纳米羟基磷灰石增强聚酰胺66骨修复复合材料的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于羟基磷灰石(Hydroxyapatite,HA,化学式为Ca_(10)(PO_4)_6(OH)_2)具有与人骨中主要无机矿物相相似的化学组成和结构,多年来一直被用作整形外科和牙科的植入材料。羟基磷灰石能诱导新骨的形成,并能与周围骨组织形成牢固的键合。然而,羟基磷灰石的低断裂强度,限制了它不能用作承重部位的骨修复材料。因此,开发和研制具有良好的力学性能和优异的生物活性与生物相容性的复合生物材料,以满足人体硬组织修复的需要,一直是生物医学工程领域研究的热点和难点问题。对于生物活性复合材料而言,常常是采用常规的塑料加工工艺,将生物陶瓷用来增强聚合物基体来制备。
     纳米羟基磷灰石(Nano-hydroxyapatite,n-HA)增强聚酰胺66(Polyamide 66,PA66)复合材料(n-HA/PA66)是李玉宝等人近年来研发的一种新型的,可用于承重部位骨修复的复合生物材料。该复合材料中,羟基磷灰石可以以纳米尺寸分布在聚合物基体中,且羟基磷灰石的含量可达到65wt%。n-HA含量为62.5wt%的该复合材料的弯曲强度,拉伸强度和压缩强度分别可达到95,79和117MPa,而人骨的弯曲强度,拉伸强度和压缩强度分别80-100,60-120,50-140MPa,由此可见这些结果与人骨的力学性能很接近。此外,该复合材料的弹性模量为5.6GPa,也在自然骨的弹性模量(3-25GPa)范围之内。而其它一些生物材料,如生物陶瓷和
Hydroxyapatite (HA, Ca_(10)(PO_4)_6(OH)_2) has been used for orthopedic/dental implants by its similar chemical composition and structure to the mineral phase of human bone, and it can promote sufficient new bone formation for the firm attachment of juxtaposed bone. However, duing to low fracture toughness, HA cannot serve as a bulk implant material under the high physiological loading condition. Therefore, development of biocomposites with good mechanical property, excellent bioactivity and biocompatibility similar to natural bone to meet the need of hard tissue repair has been a hot topic for over thirty years. To obtain an advanced mechanical performance of the bioactive composite, bioceramic particles were usually incorporated into the polymer matrix using conventional plastics processing technology.
    Nano hydroxyapatite (n-HA) reinforced polyamide 66 (PA66) (n-HA/PA66) biocomposites for load bearing bone repair were firstly prepared by a group leaded by Yubao Li. In the composite, HA crystals can keep their nano grade dispersion in the PA66 matrix and the content of n-HA can reach 65wt%. The bending strength, tensile strength and compressive strength of the composite with 64.25 wt% n-HA are 95, 79 and 117MPa, respectively, which are close to the natural bone (80-100, 60-120, 50-140MPa separately), and the elastic modulus of this composite is 5.6GPa. However, the elastic modulus of bioceramics and medical metals are much higher (70-300GPa) than that of the natural bone (3-25GPa) and thus often cause stress stimulation or shielding effect, resulting in bone resorption and loosening of implants. Therefore, the mechanical
引文
[1] 科技部国家材料领域生物医用材料中长期科技发展战略研究报告,李玉宝,俞跃庭,奚延斐,孙福玉撰写,2004年.
    [2] Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials 24 (2003): 2133-2151.
    [3] Cao W P, Hench L L. Bioactive materials. Ceramics International 22 (1996): 493-507.
    [4] Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 24 (2003): 2161-2175.
    [5] Seal B L, Otero T C, Panitch A. Polymeric biomatedals for tissue and organ regeneration: review. Materials Science and Engineering R 34 (2001): 147-230.
    [6] 曹文灵,陈际达,王远亮,潘君.骨修复材料的研究进展.国外医学生物医学工程分册.2000;23(5):309-311.
    [7] 郭颖,李玉宝.骨修复材料的研究进展.科技前沿与学术评论.23(1):33-38.
    [8] 陈亦平,宋雪峰,曹德勇,尹玉姬,姚康德.骨修复材料研究进展.化工进展.2003;22(7):673-677.
    [9] 王小红,马建标,王亦农,何炳林.骨修复材料的研究进展.生物医学工程学杂志.2001;18(4):647-652.
    [10] Ramakrishna S, Mayer J, Wintermantel E, Leong K W. Biomedical application of polymer-composite materials: a review. Composite Science and Technology 61 (2001): 1189-1224.
    [11] Tancred D C, Carr A J, Mccormack B A O. Development of a new synthetic bone graft. J Mater Sci: Mater Med, 1998 (10): 819-823.
    [12] Perry C R. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop,1999 (360): 68-71.
    [13] Bauer T W, Muschler G F. Bone graft materials: an overview of the basic science [J]. Clin Orthop, 2000(371): 10-27.
    [14] Veis A, editor. The chemistry and biology of mineralized connective tissues. Elsevier; 1981, p. 618.
    [15] 中国医科大学 主编.人体解剖学.人民卫生出版社.1978.
    [16] Weaver J K, The microscopic hardness of bone, J. Bone Joint Surg.,48A, 273,1996.
    [17] Pugh J W, Rose R M, and Radin E L, A structural model for the mechanical behavior of bone trabecular, J.Biomech., 6, 657, 1973.
    [18] Runkle J C and Pugh J. The micro-mechanics of cancellous bone, Bull.Hosp.J.Dis.,36,2,1975.
    
