纳米银增强基底制备及分子的拉曼光谱解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉曼光谱学是现代分析检测科学中十分重要的学科。应用拉曼光谱检测技术可以直接对固体或液体进行检测,无需对样品进行预先处理,检测过程不会对样品造成损伤。采用光纤激光头设计的拉曼光谱仪可以适用于各种体积和外形的样品,极大的方便了分析检测工作。
     但是由于拉曼散射光本身信号就较弱,并且经常受到荧光干扰,在实际检测过程中有时难以获得样品的拉曼光谱;另外就是当样品浓度较低时,也很难以检测到有效的拉曼信号,从而有可能造成错误的判断。表面增强拉曼光谱技术(SERS)可以有效的抑制荧光,极大的提高拉曼散射光的强度。因此应用表面增强拉曼光谱技术可以广泛应用于实际检测工作。
     表面增强拉曼的基底主要有粗糙金属电极、金属胶体、金属岛膜、金属纳米颗粒等。人们对于SERS增强基底的研究不断深入,已期获得更好的材料表面性质,从而进一步提高SERS的增强因子。采用纳米阵列自主装技术制备的贵金属材料,是目前最为热门的SERS增强基底。但是由于该方法制备过程难以控制,增强因子有限。因此在此基础上进一步对金属纳米结构进行研究,从而制备出增强因子更大的SERS基底显得尤其重要。
     本文第二章利用金属铝表面氧化后形成的特殊纳米凹坑阵列,进行纳米银增强基底的制备。通过试验发现:选用铬酸和磷酸的混合溶液可以去除阳极氧化铝模板纳米管道结构,在金属铝基底表面形成纳米凹坑阵列,该凹坑阵列有利于银纳米颗粒的生长。使用交流电沉积的方法可以在已形成的纳米凹坑阵列中生长银纳米颗粒。在不同的沉积时间下可以制备出不同形貌的纳米银结构,沉积时间较短时,生成球形纳米银阵列,这种银纳米结构的增强效果有限,与在氧化铝纳米管道中生长银纳米线所获得增强因子相似,当探针分子的浓度低于10-3mg/L时,将不能获得SERS增强光谱;沉积时间适中时,将生成树枝纳米银结构,这种结构的纳米银具有极强的拉曼增强效应,即使当探针分子的浓度低至10-12mg/L时,依然能够得到该探针分子的拉曼光谱,该增强基底已经达到了单分子检测水平;当沉积时间较长时,将生成结复杂结构的薄膜,因其本身具有较强的拉曼振动峰,因此不适合作为SERS增强基底。
     通过新型纳米银增强基底可以有效的解决难检分子的检测问题,随后需要对检测所获得的拉曼光谱进行振动解析,以获取其有用的分子光谱信息。由于拉曼光谱技术真正应用于实际检测仅有近三十年的历史,加上高性能电子计算的发展也是近二十年才有的事情。因此一直缺乏分子拉曼光谱的系统性解析。量子化学中密度泛函理论是解释拉曼光谱的有效途径,通过构建分子模型并模拟计算,可以获得分子中各原子的振动信息,从对拉曼光谱给予合理的解释。本文第三章简要介绍了密度泛函理论的基本原理,泛函数与原子轨道价键计算基组的基本概念,通过对乙腈分子计算光谱与实验光谱的比较,确定了最终的计算参数选择。
     本文第四章对有机分子中卤代烷、醇类分子、醛类分子、有机酸类分子、苯及其衍生物、二甲苯异构体、氨基苯甲酸异构体、领苯二甲酸类分子、杂环化合物、食品添加剂中乙基麦芽酚、“一滴香”等物质,约三十八种分子,进行了实验检测,并通过量子化学理论进行了模拟计算,计算光谱与实验光谱获得了很好的吻合。拉曼光谱对于同分异构体的研究具有较大的优势,另外拉曼光谱关于环化合物的研究发现环张力在分子光谱中具有重要的影响。
     本文第五章对无机分子中盐酸、硝酸、硫酸、磷酸、硼酸、高氯酸几种酸类分子进行了检测和振动解析;对氢氧化锂、氢氧化钠、氢氧化钾、氢氧化镁、氢氧化钙、氢氧化铜、氢氧化铝、氢氧化铁等碱类分子进行了检测和振动解析;对硝酸盐、碳酸盐、硫酸盐、磷酸盐四大类盐类分子进行了检测和振动解析,其中硝酸盐包括:硝酸钠、硝酸钾、硝酸镁、硝酸钙、硝酸铜、硝酸锌、硝酸钡、硝酸锶、硝酸镍、硝酸铅、硝酸钴、硝酸铝、硝酸铁、硝酸铋、硝酸铬、硝酸镧、硝酸锆。碳酸盐包括:碳酸锂、碳酸钠、碳酸钾、碳酸镁、碳酸钙、碳酸锌、碳酸锶、碳酸钡。硫酸盐包括:硫酸钠、硫酸钾、硫酸镁、硫酸钙、硫酸锌、硫酸铜、硫酸铁、硫酸铝。磷酸盐包括:磷酸钠、磷酸钾、磷酸铝、磷酸钙、磷酸铁、磷酸锌。总计共约六十三种分子,在进行大量实验检测的基础上,同时我们对结构相似的同类物质进行了实验拉曼光谱的横向比较从中分析总结出一定的规律性。
Raman spectroscopy is an important subject in modern analysis and detection science. The solid or liquid samples can be directly tested application of Raman spectroscopy technology without any pretreatment operation, and the samples won't be damaged with the test process. Raman spectrometer which is designed with optical fiber laser head can be applied to all kinds samples with any sizes and shapes. The analysis and test work became great convenience.
     But because of the Raman scattering signal is very weak, and it's often interfered by fluorescence, It's hard to get the samples' Raman spectra in actual testing process; On the other hand is very difficult to detect the samples Raman signals when the concentration samples is too low, which may result in the wrong judgment. Surface-Enhanced Raman Spectroscopy (SERS) technique can restrain fluorescence, increase the intensity of Raman scattering light greatly. So Surface-Enhanced Raman Spectroscopy can be widely used in the actual testing work.
