7(4): 8-12。
    [95] 魏 杰. 纳米类骨磷灰石晶体及其与聚酰胺复合骨修复材料研究. 四川大学博士论文,2004.
    [96] 魏 杰, 李玉宝, 彭雪林等. 纳米磷灰石晶体/聚酰胺复合骨组织工程支架材料 的研究. 高技术通讯, 2004, 14(1): 47-51.
    [97] Zhang L, Li YB, Wang XJ, Wei J, Peng XL. Studies on the porous scaffold made of the nano-HA/PA66 composite. J mater sci 2005,40:107– 110.
    [98] Habib FS. Ocular delivery of pilocarpin hydrochloride from water soluble polymeric inserts. Acta Pharm Technol 1986, 32(3):133.
    [99] Donaruma IG.. Synthetic biologically active polymers. Prog Polym Sci, 1947, 4: 1.
    [100] Finch CA. (ED) Polyvinyl Alcohol Properties and Application. London, John wiley & sons Ltd.1973, 233-339.
    [101] Ringsdorf H. Structure and properties of pharmacologically active polymers J Polym Sci Polym Symp. 1975, 51, 135-153.
    [102] 宋淑华,卢英,旋化莲等. 医用硅橡胶与聚乙烯醇的细胞毒性试验.中国医学生物工程学报. 1988, 7(21):98.
    [103] 周述芳等. 聚乙烯醇〔PVA)的安全性研究. 药学通报, 1987, 10: 594.
    [104] 郑振源等. 3H-聚乙烯醇在大鼠体内吸收分布与排泄的研究.医药工业. 1986, 7: 24.
    [105] 郑裕东, 王迎军, 陈晓峰等. 聚乙烯醇/羟基磷灰石复合水凝胶软骨植入材料的研究. 生物医学工程学杂志, 2003, 20 (3)∶401- 403.
    [106] 郑裕东,王迎军,吴刚等. 生物活性聚乙烯醇/羟基磷灰石复合水凝胶的结构与性能.材料科学与工程, 2002, 20(2): 170-172.
    [107] 王迎军, 刘青, 郑裕东等. 沉淀法原位复合聚乙烯醇(PVA)/羟基磷灰石(HA) 水凝胶的结构与性能研究. 2005, 24(2): 150-153.
    [108] 卢华定, 蔡道章, 刘青等. 聚乙烯醇/羟基磷灰石复合水凝胶移植修复兔膝关节软骨缺损. 中国矫形外科杂志, 2004, 12 (21): 1701-1703.
    [109] Prokop A. Bioartificial organs in the twenty-first century. Ann New York Acad Sci, 2001, (944): 472-490.
    [110] Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-likehydroxyapatite/collagen nanocompostie synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22: 1705-1711.
    [111] 徐燕莉编著. 表面活性剂的功能[M]. 北京: 化学工业出版社,2000.
    [112] Oka M. Biomechanics and repair of articular cartilage. J Orthop Sci, 2001, 6(5):448-456.
    [113] Bavaresco VP, de Carvalho Zavaglia CA, de Carvalho Reis M, et al. Devices for use as an artificial articular surface in joint prostheses or in the repair of osteochondral defects. Artif Organs, 2000, 24(3): 202-205.
    [1] Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260: 920-926.
    [2] 陈际达, 崔 磊等. 溶剂浇铸/颗粒沥滤技术制备组织工程支架材料.中国生物工程杂志, 2003, 23(4):32-35.
    [3] Whang K, Thomas CH, Healy KE. A novel method to fabricate bioabsorbable scaffolds. Polymer, 1995, 36 (4): 837-842.
    [4] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21: 2529-2543.
    [5] Mikos AG, Bao Y, Cima LG, et al. Preparation of Poly (glycolic acid ) bonded fiber structures for cell attachment and transplantation. J Biomed Mat Res,1993, 27 :183-189.
    [6] Freed LE, Marquis JC, Nohria A, et al. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mat Res,1993, 27:11-23.
    [7] Mooney DJ, Mazzoni CL, Breuer C, et al. Stablized polyglycolic acid fiber based tubes for tissue engineering. Biomaterials, 1996,17(2) : 115-124.