    [19] Townsend P R, Rose R M, and Radin E L. Buckling studies if single human trabeculae, J.Biomech., 8, 199, 1975.
    [20] Williams J L and Lewis J L, Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis, J.Biomech.Eng., 104, 50, 1982.
    [21] Beaupre G S, and Hayes W C, Finite element analysis of three-dimensional open-celled model for trabecular bone, J.Biomech.Eng., 107, 249, 1985.
    [22] Ashman R B, and Rho J Y, Elastic modulus of trabeculer bone material, J.Biomech., 21,177, 1988.
    [23] Kuhn J L, Goldstein S A, Choi K, London M, Feldkamp L A, and Matthews L S, Comparison of the trabucular and cortical tissue moduli from human iliac crests, J.Orthop.Res.,7,876,1989.
    [24] Mente P L and Lewis J L, Experimental method for measurement of the elastic modulus of trabecular bone tissue, J.Orthop.Res.,7,456,1989.
    [25] Jensen K S, and Mosekilde L, A model of vertebral trabecular bone architecture and its mechanical properties, Bone,11,417,1990.
    [26] Choi K, Kuhn J L, Ciarelli M J, and Goldstein S A, The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus, J.Biomech., 23,1103,1990.
    [27] Choi K, and Goldstein S A, A comparison of the fatigue behavior of human trabecular and cortical bone tissue, J.Biomech., 25,1371, 1992.
    [28] Rho J Y, Ashman R B, and Turner C H, Young's modulus of trabecular and cortical material: ultrasonic and microtensile measurements, J.Biomech., 26, 111, 1993.
    [29] Shieh S-J, Govind S, Gudipaty K, Subramanian R, and Grimm M J, High resolution ultrasonic measurements of the material properties of cortical and trabecular in the human vertebrae, in 1995 Bioengineering Conference, BED-Vol. 29, Hochmuth RM, Langrana N A and Hefzy MS, Eds., ASME, 1995, 413.
    [30] Ko C-C, Douglas W H, and Cheng Y-S, Intrinsic mechanical competence of cortical and trabecular bone measured by nanoindentation and microindentation probes, in 1995 ASME Bioengineering Conference, BED-Vol.29, Hochmuth RM, Langrana NA and Hefzy MS, Eds., ASME, 1995, 415.
    [31] Rho J Y, Tsui T Y, and Pharr G M, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, 18, 1325, 1997.
    [32] Turner C H, Takano Y, Tsui T Y, and Pharr G M, The elastic properties of trabecular and cortical bone tissue are similar: results from two microscopic measurement techniques, J. Biomech., 32, 437, 1999.
    [33] Zysset P K, Guo X E, Hoffler C E, Moore K E, and Goldstein S A, Mechanical properties of human trabecular bone lammelae quantified by nanoindentation, Technol. Health Care,6,429, 1998.
    [34] Zysset P K, Guo X E, Hoffler C E, Moore K E, and Goldstein S A, Elastic modulus and hardness of cortical and trabecular bone lammelae measured by nanoindentation in the human femur, J.Biomech., 32, 1005, 1999.
    [35] Hou F J, Lang S M, Hoshaw S J, Reimann D A, and Hyhrie D P, Human vertebral body apparent and hard tissue stiffness, J.Biomech., 31, 1009, 1998.
    [36] Ladd A J C, Kinney J H, Haupt D L, and Goldstein S A, Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus, J.Orthop.Res., 16,622,1998.
    [37] Riemer B A, Eadie J S, Wenzel T E, Weissman D E, Guo X E, and Goldstein S A, Microstructure and material property variations in compact and trabecular vertebral bone tissue, in 41st Annual Meeting of Orthopaedic Research Society, Vol.2,ORS,1995,529.
    [38] Bonfield W. Materials for the replacement of osteoarthritic hip joints. Met Mater 1987;3:712-6.
    [39] Evans F G, Mechanical Properties of Bone, Charles C Thomas, Springfield, IL, 1973.
    [40] Dempster W T, Liddicoat R, Compact bone as a non-isotropic material, Am. J. Anat., 91, 331-362, 1952.
    [41] Evans F G, Lebow M, Regional differences in some of physical properties of the human femur, J, Appl. Physiol., 3, 563-572, 1951.
    [42] Broz J J, Simske S J, Greenberg A R, Luttges M W. Effects of rehydration state on the flexural properties of whole long bones, J. Biomech. Eng., 115, 447-449, 1993.
    [43] Currey J D. The effects of drying and re-wetting on some mechanical properties of cortical bone, J. Biomech., 21, 439-441, 1998.
    [44] Ashman R B, Ultrasonic determination of the elastic properties of cortical bone: techniques and limitations, Ph. D. thesis; Tulane University, New Orleans, LA, 1982.
    [45] Bonfield W, Tully A E, Ultrasonic analysis of the Young's modulus of cortical bone, J. Biomed.Eng.,4,23-27,1982.
    [46] Bonfield W, Li C H, The temperature dependence of deformation of bone, J. Biomed.Eng.,1,323-329,1968.
    [47] Lakes R S, Katz J L, Sternstein S S, Viscoelastic properties of wet cortical bone-I. Torsional and biaxial studies, J. Biomech., 12,657-678,1979.
    [48] Park H C, Lakes RS, Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent, J. Biomech., 19, 385-397, 1986.
    [49] Carter D R, Hayes W C, The compressive behavior of bone as a two-phase porous structure, J.Bone Joint Surg., 59-A, 954-962, 1977.
    [50] Rubin C T, Lanyon L E, Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog, J.Exp.Biol., 101, 187-211, 1982.
    [51] Lanyon L E, Hampson W G J, Goodship A E, and Shah J S. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft, Acta Orthop. Scand., 46, 256, 1975.
    [52] Burr D B, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E and Simkin A, In vivo measurement of human tibial strains during vigorous activity, Bone, 18, 405, 1996.
    [53] Aamodt A, Lund-Larsen J, Eine J, Andersen E, Benum P, and Schnell Husby O, In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur, J. Orthop. Res., 15, 927, 1997.
    [54] 材料科学技术百科全书.北京:中国大百科全书出版社,1993,927-928。
    [55] 顾汉卿,徐国风.生物医学材料学.天津:科学技术出版社,1993,361-362.
    [56] Cowin S C. Bone mechanics handbook(Second Edition). CRC Press, 2001.
    [57] 王慧明.四种骨替代材料的人成骨细胞生物相容性研究.中国生物医学工程学报,1996,15(3):239-244.