     The substrate which used for Surface-Enhanced Raman Spectroscopy include rough metal electrodes, metal colloid, metal island film, metal nanoparticles. With the development of SERS substrate research, we want to get more better material surface properties in order to improve SERS enhancement factor furtherly. The precious metallic material which prepared by nanometer array technology is the most popular SERS enhancement base at present. But this method is very difficult to control in the preparation process and the enhance factor is limited. So it's very important to do further research on metallic nano material on the basis of previous research results, so the enhance factor of the SERS substrate can be improved further more
     In the second chapter, we prepared nano silver SERS substrate with the nano pits array which were formed by aluminium surface oxidation. Through the experiments we found that:The anodic alumina template nanotubes structure can be removed bu the mixed solution of chromium acid and phosphoric acid, the nano pits array will be remained on the surface of the aluminium. These nano pits array were beneficial to the growth of the silver nanoparticles. The silver nano particles will be formed in the nano pits array using alternating current(AC) electrodeposition method. Different shapes of silver nanoparticles can be prepared under different electrodeposition time, when the electrodeposition time was short, the shape of the silver nanoparticles were spherical, The enhancement effect of this kind of silver nano array structure was limited, its enhancement factor was similar with the nanowires which were grew in the aluminum oxide nanotubes, when the concentration of the probe molecules was below 10"3 mg/L we would not get SERS enhancement spectrum; When the electrodeposition time was appropriate the shapes of silver nanoparticles like trees, and this structure of the silver nanoparticles has strong Raman enhancement effects, even when the concentration of the probe molecules was low to 10-12 mg/L, we still can get the Raman spectra of the probe molecules, the enhancement substrate has reached the single molecule detection level; When electrodeposition time was too long, the film with complex structure will be formed, Due to this kind of substrate has strong Raman signals itself, therefore it is not applicable for SERS enhancement substrate.