    [8] Mikos AG,Sarakinos G, Vacanti JP, et al. Biocompatible Polymer Membranes and methods of preparation of three dimensional membrane structures. US5514378, 1996.
    [9] Levene HB ,Lhommeau CM, Kohn JB. Porous polymer scaffolds for tissue engineering. US6103255, 2000.
    [10] Mikos AG, Sarakinos G, Leite SM, et al. Laminated three-dimensional biodegrade- ble foams for use in tissue engineering. Biomaterials, 1993, 14 : 323-330.
    [11] Mikos AG, Thorsen AJ, Czerwonka LA, et al. Preparation and characterization of poly (L-lactic acid) foams. Polymer,1994, 35 : 1068-1077.
    [12] Mikos AG, Lyman, Freed LE, et al. Wetting of poly(L-lactic acid) and poly (D, L-lactic-co-glycolic acid) foams for tissue culture. Biomaterials, 1994, 15: 55-58.
    [13] Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electronic journal of biotechnology(EJB), 2000, 3(2) : 1-6.
    [14] Shastri VP, Martin I, Langer R. Macroporous polymer foams by hydrocarbon templating. Proceedings of the National Academy of Sciences USA, 2000, 97(5) : 1970-1975.
    [15] Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Engineering, 2001, 7 (1) : 23-33.
    [16] Murphy WL, Dennis RG, Kileny JL, et al. Salt fusion : an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Engineering, 2002, 8 (1) : 43-52.
    [17] Mooney DJ, Suh NP, Vacanti JP, et al. Novel approach to fabrication pourous sponges of poly (D, L-lactic-co-glycolic acid) without the use of organic solvents. J Biomed Mater Res, 1997, 17 (14): 1417-1422.
    [18] Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res, 1998, 42 :396-402.
    [19] Lo H, Ponticiello MS, Leong KW. Fabrication of controlled release biodegradable foams by phase separation. Tissue Engineering, 1995, 1 : 15-28.
    [20] Schugens C, Maquet V, Grandfils C, et al. Polylactide macroporous biodegradable implants for cell transplantation: preparaion of polylactide foams for liquid-liquid phase separation. J Biomed Mater Res, 1996, 30: 1970-1975.
    [21] Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials, 1999, 20: 1783-1790.
    [22] Ma PX, Zhang R. Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res, 2001, 56 : 469-477.
    [23] Whang K, Thomas CH, Healy KE. A novel method to fabricate bioabsorbable scaffolds. Polymer, 1995, 36 (4) : 837-842.
    [24] Vozzi G, Previti A, De Rossi D, et al. Microsyring Based deposition of two dimensional and three dimensional polymer scaffolds with well defined geometry for application to tissue engineering. Tissue Engineering, 2002, 8(6) :1089-1098.
    [25] Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part 2, Rapid prototyping techniques. Tissue Engineering, 2002, 8(1) : 1~11.
    [26] Mooney DJ, Baldwin DF, Suh NP, et al. Novel approach to fabricate porous sponges of poly (D, L -lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 1996, 17(14): 1417-1422.
    [27] Freyman TM, Yannas IV, Gibson LJ. Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 2001, 46: 273-282.
    [28] 吴李国, 章悦庭, 蔡禄生等.冷冻-解冻法制聚乙烯醇水凝胶研究进展. 化工新型材料,2001, 29: 18-21.
    [29] Stauffer SR and Peppas NA. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer, 1992, 33: 3932-3936.
    [30] Peppas NA , Hansen PJ. Crystallization k inetics of Po ly(vinyl Alcohol). Journal of Applied Polymer Science, 1982, 27∶ 4787.
    [31] Peppas NA , Turbidimetric studies of aqueous Poly (vinyl alcohol) solutions. Die Makromolekulare Chemie, 1975, 176∶3433.
    [32] 顾正秋, 肖久梅, 张湘虹. 人工软骨材料-聚乙烯醇水凝胶的研制. 生物医学工程学杂志, 1999, 16 (1)∶ 13-18.