    [58] Richardson M W. Polymer Engineering Composites. London: Applied Science Publishers. Ltd, 1977.5.
    [59] Holliday L. Composite Materials. Eliever, 1966.
    [60] 胡振谓,王兴业.国防科技大学学报,1984,(2):121.
    [61] 师昌绪 主编.材料大辞典.北京:化学工业出版社,1994,244.
    [62] 沃丁柱 主编.复合材料大全.北京:化学工业出版社,2000,1。
    [63] Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N. Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc, 1992, 75: 2094.
    [64] Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N. Apatite formation induced by silica gel in a simulated body fluid. J Biomed Mater Res, 1994, 28: 7.
    [65] Miyazaki T. in Bioceramics 11, LeGeros R Z, LeG-eros J P. ed, World Sci, Singapore, 1998.
    [66] Uchida M. in Bioceramics 11, LeGeros R Z, LeGeros J P. ed, World Sci, Singapore, 1998.
    [67] Tanahashi M, Matsuda T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res, 1997, 34: 305.
    [68] Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, Yamamura T. Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc, 1994, 77: 2805.
    [69] Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, Yamamura T. Apatite coated on organic polymers by biomimetic process: Improvement in its adhesion to substrate by glow-discharge treatment. J Biomed Mater Res, 1995, 29:349.
    [70] Kikuchi M, Ito S, Tanaka J. Sixth World Biomaterials Congress Transactions 2000, vol (2),613.
    [71] Wang M, Porter D, Bonfield W. Processing, characterisation, and evaluation of hydroxyapatite reinforced polyethylene composites. Br Ceram Trans 1994;93:91-5.
    [72] Wang M, Bonfield W. Processing of highly filled polyethylene for medical applications. Polymer Processing Towards AD2000, Singapore: Singapore University Press, 1996. p. 203-4.
    [73] Callister Jr WD. Materials science and engineering: an introduction,4th ed. New York: Wiley, 1997.
    [74] Wang M, Bonfield W. HAPEX for otologic implants— manufacture, structure and properties. IRC Report to Smith & Nephew Richards Inc., IRC in Biomedical Materials, London, UK: University of London, 1995.
    [75] Clarke KI, Graves SE, Wong AT-C, Triffitt JT, Francis MJO, Czernuszka JT. Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate. J Mater Sci: Mater Med 1993; 4:107-10.
    [76] Wang M, Weng J, Poret K. Manufacture and characterization of biodegradable composites consisting of bioceramics and chitin. Proceedings of the 13th International Conference on Composite Materials (ICCM-13), Beijing, China, 2001. Paper 1547.
    [77] Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Selforganization mechanism in a bone-like hydroxyapatite/collagen nanocomposites synthesized in vitro and its biological reaction in vivo. Biomaterials 2001;22:1705-11.
    [78] Taurio R, Tormala P. Coral based and sintered hydroxyapatite blocks reinforced with fibrous cage-like polylactide composite: a comparative study. Bioceramics 1991;4:287-94.
    [79] Wang M, Bonfield W, Hench LL. Bioglasss/high density polyethylene composite as a new soft tissue bonding material. Bioceramics 1995;8:383-8.
    [80] Wang M, Kokubo T, Bonfield W. A-W glass-ceramic reinforced polyethylene composite for medical applications. Bioceramics 1996;9:387-90.
    [81] Reis RL, Cunha AM, Ferdandez MH, Correia RN. Bioinert and biodegradable polymeric matrix composites filled with bioactive SiO_2-3CaO·PO-MgO glasses and glass-ceramics. Bioceramics 1997;10:415-8.
    [82] Chua B, Wang M. Hydroxyapatite reinforced polysulfone composites for potential medical applications. Materials Research Society Symposium Proceedings 599: Mineralization in Natural and Synthetic Biomaterials, Boston, MA, USA, 1999. p. 45-50.
    [83] Abu Bakar MM, Cheang P, Khor KA. Thermal processing of hydroxyapatite reinforced polyetheretherketone composites. J Mater Process Technol 1999;89-90:462-6.
    [84] Wang M, Weng J, Goh CH, Ni J, Wang CX. Developing tricalcium phosphate/polyhydroxybutyrate composite as a new biodegradable material for clinical applications. Bioceramics 2000; 13: 741-4.
    [85] Sousa RA, Reis RL, Cunha AM, Bevis MJ. Structure and properties of hydroxylapatite reinforced starch bone-analogue composites. Bioceramics 2000; 13:669-72.
    [86] Wang M, Wang CX, Weng J, Ni J, Quek PY. Production and evaluation of biodegradable hydroxyapatite/polyhydroxy butyrate composite. Proceedings of the 10th International Conference on Biomedical Engineering, Singapore, 2000. p. 545-6.
    [87] Wang M, ladizesky NH, Ward IM, Bonfield W. Hydrostatic extrusion of hydroxyapatite-polyethylene composites for enhanced performance. Proceedings of the Sixth International Conference on Processing and Fabrication of Advanced Materials, vol. 2, Singapore, 1997. p. 1729-39.
    [88] Ladizesky NH, Pirhonen EM, Appleyard DB, Ward IM, Bonfield W. Fibre reinforcement of ceramic/polymer composites for a major load-bearing bone substitute material. Composites Sci Technol 1998;58:419-34.
    [89] Stamboulis A, Hench LL. Bioresorbable polymers: their potential as scaffolds for Bioglasss composites. Bioceramics 2000;13:729-32.
    [90] Tang F. Production and evaluation of hydroxyapatite-polyethylene composites for tissue replacement. ME thesis, Nanyang Technological University, Singapore, 2000.
    [91] Wang M, Joseph R, Bonfield W. Hydroxyapatite-high density polyethylene composites: effect of ceramic particle size and morphology. Biomaterials 1998; 19:2357-66.
    [92] Weng J, Wang M. Producing chitin scaffolds with controlled pore size and interconnectivity for tissue engineering. J Mater Sci Lett 2001 ;20:1401-3.
    [93] Wang M, Chen LJ, Ni J, Weng J, Yue CY. Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering. J Mater Sci Mater Med2001;12:855-60.
    [94] Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 1981; 157:259-278.
    