     The problem of some molecules which were difficult to detect can be effective solved by using the trees like nano silver enhance substrate. After we got the Raman spectra of molecules, the next work is vibration analysis in order to get useful information from the spectroscopy. Because Raman spectroscopy technology was really applied in practical detection work only has nearly thirty years history, and the development of high performance electronic computers was only 20 years time. So ithere were no systemic analysis of Raman spectra. Quantum chemical theory is most effective way for explaining Raman spectra, By building the molecular model and simulation computation Quantum chemical theory can get all the atoms vibration information of the molecular, and give reasonable explanation with the Raman spectra. The third chapter of this paper briefly introduced the basic principle of quantum chemistry theory, and the basic concepts of function and the atom valence bond orbital, By comparing the computing calculation spectrum and experimental spectrum of acetonitrile molecular, and calculated parameters was finally choiced.
     In the fourth chapter, various organic molecules included halogenated monosilane, alcohols, aldehydes, organic acids, benzene and its derivatives, xylene isomers, aminobenzoic acid, phthalate, heterocyclic compounds,some food additives like ethyl maltol, "one drops delicious" and other material, about 38 kinds of molecules had been detected, These molecules have been all simulate calculated by quantum chemical theory, and the calculation spectrum was coincided with their experimental spectrum. Raman spectra has many advantages at isomers research, and we found that the ring tension has great influence in Raman spectroscopy with ring compounds molecular.
     In the chapter 5 of this paper, Some inorganic molecules included sulphuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid, high chlorine acid several acids molecules were tested and vibration analysed; Some kinds of alkali molecules include lithium hydroxide monohydrate, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, copper hydroxide, aluminum hydroxide, ferric hydroxide were tested and vibration analysed; Four categories salts molecules include nitrate, carbonate, sulfate and phosphate were tested and vibration analysed, nitrate including:sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, copper nitrate, zinc nitrate, lead nitrate, barium nitrate, strontium nitrate, nickel nitrate, cobalt nitrate, aluminum nitrate, iron nitrate, bismuth nitrate, chromium nitrate, lanthanum nitrate, zirconium nitrate. Carbonate included:lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, zinc carbonate, strontium carbonate, barium carbonate. Sulfate included: sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, zinc sulfate, copper sulfate, ferric sulfate, alumina sulfate. Phosphate included:potassium phosphate, sodium phosphate, aluminum phosphate, calcium phosphate, iron phosphate, zinc phosphate. A total kinds of these molecules was sixty-three. On the basis of lots of experiment testing, also we analysed certain laws by comparing the Raman spectra of the similar material molecules.
引文
[1].朱自莹,顾仁敖,陆天虹.拉曼光谱在化学中的应用[M].沈阳,东北大学出版社,1998:7-8.
    [2].郭振华.拉曼和拉曼效应的发现[J]大学物理.1993,12(2):39-44.
    [3].程光煦.拉曼布里渊散射[M].北京.科学出版社,2008:10-40.
    [4]. Regina Ma z eikien e, Gediminas Niaura, Albertas Malinauskas. A comparative Raman spectroelectrochemical study of selected polyaniline derivatives in a pH-neutral solution[J]. Synthetic Metals. 2010,160(9-10):1060-1064.
    [5]. John P. Ryall, Trevor J. Dines, Babur Z. Chowdhry et al. Vibrational spectra and structures of urazole and 4-methylurazole:DFT calculations of the normal modes in aqueous solution and in the solid state, and the influence of hydrogen bonding[J]. Chemical Physics.2010,373(3):219-227.
    [6]. K.C. Hester, S.N. White, E.T. Peltzer et al. Raman spectroscopic measurements of synthetic gas hydrates in the ocean[J]. Marine Chemistry.2006,98(2-4):304-314.
    [7]. M. A. Buldakov,1.1. Ippolitov, B. V. Korolev et al. "Vibration rotation Raman spectroscopy of gas media[J]. Spectrochimica Acta Part A.1996,52(8):995-1007.
    [8]. K. Morita, K. M. Itoh, M. Nakajima et al. Raman spectra of 70Ge/76Ge isotope heterostructures with argon 488 and 514.5 nm excitations[J]. Physica B.2002,316-317:561-564.
    [9]. P.X. Zhang, S.J. Huang, H.U. Habermeier et al. Raman spectra from isotope substituted La0.67Ca0.33MnO3[J]. Physica C.2001,364-365:647-651.