    [33] 刘 青. 聚乙烯醇水凝胶及其复合物的研究与在人工软骨替代材料上的应用. 生物医学工程学杂志, 2003, 20 (4)∶ 742-745.
    [34] J 赖亚. 泡沫浮选表面化学[M]. 北京:冶金工业出版社, 1987, 262-276.
    [35] 罗渝昆, 唐 杰等. 表面活性剂类造影剂制备的实验研究. 中国医学影像学杂志, 2002, 10(5): 380-382.
    [36] 徐燕莉编著. 表面活性剂的功能[M]. 北京:化学工业出版社,2000,6.
    [37] 李 琳, 彭玉成, 陈再良. 熔融聚合物中气泡的动力学实验研究.中国塑料, 2000, 14(7): 50-54.
    [38] 李 琳, 彭玉成. 聚合物熔体与 CO2 气泡在螺旋流场中的动态特性研究.工程塑料应用, 2003, 31(5):25-27.
    [39] 梁治齐等编. 功能性表面活性剂[M]. 北京: 中国轻业出版社,2002,4.
    [40] Hyun Goo Kang, Sang Bong Lee and Young Moo Lee. Novel preparative method for porous hydrogels using overrun process. Polym Int, 2005, 54: 537–543.
    [41] 钟静芬主编. 表面活性剂在药学中的应用[M]. 北京: 人民卫生出版社,1995.
    [1] 门学虎, 李彦锋, 周林成. 聚乙烯醇载体的制备及应用研究进展. 甘肃科学学报, 2004, 16(3): 30-35.
    [2] Stammen JA, Williams S,et al. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials, 2001, 22(8): 799-806.
    [3] 姚晓明, 邓兴伟, 李玉宝, 许凤兰等. 多孔纳米羟基磷灰石-聚乙烯醇水凝胶人工角膜的实验研究. 中国实用眼科杂志, 2004, 22(8): 667-669.
    [4] 许凤兰,李玉宝,姚晓明,王学江.纳米羟基磷灰石/聚乙烯醇复合人工角膜材料.复合材料学报,2005,22(1):27-31.
    [5] 崔 岗, 周 岱, 周光熊等. 磁感应加热法应用于兔脑组织的初步研究. 苏州医学院学报, 1997,17 (3) ∶403.
    [6] Michael R. Mc Devitt, Dangshe Ma, Lawrence TL , et al. Tumor therapy with targeted atomic nanogenerators. Science, 2001, 294 (16) ∶1537-1540.
    [7] Razzak MT, Zainuddin SP, Erizal SP, Dewi SP, et al. The characterization of dressing component materials and radiation for ation of PVA /PVP hydrogel. Radiation Physics and Chemistry, 1999, 55 (1) ∶153-165.
    [8] Razzak MT, Darwis D, Zainuddin, Sukirno. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blends hydrogel for wound dressing. Radiation Physics and Chemistry, 2001, 62 (1)∶107-113.
    [9] Chou L, Marek B, Wagner WR. Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials, 1999, 20 (10) ∶977-985.
    [10] Vaz CM, Reis RL, Cunha A M. Use of coupling agents to enhance the interfacial interactions in starch EVOH-hydroxylapatite composites. Biomaterials, 2002, 23 (2) ∶629-635.
    [11] Du C, Cui FZ, Feng QL, et al. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J. Biomed. Mater. Res, 1998, 42: 540-548.
    [12] Masanori Kikuchi, Soichiro Itoh, Shizuko Ichinose, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo Biomaterials, 2001, 22: 1705-1711.
    [13] 王德志. 机械合金化和自蔓延高温合成 MoSi2 粉末的烧结工艺研究. 金属热处理,2001, 26(3): 729.
    [14] 李奎,汤爱涛. 金属基复合材料原位反应合成技术现状与展望. 重庆大学学报, 2002, 25(9): 155-160.
    [15] Lin H, Kimura M, Hanabusa K, et al. Preparation and adsorption Properties of poly(N-vinylformamide/acrylonitrile) chelating fiber for heavy metal ions. Journal of Applied Polymer Science, 2003, 87(8): 1239–1247.