    [95] Hench LL, Wilson J. Surface-active biomaterials. Science 1984; 226:630-636.
    [96] Chiroff R T, White E W, Weber J N, Roy D M. Tissue ingrowth or replamineform implants. J Biomed Mater Res 1975; 9:29-45
    [97] Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17(1996)31-35.
    [98]Tracy B M, Doremus R H. Direct electron microscopy studies of the bone - hydroxylapatite interface. J Biomed Mater Res, 1984, 18:719.
    [99] Li YB, Zhang X D, Chen W Q. Transactions of the 19th Annual Meeting of Society for Biomaterials, 1993,165.
    [100] Klein C, de Groot K, Chen W Q, Li YB, Zhang XD. Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues. Biomaterials, 1994,15:31.
    [101] Verheyen C C P M, de Wijn J R, van Blitterswijk C A, Rozing P M, de Groot K. Examination of efferent lymph nodes after 2 years of trans-cortical implantation of poly(L-lactide) containing plugs: A case report. J Biomed Mater Res, 1993, 27:433.
    [102] Verheyen C C P M, Klein C P A T, de Blieck, Hogervorst J M A, et al. J Mater Sci, Mater Med,1993,4:58.
    [103] Liu Q, de Wijn J R, Bakker D, van Blitterswijk C A. Surface modification of hydroxyapatite to introduce interfacial bonding with polyactive~(TM) 70/30 in a biodegradable composite. J Mater Sci, Mater Med, 1996,7:551.
    [104] Kikuchi M, Suetsugu Y, Tanaka J. Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J Mater Sci, Mater Med, 1997, 8:361.
    [105] Banks E, Nakajima S, Shapiro L C. Fibrous apatite grown on modified collagen[J]. Science, 1997,198:1164-1166.
    [106] Tenhuisen K S, Martin R I, Klimkiewicz M, Brown P W. Formation and properties of a synthetic bone composite: Hydroxyapatite-collagen. J Biomed Mater Res, 1995, 29:803.
    [107] Chang M C. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as crosslinkage agent[J]. J Mater Sci,2001,20:1199-1201.
    [108] Urist M R. Clin. Orthop, 1984, 187:227.
    [109] Ripamonfill L L, Heever B, Ma S S, et al. Plast Reconstr Surg, 1992, 89:731.
    [110] Ripamontill L L, Ma S S, Heever B, et al. Plast Reconstr Surg, 1992, 90:381.
    [111] Sasaki N, Umeda H, Okada S, Kojima R, Fukuda A. Mechanical properties of hydroxyapatite-reinforced gelatin as a model system of bone. Biomaterials, 1989, 10:129.
    [112] 高寿延,刘稚萍,张佑良,等中华医学杂志,1989,44:299.
    [113] 肖建德,朱通伯,杜靖远,等中华骨科杂志,1988,8:222.
    [114] Katthagen B D, Arch Orthop Trauma Surg, 1984, 103:291.
    [115] Pachence J M, Kohn J. Biodegradable polymers. In: Lanza RP, Langer R, Vacanti J, editors. Principles of tissue engineering. 2nd ed. San Diego: Academic Press, 2000.
    [116] Basset D C, editor. Development in crystalline polymers—2. London: Elsevier, 1988.
    [117] Wang M, Wang C X, Weng J, Ni J. Developing biodegradable composites using polyhydroxybutyrate and its co-polymer. Transactions of the Sixth World Biomaterials Congress, Hawaii, USA, 2000. p. 81.
    