    [10]. Z.B. Feng, A. Chayahara, Y. Mokuno et al, Raman spectra of a cross section of a large single crystal diamond synthesized by using microwave plasma CVD [J]. Diamond and Related Materials.2010, 19(2-3):171-173.
    [11]. Jan A. Baran, Marek A. Drozd, Henryk Ratajczak. Polarised IR and Raman spectra of monoglycine nitrate single crystal[J]. Journal of Molecular Structure.2010,976(1-3):226-242.
    [12]. B. H. Stuart. The application of Fourier transform Raman spectroscopy to polymer tribology [J]. Spectrochimica Acta Part A.1997,53(1):111-118.
    [13]. Y. Fleger, Y. Mastai, M. Rosenbluh et al. Surface enhanced Raman spectroscopy of aromatic compounds on silver nanoclusters[J]. Surface Science.2009,603(5):788-793.
    [14]. Takeshi Soga. The resonance Raman effect of uranyl chloride in dimethyl sulfoxide[J]. SpectrochimicaActa Part A.2000,56(1):79-89.
    [15]. T. Bourova, G Ten, V. Berezin. Theoretical analysis of intensity distribution in Raman and resonance Raman spectra of biological molecules[J]. Journal of Molecular Structure.1999,480-481:253-261.
    [16]. M. Nakajima, K. Kazumi, M. Isobe et al, Photo-induced phenomena in NaV2O5 studied by time-resolved Raman spectroscopy[J]. Journal of Luminescence.2006,119-120:448-452.
    [17]. Raphael Horvath, Keith C. Gordon. Understanding excited-state structure in metal polypyridyl complexes using resonance Raman excitation profiles, time-resolved resonance Raman spectroscopy and density functional theory[J].2010,254(21-22):2505-2518.
    [18]. M. Tramek, P. Benki, A. Turinik et al, Coordination compounds with XeF2, AsF3 and HF as ligands to metal ions:a review of reaction systematics, Raman spectra and metal, fluoro-ligand polyhedra[J]. 2002,114(2):143-148.
    [19]. T. Mihajlovic, E. Libowitzky, H. Effenberger. Synthesis, crystal structure, infrared and Raman spectra of Sr5(As2O7)2(AsO3OH)[J]. Journal of Solid State Chemistry.2004,177(11):3963-3970.
    [20]. Hannes Kruiger, Volker Kahlenberg, Reinhard Kaindl. Li2Si307:Crystal structure and Raman spectroscopy[J]. Journal of Solid State Chemistry.2007,180(3):922-928.
    [21]. Stefanos L. Georgopoulos, Renata Diniz, Bernardo L. Rodrigues. Crystal structure and Raman spectra of rubidium hydrogen squarat[J]. Journal of Molecular Structure.2005,741(l-3):61-66.
    [22]. D. Uy, A. E. O'Neill, L. Xu et al, Observation of cerium phosphate in aged automotive catalysts using Raman spectroscopy[J]. Applied Catalysis B.2003,41(3):269-278.
    [23]. Zhongrui Li, Reginald Little, Enkeleda Dervishi et al. Micro-Raman spectroscopy analysis of catalyst morphology for carbon nanotubes synthesis[J]. Chemical Physics.2008,353(1-3):25-31.
    [24]. Q. J. Huang, X. F. Lin, Z. L. Yang. An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy[J]. Journal of Electroanalytical Chemistry. 2004,563(1):121-131.
    [25]. H. G M. Edwards, M. A. Hughes, D. N. Smith. Raman microscopic studies of the liquid-liquid interface between an organic layer and an aqueous solution containing metal ions[J]. Vibrational Spectroscopy.1996,10(2):281-289.
    [26]. J. Solla-Gullon, R. Gomez, A. Aldaz, A combination of SERS and electrochemistry in Pt nanoparticle electrocatalysis:Promotion of formic acid oxidation by ethylidyne[J]. Electrochemistry Communications.2008,10(2):319-322.
    [27]. F. Dubois, C. Mendibide, T. Pagnier. Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance[J]. Corrosion Science.2008,50(12):3401-3409.