    [16] 李懋强. 超细粉体的化学合成. 中国粉体技术, 2000,6 (专辑):21 -31.
    [17] 任 卫,曹献英,冯凌云等. 纳米羟基磷灰石合成及表面改性的途径和方法. 硅酸盐通报, 2002, 21(1) : 38 - 43.
    [18] Toshihiro. Hlrai.Htdetoshi. Maruganu et al. Shape memorizing properties of a hydrogel of poly(vinyl alcohol). J Appl Polym Sci.1992, 45(10), 1849-1855.
    [19] Won-Ill Cha, Suong-Hyu Hyon, Daniel Graiver, Yoshito Ikada. Sticky poly(vinyl alcohol) hydrogels. J Appl Polym Sci.1993, 47(2): 339-343.
    [20] Zhu Xiao Li(朱晓丽). Master Degree Thesis[D], South China University of Technology, 2002.
    [21] Zheng Yudong, Wang Yingjun, Chen Xiaofeng, et al. Proceedings of the 5th Asian Symposium on BiomedicalMaterials[C], Hong Kong, 2001: 327-330.
    [22] Assender HE, Windle AH. Crystallinity in poly (vinyl alcohol) computer modeling of crystal structure over a range of tacticities. Polymer, 1998, 39 : 4303-4312.
    [23] Lyoo WS, Chvalun S; Ghim HD, et al. Small angle and wide angle X - ray analyses of syndiotactic poly(vinyl alcohol) microfibrils. Macromolecular, 2001, 34 : 2615~2623.
    [24] Cho JD, Lyoo WS, Chvalun SN, et al. X - ray analysis and molecular modeling of poly(vinyl alcohol)s with different stereoregularities. Macromolecular, 1999, 32 : 6236-6241.
    [25] Tetsuya Tanigami, Yuichi Nakashima, Kazuhiro Murase, et al. High strength and high modulus poly (vinyl alcohol) by the gel ageing method. Journal of Materials Science, 1995, 30 : 5110-5120.
    [26] 许凤兰, 李玉宝, 王学江等. 纳米羟基磷灰石/聚乙烯醇复合水凝胶的制备和性能研究.功能材料, 2004, 35: 509-512.
    [27] 刘 青. 聚乙烯醇水凝胶及其复合物的研究与在人工软骨替代材料上的应用. 生物医学工程学杂志, 2003, 20 (4) :742-745.
    [28] 鲍洪杰, 何继敏. 聚丙烯改性技术的发展. 塑料科技, 2000,12(6):45~47.
    [29] 蓝立文. 高分子物理[M].西安:西北工业大学出版社,1993:143-173.
    [30] 徐燕丽编著. 表面活性剂的功能[M]. 北京:化学工业出版社, 2000, 144-156.
    
    
    
    
    
    
    
    
    
    
    [1] Wojciech Suchanek, et al. Processing and Properties of Hydroxyapatite based Biomaterials for Use as Hard Tissue Replacement implants. J Mater Res, 1998, 13 (1): 94-117.
    [2] Li Yubao, et al. An important aspect of biphasic calcium phosphate bioceramics: formation of bone in nonosseous tissues, ed. An Academic Pers B V Amsterdam, 1994,35 - 45.
    [3] Li Yubao, et al. The influence of Multiphase Calcium Phosphate Bioceramics on Bone Formation in Nonosseous Tissues. Trans. of the 19th Annual Meeting of SFB. USA, 1993. 165.
    [4] Yuan Huipin, Li Yubao, de Groot K, et al. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials, 2000, 21(12): 1283-1290.
    [5] Yuan Huipin, de Bruijn, Li Yubao, et al. 1-6 Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous a-TCP and β-TCP. J Mater Sci: Mater in Med, 2001, 12 (1): 7-13.
    [6] Wang Xuejiang, Li Yubao, Yan Yonggang, et al. Development of Biomimetic Composites of Nano-hydroxyapatite and Polyamide as a bone substitute. Chinese Journal of Biomedical Engineering, 2001, 10: 199-203.