    [118] Wang M, Ni J, Weng J. In vitro bioactivity and mechanical performance of tricalcium phosphate/polyhydroxybutyrate composites. Bioceramics 2001; 14:429-32.
    
    [119] Weng J, Wang M. In vitro formation of bone-like apatite on the surface of solution-cast partially crystalline hydroxyapatite/chitin composite. Bioceramics 2000;13: 657-60.
    
    [120] Tang F. Production and evaluation of hydroxyapatite-polyethylene composites for tissue replacement. ME thesis, Nanyang Technological University, Singapore, 2000.
    [121] Bonfield W, Bowman J A, Grynpas M D. Prosthesis comprising composite material. UK Patent GB 2085461B, UK, 1984.
    
    [122] Bonfield W, Grynpas M D, Tully A E, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials, 1981; 2:185-6.
    
    [123] Swain R E, Beale B. HAPEX~(TM): a bioactive hydroxylapatite/polyethylene composite suitable for otologic applications.Memphis, TN, USA: Monograph, Medical Specialties Division,Smith & Nephew Richards, 1995.
    
    [124] Bonfield W, Doyle C, Tanner K E. In vivo evaluation of hydroxyapatite reinforced polyethylene composites. In: Christel P, Meunier A, Lee AJC, editors. Biological and biomechanical performance of biomaterials. Amsterdam: Elsevier Science, 1986. p. 153-8.
    
    [125] Wang M, Ward I M, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of hydrostatic extrusion. Proceedings of the 11 th International Conference on Composite Materials (ICCM-11), vol. 1, Gold Coast, Australia, 1997. p. 488-95.
    
    [126] Ladizesky N H, Ward I M, Bonfield W. Hydrostatic extrusion of polyethylene filled with hydroxyapatite. Polym Adv Technol 1997,8:496.
    [127] Wang M, Ladizesky N H, Tanner K E, Ward I M, Bonfield W. Hydrostatically extruded HAPEXTM. J Mater Sci 2000;35:1023.
    