    [28]. V. Rigato, G Maggioni, D. Boscarino. Ion beam analysis and Raman characterisation of coatings deposited by cosputtering carbon and chromium in a closed field unbalanced magnetron sputter ion plating system[J]. Surface and Coatings Technology.1999,116-119:580-584.
    [29]. H.GM Edwards, A.F Johnson, M.T O'Brien. Determination of the relative reactivities of cis and trans isomers of β-bromostyrene towards polystyryllithium by Raman spectroscopy[J]. Journal of Molecular Structure.2004,703(1-3):31:35.
    [30]. S, D. Cooper, D. N. Batchelder, P. Ramalingam. The effect of extensional flow on the Raman spectra of dilute polymer solutions[J]. Polymer.1998,39(14):3017-3027.
    [31]. B. H. Stuart. Polymer crystallinity studied using Raman spectroscopy[J]. Vibrational Spectroscopy. 1996,10(2):79-87.
    [32]. G Armelles, P. Castrillo, P. D. Wang. Interface structure of GaAs/AlAs superlattices grown on (113) surfaces:Raman scattering studies[J]. Solid State Communications.1995,94(8):613-617.
    [33]. T. Bourova, G Ten, V. Berezin. Theoretical analysis of intensity distribution in Raman and resonance Raman spectra of biological molecules[J]. Journal of Molecular Structure.1999,480-481:253-261.
    [34]. Laurence A. Nafie, Gu-Sheng Yu, Teresa B. Freedman. Raman optical activity of biological molecules[J]. Vibrational Spectroscopy.1995,8(2):231-239.
    [35]. Corasi Ortiz, Dongmao Zhang, Yong Xie et al. Validation of the drop coating deposition Raman method for protein analysisfJ]. Analytical Biochemistry.2006,353(2):157-166.
    [36]. Ewan W. Blanch, Lutz Hecht, Laurence D. Barron. Vibrational Raman optical activity of proteins, nucleic acids, and viruses[J]. Methods.2003,29(2):196-209.
    [37]. Marek Prochdzka, Josef Stepanek, Pierre-Yves Turpin. Interaction of phospholipid dispersions with water-soluble porphyrins as monitored by their Raman temperature profiles[J]. Chemistry and Physics of Lipids.2004,132(2):145-156.
    [38]. L.X. Chen, H.L. Strauss, R.G Snyder. Analysis of the delocalized Raman modes of conformationally disordered polypeptides[J]. Biophysical Journal.1993,64(5):1533-1541.
    [39]. P.W. May, J.A. Smith, K.N. Rosser.785 nm Raman spectroscopy of CVD diamond films[J]. Diamond and Related Materials.2008,17(2):199-203.
    [40]. M. Goetz, D. Drews, D.R.T. Zahn, R. Wannemacher. Near-field Raman spectroscopy of semiconductor heterostructures and CVD-diamond layers[J]. Journal of Luminescence.1998, 76-77:306-309.
    [41]. G Chollon. Structural and textural analyses of SiC-based and carbon CVD coatings by Raman Microspectroscopy[J]. Thin Solid Films.2007,516(2-4):388-396.
    [42]. M. Veres, M. Koos, N. Orsos et al. Incorporation of Si in a-C:Si:H films monitored by infrared excited Raman scattering[J]. Diamond and Related Materials.2006,15(4-8):932-935.
    [43]. M. Rojas-Lopez, V. L. Gayou, R. E. Perez-Blanco. Raman studies of aluminum induced microcrystallization of n+Si:H films produced by PECVD[J]. Thin Solid Films.2003,445(l):32-37.
    [44]. M. F. Cerqueira, J. A. Ferreira. Temperature dependence of the first order Raman scattering in thin films of μc-Si:H[J]. Journal of Materials Processing Technology.1999,92-93:235-238.
    [45]. Shihua Huang, Hong Xiao, Sha Shou. Annealing temperature dependence of Raman scattering in Si/SiO2 superiattice prepared by magnetron sputtering[J]. Applied Surface Science.2009,255(8):4547-4550.
    [46]. A. Saher Helmy, P. Martin, J.P. Landesman et al. Spatially resolved photoluminescence and Raman spectroscopy of bandgap gratings fabricated in GaAs/AlAs superlattice waveguide using quantum well intermixing[J]. Journal of Crystal Growth.2006,288(l):53-56.