    [7] 严永刚, 李玉宝, 汪建新等. 聚酰胺-66/羟基磷灰石复合材料的制备和性能研究. 塑料工业, 2000, 28(3): 38-40.
    [8] 王学江, 汪建新, 李玉宝等.常压下纳米级羟基磷灰石针状晶体的合成.高技术通讯,2000,11(6): 92-94.
    [9] 郭 颖, 李玉宝, 严永刚.纳米磷灰石晶体/ 聚酰胺 66 复合材料的制备和界面研究. 四川大学学报(自然科学版), 2002, 39(3): 479-483.
    [10] 王学江,李玉宝. 羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯, 2001, 11(5): 1-5.
    [11] Xuejiang Wang, Yubao Li, Jie Wei, et al. Development of biomimetic nano-hydroxyapatite/poly (hexamethylene adipamide) composites. Biomaterials, 2002, 23: 4787-4791.
    [12] Wei Jie, Li Yubao. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. European Polymer Journal, 2004, 40: 509-515.
    [13] 李玉宝. 纳米生物医药材料. 北京:化学工业出版社,2004,47.
    [14] Levene HB, Lhommeau CM, Kohn JB. Porous polymer scaffolds for tissue engineering. US6103255, 2000.
    [15] 昌塔尔·E·霍利, 莫莉·S·绍伊切特,约翰·E·戴维斯. 可生物降解的聚合物支架. CN1285757A.
    [16] Chen G, Ushida T, Tateishi T. Preparation of and poly (DL-lactic-co-glycolic acid) foams by use ice microparticulates. Biomaterials, 2001, 22(18): 2563-2567.
    [17] Groot JH , Zijlstra FM, Kuipers HW, et al. Meniscal tissue regeneration in porous 50/50 copoly ( L-lactic/ε-caprolactone ) implants. Biomaterials, 1997, 18: 613-622.
    [18] Nam YS, Yoon JJ, Park TG.. A novel fabrication method of macroporous biodegradablr polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 2000, 53: 1-7.
    [19] 尹准镇,朴泰宽.生物相容的支架的制备方法及由该方法制备的支架. CN1297042A, 2001.
    [20] Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Engineering, 2001, 7(1): 23-33.
    [21] Murphy WL, Dennis RG, Kileny JL, et al. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Engineering, 2002, 8(1): 43-52.
    [22] Li Yubao, de Grot K, et al. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. J Mater Sci: Mater in Med, 1994, (5): 326-331.
    [23] 乔放, 李强,漆宗能等. 聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究. 高分子通报,1997, 9(3): 135-145.
    [25] 陈艳, 王新宇,高宗明等. 聚酰亚胺/二氧化硅纳米尺度复合材料的研究. 高分子学报,1997, 2(1): 73-77.
    [26] 董炎明.高分子材料实用剖析技术.北京:中国石化出版社, 1998, 162-163.
    [27] Liu Qing, de Wijin Joost R, de Groot Klaas, et al. Surface modification of nano-apatite by grafting organic polymer. Biomaterials, 1998, 19: 1067-1072.
    [28] John L. Meyer; Bruce O. Fowler. Lattice Defects in Nonstoichiometric Calcium Hydroxylapatites. A Chemical Approach. Inorg. Chem, 1982, 21: 3029-3035.
    [29] 张 翔,李玉宝, 吕国玉等. n-HA/PA66 复合材料中两相间作用机理研究.功能材料,2005,36(6):896-899.
    [30] 左 奕,李玉宝,魏 杰等. n-HA/ PA 系列生物医用复合材料的制备与表征. 功能材料,2004,35(4):513-516.
    [31] 陈际达,崔 磊,刘 伟,曹谊林. 溶剂浇铸/颗粒沥滤技术制备组织工程支架材料. 中国生物工程杂志, 2003,23(4):32-35.
    [32] 傅文斌.精细石油化工,1990, (6):29-32.
    [33] 成四喜,骆有寿.日用化学工业,1989, 33(2):33-36.
    [34] 崔英德,易国斌,廖列文. 聚乙烯吡咯烷酮的合成与运用.北京: 科学出版社,2002.