    [128] Wang M, Deb S, Tanner K E, Bonfield W. Hydroxyapatitepolyethylene composites for bone substitution: effects of silanation and polymer grafting. Proceedings of the Seventh European Conference on Composite Materials (ECCM-7), vol.2, London, UK, 1996. p. 455-60.
    
    [129] Wang M, Deb S, Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites: processing and characterization. Mater Lett 2000;44:119-24.
    [130] Xuejiang Wang, Yubao Li, Jie Wei, Klass de Groot. Development of Biomimetic Nano-hydroxyapatite/Poly(hexamethylene adipamide) Composites[J]. Biomaterials, 2002, 23: 4787-4791.
    [131] Wei Jie, Li Yubao, Chen Weiqun, Zuo Yi. A study on nano-composite of hydroxyapatite and polyamide. J Mater Sci, 2003; 3303-3306.
    [132] Wei Jie, Li Yubao. Tissue Engineering Scaffold Material of Nano-apatite Crystals and Polyamide Composite [J]. European Polymer Journal, 2004,40: 509-515.
    [133] Wang M, Yue C Y, Chua B, Kan L C. Hydroxyapatite reinforced polysulfone as a new biomaterial for tissue replacement. Bioceramics 1999; 12:401-4.
    [134] Chandrasekaran M, Wang M, Yue C Y. Tribological properties of HA/PSU composite against the Ti-6A1-4V counterface in various testing conditions. Proceedings of the 10th International Conference on Biomedical Engineering, Singapore, 2000. p. 257-8.
    
    [135] Wang M, Yue CY, Chua B. Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. J Mater Sci: Mater Med 2001; 12:821-6.
    [136] Wang M, Chua B. Fatigue performance of a bioactive composite developed for hard tissue replacement. Bioceramics 2002;15:935-8.
    [137] Zide M F, Kent J N, Muchado L. Hydroxylapatite cranioplasty directly over dura[J ]. J Oral Maxillofac Surg , 1987,45:481-486.
    [138] Kent J N, Zide M F and Kay J F. Hydroxylapatite block and particles as bone graft substitutes in orthognathic and reconstructive surgery[J]. J Oral Maxillofac Surg, 1986,44:597.
    [139] Block M, Kent J N, Ardoin R C, et al. Mandibular augmentation in dogs with hydroxylapatite combined with demineralizedbone[J]. J Oral Maxillofac Surg, 1987, 45:414.
    [140] Alper G, Bernick S, Yazdi M, et al. Osteogenesis in bone defects in rats: the effects of hydroxylapatite and demineralized bone matrix[J]. Am J Med Sci, 1989,298:371.
    [141] Ducheyne P, et al. Ctin Orthop Rel Res, 1992,102.
    [142] Lu H H, Amin S F, Laurencin C T. Sixth World Biomaterials Congress Transactions 2000, vol. 3:972.
    [143] Qiu Q, Ducheyne P, Ayyaswamy P. Sixth World Biomaterials Congress Transactions 2000, vol. 3:938.
    [144] Wang M, Hench L L, Bonfield W. Bioglasss/high density polyethylene composite for soft tissue applications: preparation and evaluation. J Biomed Mater Res 1998; 42:577-86.
    [145] Bonfield W, Wang M, Hench L L. Bioactive composite material for repair of hard and soft tissues. US Patent No. 5,728,753, USA, 1998.
    [146] Huang J, Wang M, Rehman I, Knowles J C, Bonfield W. Analysis of surface structure on Bioglasss/polyethylene composites in vitro. Bioceramics 1995; 8:389-95.
    [147] Huang J, Wang M, Rehman I, Bonfield W. Effect of particle size on the properties of Bioglasss reinforced polyethylene composites. Bioceramics 1996; 9:431-4.
    [148] Huang J, Di Silvio L, Wang M, Rehman I, Ohtsuki C, Bonfield W. Evaluation of in vitro bioactivity and biocompatibility of Bioglasss-reinforced polyethylene composite. J Mater Sci: Mater Med 1997; 8:809-13.
    [149] 王学江.纳米羟基磷灰石仿生复合生物材料研究.四川大学博士论文.2003.
    [150] 魏杰.纳米类骨磷灰石晶体及其与聚酰胺复合骨修复材料研究.四川大学博士论文.2004.
    [151] 彭雪林.纳米羟基磷灰石/聚酰胺66复合材料体外性能研究及生物学评价.四川大学博士论文.2004.
    [1] R. A Kenley, K. Yim, J. Abrams, et al. Biotechnology and bone graft substitutes. Pharmaceutical Rsearch, 1993,10:1393-1401.
    [2] Bonfleld W, Grynpas MD, Tully AE, et al. Hydroxyapatite reinforced polyethylene a mechanically compotible implant material for bone replacement. Biomaterials 1981,2:185-186.
    [3] 严永刚,李玉宝,汪建新等.聚酰胺66/羟基磷灰石复合材料的制备和性能研究.塑料工业,2000;28(3):38.
    [4] 王学江,汪建新,李玉宝等.常压下纳米级羟基磷灰石针状晶体的合成.高技术通讯,2000;11(6):92.
    [5] 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究.四川大学学报(自然科学版),2002;39(3):479.
    [6] 王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯,2001,5:1-3.
    [7] Xuejiang Wang, Yubao Li, Jie Wei, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials, 2002, 23:4787-4791.
    [8] Wei Jie, Li Yubao. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. European Polymer Journal. 2004, 40:509-515.
    [9] 李玉宝 主编.纳米生物医药材料.化学工业出版社.北京.2004,p47.
    [10] 左奕 李玉宝 魏杰等.n-HA/PA系列生物医用复合材料的制备与表征.功能材料,2004,35(4),513-516.
    [11] 彭治汉,施祖培 主编.塑料工业手册 聚酰胺.化学工业出版社.2001.
    [12] Bragg L. The Crystalline State. Vol Ⅰ(1) [M]. London: Bell G and Sons Ltds, 1919.
    [13] 张泽南.X射线衍射在纳米材料物理性能测试中的应用.浙江工业大学学报.2002,30(1),31-35.
    [14] Brill R. J. Prakt. Chem. (2), 1942, 161:49.
    [1] Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Biomaterials 1981;2:185.
    [2] Wang M, Bonfield W, Hench LL. Bioceramics 1995;8:383.
    [3] Wang M, Kokubo T, Bonfield W. Bioceramics 1996;9:387.
    [4] Chua B, Wang M. Hydroxyapatite reinforced polysulfone composites for potential medical applications. Materials Research Society Symposium Proceedings 599: Mineralization in Natural and Synthetic Biomaterials, Boston, MA, USA, 1999. p. 45-50.
    [5] Abu Bakar MM, Cheang P, Khor KA. J Mater Process Technol 1999;89-90:462.
    [6] Wang M, Weng J, Gob CH, Ni J, Wang CX. Bioceramics 2000;13:741.
    [7] Sousa RA, Reis RL, Cunha AM, Bevis MJ. Bioceramics 2000; 13:669.
    [8] Ladizesky NH, Pirhonen EM, Appleyard DB, Ward IM, Bonfield W. Composites Sci Technol 1998;58:419.
    [9] Xuejiang Wang, Yubao Li, Jie Wei, Klass de Groot. Biomaterials 2002; 23:4787.
    [10] Wei Jie, Li Yubao, Chen Weiqun, Zuo Yi. J Mater Sci 2003:38:3303.
    [11] Wei Jie, Li Yubao. Eur Polym J 2004; 40:509.
    [12] Verheyen CCPM, de Wijn JK, van Blitterswijk CA. J Biomed Mater Res 1992;26:1277.
    [13] Peppas NA, Langer R. Science 1994;263:1715.
    [14] Damien CJ, Parson JR. Appl Biomater 1992;2:187.
    [15] McNeill C. In: Allen G, editor. Comprehensive polymer science, vol.5. New York: Pergamon Press; 1989. chapter 15.
    [16] Huaili Qin, Quansheng Su, Shimin Zhang, et al. Polymer 2003; 44:7533.
    [17] K. P. Pramoda, Tianxi Liu, Zhehui Liu, Chaobin He, Hung-Jue Sue. Polym Degrad Stab 2003; 81: 47.
    [18] Rick D. Davis, Jeffery W. Gilman, David L. Vander Hart. Polym Degrad Stab 2003; 79:111.
    [19] M. Heughebaert. R. Z. LeGeros. M. Gineste, A. Guilhem and G. Bone. J Biomed Mater Res 1998; 22:254.
    [20] Brill R. J. Prakt. Chem. (2), 1942, 161:49.
    