    [47]. I.T. Yoon, T.W. Kang. Analysis of Raman scattering of Ga1-xMnxAs dilute magnetic semiconductor[J]. Journal of Magnetism and Magnetic Materials.2009,321(14):2257-2259.
    [48]. M. Yoshida, T. Tanabe, N. Ohno. High temperature irradiation damage of carbon materials studies by laser Raman spectroscopy[J]. Journal of Nuclear Materials.2009,386-388:841-843.
    [49]. M. Kemdehoundja, J.F. Dinhut, J.L. Grosseau-Poussard. High temperature oxidation of Ni70Cr30 alloy:Determination of oxidation kinetics and stress evolution in chromia layers by Raman spectroscopy[J]. Materials Science and Engineering.2006,435-436:666-671.
    [50]. B. Manoun, S. Benmokhtar, L. Bih et al. Synthesis, structure, and high temperature Mossbauer and Raman spectroscopy studies of Ba1.6Sr1.4Fe2WO9 double perovskite[J]. Journal of Alloys and Compounds.2011,509(1):66-71.
    [51]. Ken-ichi Okazaki, Yoshihiro Nakato, Kei Murakoshi. Characteristics of Raman features of isolated single-walled carbon nanotubes under electrochemical potential control[J]. Surface Science.2004, 566-568:436-442.
    [52]. S. M. Bose, S. N. Behera, S. N. Sarangi, P. Entel. Raman spectra of filled carbon nanotubes[J]. Physica B.2004,351(1-2):129-136.
    [53]. Olga L. Lazarenkova, Alexander A. Balandin. Raman scattering from three-dimensionally regimented quantum dot superlattices[J]. Superlattices and Microstructures.2003,33(l-2):95-101.
    [54]. Balazs Vajna, Istvan Farkas, Andras Szabo et al, Raman microscopic evaluation of technology dependent structural differences in tablets containing imipramine model drug[J]. Journal of Pharmaceutical and Biomedical Analysis.2010,51(1):30-38.
    [55]. Anna Belu, Christine Mahoney, Klaus Wormuth. Chemical imaging of drug eluting coatings: Combining surface analysis and confocal Raman microscopy[J]. Journal of Controlled Release.2008, 126(2):111-121.
    [56]. Debra S. Hausman, R. Thomas Cambron, Adel Sakr. Application of on-line Raman spectroscopy for characterizing relationships between drug hydration state and tablet physical stability[J]. International Journal of Pharmaceutics.2005,299(1-2):19-33.
    [57]. Corey Hardin, Taras V. Pogorelov, Zaida Luthey-Schulten. Ab initio protein structure prediction[J]. Current Opinion in Structural Biology.2002,12(2):176-181.
    [58]. Rodney J. Bartlett, Igor V. Schweigert, Victor F. Lotrich. Ab initio DFT:Getting the right answer for the right reason[J]. Journal of Molecular Structure.2006,771 (1-3):1-8.
    [59]. Todor Dudev, Boris Galabov. Ab initio calculations of Raman intensity parameters and geometry of polyynes and polyynenitriles[J]. Spectrochimica Acta Part A.1997,53(12):2053-2059.
    [60]. Peterson, Joel M. Friedman, Alessandra Gambacurta Structural and Dynamic Properties of the Homodimeric Hemoglobin from Scapharca inaequivalvis Thr-72→Ile Mutant:Molecular Dynamics Simulation, Low Temperature Visible Absorption Spectroscopy, and Resonance Raman Spectroscopy Studies[J]. Biophysical Journal.1998,75(5):2489-2503.
    [61]. E Henssge, D Dumont, D Fischer, D Bougeard. Analysis of infrared and Raman spectra calculated by molecular dynamics[J]. Journal of Molecular Structure.1999,482-483:491-496.
    [62]. Razvan Caracas, Edward J. Banigan. Elasticity and Raman and infrared spectra of MgA12O4 spinel from density functional perturbation theory[J]. Physics of the Earth and Planetary Interiors.2009, 174(1-4):113-121.