    [35] Green D, Walsh D, Mann S, et al. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone, 2002, 30(6): 810-815.
    [1] JB Park, RS, Lakes. Biomaterials:an introduction. Plenom Press, New York, 1992.
    [2] JB Lack. Biological Performance of Materlals. Marcel Dekker, Inc. 1992.
    [3] FH Silver. Biomaterials, Medical Devices and Tissue Engineering: An integrated approach. Chapman and Hall, 1994.
    [4] JQ Zhang, XZ Zhang, ZT Guo, HD Li, Comparison of Wear Resistance of ion implantation Surgical Ti6Al4V with Other Alloys.MRS Symp. Proc, 1986, 55: 229.
    [5] J Zhao, HQ Gu, XZ Zhang. A Surface Study of Medical Silicone Rubber by Ion Beam Bombardment in Biomaterials.ed. by HD Li, et al. Elsevier Sci. Publisher B. V. Amsterdam, 1991, 453.
    [6] 白新德, 范玉殿. 金属腐蚀理沦及应用: 表面工程与维修,第二章.徐宾上主编[M]. 北京:机械工业出版社,1996.
    [7] XF Zhang, et al. The Effect of Some Medical Treatment of Thalassemia on the Red Blood Cells. Hyperfine Interaction 1992, 71: 1241.
    [8] 尹玉姬,许美萱,陈秀兰,姚康德.壳聚糖/明胶网络聚合物微球药物释放行为的研究. 科学通报, 1995, 40(24): 2241.
    [9] 曾慧慧, 卢景芬, 王夔. 肌动蛋白的长度调整及铂配合物对其影响的研究. 科学通报, 1995, 40(10): 958.
    [10] 王海林, 徐大元, 张诗虎等. 短碳纤维增强 PMMA 颅骨板材的研制和临床应用.中华神经外科杂志, 1993,9(5): 295.
    [11] ZX Song, HF Sun, XD Feng. Microspheres of Biodegradable Block Copotroceptives. Polymer, 1987, 9: 486.
    [12] 吴增树, 李国光, 王定国编. 生物材料毒理学及应用[M]. 成都:成都科技大学出版社,1988.
    [13] 陈治清主编.最新口腔材料学[M]. 成都:四川科技出版社,1989.
    [14] 奚廷斐等译. ASTM 标准年鉴:医用装置标准[M].美国材料实验协会编.13 卷,成都:成都科技大学出版社,1988.
    [15] 卢颂庭,翁铭庆主编.生物医学工程的基础与临床[M]. 天津:天津科技出版社,1988.
    [1] 顾正秋,肖久梅,张湘虹. 人工软骨材料-聚乙烯醇水凝胶的研制. 生物医学工程学杂志, 1999, 16(1): 13-18.
    [2] Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full -thickness defects of articular cartilage. J Bone Joint Surg(Am), 1993, 75: 532-553.
    [3] Kim HK. Moran ME. Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion: an experimental investigation in rabbits. J Bone Joint Surg(Am), 1991,73: 1301-1315.
    [4] Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg(Am), 1994, 76: 579-592.
    [5] Adachi N, Sato K, Usas A, et al. Muscle derived, cell based ex vivo gene therapy for treatment of full thickness artecular cartilage detects. J Rheumatol, 2002, 29: 1920-1930.
    [6] Huang JI. Beanes SR. Zhu M. et al. Rat extramedullary-adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg, 2002, 109: 1033-1041.
    [7] Pittenger MF. Mackay AM. Beck SC, et al. Multilineage potential of adult human mescenchymal stem cells. Science, 1999, 284: 143-147.
    [8] Nakajima H, Goto T, Horikawa O, et al. Characterization of the cells in the repair tissue of full-thickness articular cartilage defects. Histochern Cell Biol, 1998, 109: 331-338.
    [9] Olmez U, Ryan LM, Kurup IV, et al. Insulin-like growth factor-1 suppresses pyrophosphate elaboration by transforming growth factor beta 1-stimulated chondrocytes and cartilage.Osteoarthritis Cartilage, 1994, 2: 149-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700