    [21] Howard,W., Starkweather,J.R., Glover,A., et al. J Polym Sci. Poly Phys Ed 1981;3:467.
    
    [22] Khanna YP, Kumar R, Reimschuessel AC. Polym Eng Sci 1988;28(24): 1607.
    [23] Khanna YP, Reimschuessel AC, Banerjie A, Altaian C. Polym Eng Sci 1988;28(24):1600.
    
    [24] Khanna YP, Kumar R, Reimschuessel AC. Polym Eng Sci 1988;28(24):1612.
    [25] Khanna YP. Polym Eng Sci 1990;30(24):1615.
    [26] Aharoni SM. n-Nylons, their synthesis, structure, and property. Chichester; New York: Wiley; 1997.
    
    [27] Avrami M J. Chem Phys 1941;9:177.
    [28] PatelRM, Spruiell LJE. Polym Eng Sci 1991;31(10):730.
    [29] OzawaT. Polymer 1971;12:150.
    [30] Liu T X, Mo Z S, Wang S E, Zhang H F. Polym Eng Sci 1997;37:568.
    [1] 福本 修编(施祖培,杨维榕,唐立春译).聚酰胺树脂手册[M].北京:中国石化出版社,1994.1~15.
    [2] 吕刚,王星铎,丁卫等.聚酰胺可吸收髓内针治疗长管状骨骨折的临床观察与实验研究[J].现代康复,1998,2(7):648~652.
    [3] 李世普 编著.生物医用材料导论[M].武汉:武汉工业大学出版社,2000.88~95.
    [4] Bonfield W, Grynpas M D, Tully A E, et al. Hydroapatite Reinforced Polyethylene a Mechanically Compatible Implant Material for Bone Replacement[J]. Biomaterials 1981,2:185~186.
    [5] Wang M, Bonfield W, Hench LL. Bioglasss/High Density Polyethylene Composite As a New Soft Tissue Bonding Material[J]. Bioceramics, 1995, 8:383~388.
    [6] Abu Bakar MM, Cheang P,, Khor KA. Thermal Processing of Hydroxyapatite Reinforced Polyetheretherketone Composites[J]. J Mater Process Technology, 1999,89-90:462~466.
    [7] 严永刚,李玉宝,汪建新等.聚酰胺66/羟磷灰石复合材料的制备和性能研究[J].塑料工业,2000,28(3):38~41.
    [8] 王学江,汪建新,李玉宝等.常压下纳米级羟基磷灰石针状晶体的合成[J].高技术通讯,2000,11(6):92~95.
    [9] 郭颖,李玉宝,严永刚,纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究[J].四川大学学报(自然科学版),2002,39(3):479~482.
    [10] 王学江,李玉宝.羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究[J].高技术通讯,2001,5:1~3.
    [11] Xuejiang Wang, Yubao Li, Jie Wei, et al. Development of Biomimetic Nano-hydroxyapatite/Poly(hexamethylene adipamide) Composites[J]. Biomaterials, 2002, 23: 4787~4791.
    [12] Wei Jie, Li Yubao. Tissue Engineering Scaffold Material of Nano-apatite Crystals and Polyamide Composite[J]. European Polymer Journal, 2004, 40:509~515.
    [13] 郑谦,周立伟,魏世成.纳米羟基磷灰石/聚酰胺(n-HA/PA66)凝胶重建牙槽嵴的动物实验研究[J].中华老年口腔医学杂志,2003,1(3):137~140.
    [14] 魏世成,李玉宝,郑谦.注射型纳米羟基磷灰石/聚酰胺生物活性骨修复材料的研究[J].生物医学工程学杂志,2003,20(4):590~593.
    [15] 苏勤,叶玲,周学东.聚酰胺/纳米羟磷灰石复合生物材料盖髓封闭性能的体外实验研究[J].华西医大学报,2002,33(4):561~562.
    [16] 彭治汉,施祖培 主编.塑料工业手册[M].北京:化学工业出版社,2001.290~311.
    [17] 李玉宝 主编.生物医学材料[M].北京:化学工业出版社,2003.39~41.
    [18] 鲍洪杰,何继敏,聚丙烯改性技术的发展[J].塑料科技,2000,12(6):45~47.
    [1] Xian-mo D, Jian-yuan H, Chang-sheng W. Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 22(2001) 2867-2873.
    [2] Sang-Soo K, Min-Sun P, Oju J, Cha-Yong C, Byung-Soo K. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27 (2006) 1399-1409.
    [3] Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials 1981;2:185-6.
    [4] Xuejiang Wang, Yubao Li, Jie Wei, Klass de Groot. Biomaterials 2002;23:4787.
    [5] Wei Jie, Li Yubao, Chen Weiqun, Zuo Yi. J Mater Sci, 2003; 3303.
    [6] Wei Jie, Li Yubao. Eur Polym J 2004:40:509.
    [7] Joshi M, Maiti SN, Misra A. Polymer 1994;35:17.
    [8] George S, Neelakantan NR, Varghese KT, Thomas S. J Poly Sci Part B Polymer Physics 1997; 35:2309.
    [9] Pothan LA, Oommen Z, Thomas S. Compos Sci Technol 2003;63:283.
    [10] Die′z-Gutie′rrez S, Rodri′guez-Pe′rez MA, De Saja JA, et al. Polymer 1999; 40:5345.
    [11] R. S. Lakes, J. L. Katz, S. S. Sternstein, J. Biomech. 12 (1979) 657.
    [12] R. S. Lakes, J. L. Katz, J. Biomech. 12 (1979) 679.
    [13] E. B. Garner, R. S. Lakes, T. Lee, C. Swan, R. A. Brand, J. Biomech. Eng.122 (2000) 166.
    [14] P. M. Buechner, R. S. Lakes, C. Swan, R. A. Brand, Ann. Biomed. Eng.29 (2001) 719.
    [15] Richardson MOW, Polymer engineering composite. Applied Science Publishers 1977.
    [16] Nielsen LE. Mechanical properties of polymers and composites. New York: Marcel Dekker; 1974.
    [17] 张翔,李玉宝,吕国玉,左奕,牟元华,吴兰.n-HA/PA66复合材料中两相间作用机理研究.功能材料,vol.36(6)2006,896-899.
    [18] 张翔,李玉宝,宋之敏,左奕,吕国玉,牟元华.PA66/HA复合生物材料力学性能研究.中国塑料,Vol.19(6)2006,25-29.
    [19] X Zhang, YB Li, GY Lv, Y Zuo, YH Mu. The thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites. Polymer Stability and Stability, Vol.91 (5) 2006, 1202-1207.
    [20] Murayama T. Dynamic mechanical analysis of polymeric materials. 2nd ed. Amsterdam: Elsevier; 1978.
    [21] 杨建.动态力学分析及在高分子研究中的应用.中国塑料.1989,Vol.3(4).80-95
    [22] Yongfeng Men, Jens Reiger. Eur Polym J 2004;40:2629.
    [23] Loo LS, Cohen RE, Gleason KK. Macromolecules 1998;31:8907.
    [1] H. Koda, Effect of molding conditions on properties of injection molded polycarbonates, J. Appl. Polymer Sci. 12 (1968) 2257-2271.
    [2] M. Fujiama, H. Awaya, Mechanical anisotropy in injection-molded polypropylene, J. Appl. Polymer Sci. 21(1977) 3291-3309.
    [3] G. S. Springer, Q. Wang, The effects of form on the mechanical properties of glass fiber reinforced composites, J. Reinforced Plastics and Composites 13 (1994) 448-466.
    [4] T. Matsuoka, J. Takabatake, Y. Inoue, H. Takahashi, Prediction of fiber orientation in injection molding parts of short-fiber-reinforced thermoplastics, Polymer Eng. and Sci. 30 (1990) 957-966.
    [5] Zulle, B., Demarmels, A., Plummer, C. J. G. And Kausch, H. H., Polymer, 1993, 34, 3628.
    [6] Kalay, G., Zhong, Z., Allan, P. and Bevis, M. J., Polymer, 1996, 37, 2077.
    [7] Kalay, G., Allan, P. and Bevis, M. J., Plast. Rubb. Compos. Proc. Appl., 1995, 23, 71.
    [8] Singh, P. and Kamal, M. R., Polym. Compos., 1989,10, 344.
    [9] Billiani, J. and Fleischmann, E., Polym. Degrad. Stab.,1990, 28, 67.
    [10] R. Joseph, W. J. McGregor, M. T. Martyn, K. E. Tanner, P. D. Coates. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites. Biomatefials 23 (2002) 4295-4302.
    [11] Joseph R. Development of an injection moulding grade hydroxyapatite polyethylene composite. Ph. D. thesis, University of Lgndon, 2001.
    [12] Xuejiang Wang, Yubao Li, Jie Wei, Klass de Groot. Biomaterials 23 (2002) 4787-4791.
    [13] Wei Jie, Li Yubao, Chen Weiqun, Zuo Yi. J Mater Sci, 2003; 3303-3306.
    [14] Wei Jie, Li Yubao. Eur Polym J; 40 (2004) 509-515.
    [15] X Zhang, Y B Li, G Y Lv, Y Zuo, Y H Mu. The thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites. Polymer Degradation and Stability,Vol.91 (5) 2006, 1202-1207.
    [16] 张翔,李玉宝,吕国玉,左奕,牟元华,吴兰.n-HA/PA66复合材料中两相间作用机理研究.功能材料,Vol.36(6)2005,896-899.
    [17] 张翔,李玉宝,宋之敏,左奕,吕国玉,牟元华.PA66/HA复合生物材料力学性能研 究. 中国塑料,Vol. 19 (6) 2005, 25-29.
    