    [63]. Phumlane S. Mdluli, Ndabenhle M. Sosibo, Neerish Revaprasadu et al. Surface enhanced Raman spectroscopy (SERS) and density functional theory (DFT) study for understanding the regioselective adsorption of pyrrolidinone on the surface of silver and gold colloids[J]. Journal of Molecular Structure.2009, 935(1-3):32-38.
    [64]. Tadeusz Andruniow, Marek Pawlikowski, Mariusz Sterzel. The Franck-Condon effect in the lowest energy 12B2u state of tetracyanoquinodimethane anion. The resonance Raman studies in terms of density functional theory[J]. Vibrational Spectroscopy.1999,21(1-2):45-50.
    [65]. R. Lopez-Boada, R. Pino, E.V. Ludena. Locality of the exchange energy functional[J]. Journal of Molecular Structure.2000,501-502:35-38.
    [66]. A. Garcia, E. M. Cruz, C. Sarasola, J. M. Ugalde. Performance of Becke's exchange functional fitted for Gaussian basis sets[J]. Journal of Molecular Structure.1996,363(3):279-290.
    [67]. Katsuhiko Higuchi, Masahiko Higuchi. Exchange and correlation energy functional in the current-density functional theory[J]. Physica B.2002,312-313:534-536.
    [68]. J.C. Sancho-Garc i a. Assessment of density-functional models for organic molecular semiconductors:The role of Hartree-Fock exchange in charge-transfer processes[J]. Chemical Physics. 2007,331(2-3):321-331.
    [69]. J. C. Slater. Quantum Theory of Molecular and Solids. Vol.4:The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York,1974).
    [70]. JoseM. Perez-Jordd, A. D. Becke. A density-functional study of van dar Waals forces:rare gas diatomics[J]. Chemical Physics Letters.1995,233(1-2):134-137.
    [71]. H. L. Schmider, A. D. Becke. Chemical content of the kinetic energy density[J]. Journal of Molecular Structure.2000,527(1-3):51-61.
    [72]. A. D. Becke. Phys. Rev.1988, A 38:3098.
    [73]. J. P. Perdew, V. Sahni. Accurate and easy method for work function calculations[J]. Solid State Communications.1979,30(2):87-89.
    [74]. K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density Functional Theory:Recent Progress and New Directions, Ed. J. F. Dobson, G Vignale, and M. P. Das (Plenum,1998).
    [75]. C. Adamo, M. Cossi, V. Barone. An accurate density functional method for the study of magnetic properties:the PBEO model[J]. Journal of Molecular Structure.1999,493(1-3):145-147.
    [76]. C. Adamo, V. Barone. Toward reliable adiabatic connection models free from adjustable parameters[J]. Chemical Physics Letters.1997,247(1-3):242-250.
    [77]. P. M. W. Gill. Isomers of C20. Dramatic effect of gradient corrections in density functional theory[J]. Chemical Physics Letters.1993,214(3-4):357-361.
    [78]. P. M. W. Gill, A. M. Lee, N. Nair, R. D. Adamson. Insights from Coulomb and exchange intracules[J]. Journal of Molecular Structure.2000,506(1-3):303-312.
    [79]. J. P. Perdew, K. Burke, and M. Emzerhof; Phys. Rev. Lett.1996,77:3865-3868.
    [80]. J. P. Perdew, K. Burke, and M. Emzerhof,Phys. Rev. Lett.1997,78:1396.
    [81]. C. Adamo and V. Barone, J. Chem. Phys.2002,116:5933.
    [82]. P. J. Wilson, R. D. Amos, N. C. Handy. Accurate predictions for molecular magnetisabilities and rotational g tensors using a simple and efficient DFT approach[J]. Journal of Molecular Structure.2000, 506(1-3):335-342.
    [83]. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys.1980,58:1200.
    [84]. C. Lee, W. Yang, and R. G Parr, Phys. Rev. B 1988,37:785.
    [85]. J. P. Perdew,Phys. Rev. B 1986,33:8822.
    [86]. J.P. Perdew, in Electronic Structure of Solids'91, Ed. P. Ziesche and H. Eschrig (Akademie Verlag,Berlin,1991)11.
    [87]. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 1992,46.
    [88]. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 1993,48.