    [18] Sasgupta S,Hammond WB, Goddard WA.JAmChemSoc 1996;118:12291
    [19] Vasanthan N, Murthy NS, Bray RG Macromolecules 1998;31:8433.
    [20] Bing Han, Gending Ji, Shishan Wu, Jian Shen. Eur Polym J; 39 (2003) 1641.
    [21] Gupta AK. J. Appl. Polym. Sci., 1982, 27:4669.
    [1] Aronsson O, Lausmaa J, Kasemo B. Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials. J Biomed Mater Res 1997;35:49-73.
    [2] Kipaldi DV, Raikar GN, Liu J, Lemons JE, Vohra Y, Gregory JC. Effect of surface treatment on unalloyed titanium implants: spectroscopic analyses. J Biomed Mater Res 1997;40:646-59.
    [3] Kasemo B, Lausmaa J. Biomaterial and implant surfaces: on the role of cleanliness, contamination and preparation procedures. J Biomed Mater Res 1988;22:145-58.
    [4] ThierryB, Tabrizian M, Savadogo O, Yahia L'H. Effects of sterilization processes on NiTi alloy: surface characterization. J Biomed Mater Res 2000;49:88-98.
    [5] Kawahara D, Ong JL, Raikar GN, Lucas LC, Lemons J, Nakamura M. Surface characterization of radio-frequency glow discharged and autoclaved titanium surfaces. Int J Oral Maxillofac Implants 1996;11:435-42.
    [6] J. B. Park and R. S. Lakes, Biomaterials: An Introduction, Plenum Press, New York, 1992, p. 162.
    [7] J. Black, Biological Performance of Materials: Fundamentals of Biocompatibility, Marcel Dekker, New York, 1992, p. 21
    [8] R. Langley, R. Edwards, and G. Reuter. Specifying a gamma-irradiation plant for safe and cost-effective sterilization. Med. Device Tech., 5, 23-27 (1994).
    [9] J. Suwanprateeb, K. E. Tanner, S. Turner, W. Bonfield. Influence of sterilization by gamma irradiation and of thermal annealing on creep of hydroxyapatite-reinforced polyethylene composites. J Biomed Mater Res, 39, 16-22, 1998.
    [10] Skiens WE, Williams JL. Ionizing radiation's effects on selected biomedical polymers. In: Szycher M, editor. Biocompatible polymers, metals, and composites. Lancaster, PA: Technomic; 1983. p. 1001-18.
    [11] Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20 (1999) 1659-1688.
    [12] Xuejiang Wang, Yubao Li, Jie Wei, Klass de Groot. Biomaterials 23 (2002) 4787-4791.
    [13] Wei Jie, Li Yubao, Chen Weiqun, Zuo Yi. J Mater Sci, 2003; 3303-3306.
    [14] Wei Jie, Li Yubao. Eur Polym J; 40 (2004) 509-515.
    [15] X Zhang, Y B Li, G Y Lv, Y Zuo, Y H Mu. The thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites. Polymer Degradation and Stability. Vol.91 (5) 2006, 1202-1207.
    [16] 张翔,李玉宝,吕国玉,左奕,牟元华,吴兰.n-HA/PA66复合材料中两相间作用机理研究.功能材料,Vol.36(6)2005,896-899.
    [17] 张翔,李玉宝,宋之敏,左奕,吕国玉,牟元华.PA66/HA复合生物材料力学性能研究.中国塑料,Vol.19(6)2005,25-29.
    [18] X. Zhang, Y. B. Li, Y. Zuo, G. Y. Lv, Y. H. Mu. Influences of the Crystallization Behavior of n-HA Reinforced PA66 Biocomposite on Its Mechanical Properties. Materials Science Forum Vols. 510-511(2006) 898-901.
    [19] 彭治汉,施祖培 主编.塑料工业手册[M].北京:化学工业出版社,2001.290~300.
    [1] 杨述华 编著.实用脊柱外科学.人民军医出版社.北京.2004
    [2] 胥少汀,葛宝丰,徐印坎 主编.实用骨科学(第三版).人民军医出版社.北京.2005
    [3] www.zapconnect.com.
    [4] J. P. Fan, C. P. Tsui, C. Y. Tang, C. L. Chow. Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials 25 (2004)5363-5373
    [5] M. S. Abu Bakar, P. Cheang, K. A. Khor. Tensile properties and microstructural analysis of spheroidized Hydroxyapatite-poly (etheretherketone) biocomposites. Materials Science and Engineering A345 (2003) 55-63.
    [6] J. P. Fan, C. P. Tsui, C. Y. Tang. Modeling of the mechanical behavior of HA/PEEK biocomposite under quasi-static tensile load. Materials Science and Engineering A 382(2004) 341-350.
    [7] 张翔,李玉宝,宋之敏,左奕,吕国玉,牟元华.PA66/HA复合生物材料力学性能研究.中国塑料,Vol.19(6)2005,25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700