    [89]. J.P. Perdew, K. Burke, and Y.Wang,Phys. Rev. B 1996,54:16533.
    [90]. A. D. Becke, J. Chem. Phys.1996,104:1040.
    [91]. D. C. McKean, H. G M. Edwards, I. R. Lewis. Infrared and Raman spectra of 1,1-dibromodisilanes and STO-3G* calculations[J]. SpectrochimicaActaPart A.1996,52(2):199-205.
    [92]. Giuliano Alagona, Caterina Ghio, Susanna Monti. The effect of small substituents on the properties of indole. An ab initio 6-31G* study[J]. Journal of Molecular Structure.1998,433(l-3):203-216.
    [93]. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys.1971,54:724.
    [94]. W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys.1972,56:2257.
    [95]. P. C. Hariharan and J. A. Pople, Mol. Phys.1974,27:209.
    [96]. M. S. Gordon, Chem. Phys. Lett.1980,76:163.
    [97]. P. C. Hariharan and J. A. Pople, Theo. Chim. Acta 1973,28:213.
    [98]. J.-P. Blaudeau, M. P. McGrath, L.A. Curtiss, and L. Radom, J. Chem. Phys.1997,107:5016.
    [99]. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, and M. S. Gordon, J. Chem. Phys.1982,77:3654.
    [100]. R. C. Binning Jr. and L. A. Curtiss, J. Comp. Chem.1990,11:1206.
    [101]. V.A. Rassolov,J.A.Pople,M.A. Ratner, and T. L.Windus,J. Chem. Phys.1998,109:1223.
    [102]. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comp. Chem.2001, 22:976.
    [103]. Leszek Lapinski, Dorota Prusinowska, Maciej J. Nowak. Infrared spectra of 6-azathiouracils:an experimental matrix isolation and theoretical ab initio SCF/6-311G** study[J]. Spectrochimica Acta Part A. 1996,52(6):645-659.
    [104]. A. D. McLean and G S. Chandler, J. Chem. Phys.1980,72:5639.
    [105]. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys.1980,72:650.
    [106]. A. J. H. Wachters, J. Chem. Phys.1970,52:1033.
    [107]. P. J. Hay, J. Chem. Phys.1977,66:4377.
    [108]. K. Raghavachari and G.W.Trucks,J. Chem. Phys.1989,91:1062.
    [109]. L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R C. Binning Jr., and L. Radom, J. Chem. Phys.1995,103,:6104.
    [110]. M. P. McGrath and L. Radom, J. Chem. Phys.1991,94:511.
    [111]. T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer Ⅲ, Vol.3 (Plenum, New York,1976) 1-28.
    [112]. P. J. Hay and W. R. Wadt, J. Chem. Phys.1985,82:270.
    [113]. W. R. Wadt and P. J. Hay, J. Chem. Phys.1985,82:284.
    [114]. P. J. Hay and W. R. Wadt, J. Chem. Phys.1985,82:299.
    [115]. P. Fuentealba, H. Preuss, H. Stall, and L. v. Szentpaly, Chem. Phys. Lett.1989,89:418.
    [116]. O.Kh. Poleshchuk, A.G Yureva, V.D. Filimonov. Study of a surface of the potential energy for processes of alkanes free-radical iodination by B3LYP/DGDZVP method[J]. Journal of Molecular Structure. 2009,912(1-3):67-72.
    [117]. D. E. Woon and T. H. Dunning Jr., J. Chem. Phys.1993,98:1358.
    [118]. R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys.1992,96:6796.
    [119]. T. H. Dunning Jr.,J. Chem. Phys.1989,90:1007.
    [120]. K.A. Peterson,D. E.Woon, and T. H. Dunning Jr.,J. Chem. Phys.1994,100:7410.
    [121]. A. Wilson, T. van Mourik, and T. H. Dunning Jr., J. Mol. Struct. (Theochem) 1997,388:339.
    [122]. E. R. Davidson, Chem. Phys. Lett.1996,220:514.
    [123]. M. Hofinann, H. Graener. Time resolved incoherent anti-Stokes Raman spectroscopy of dichloromethane[J]. Chemical Physics.1996,206(1-2):129-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700