低热固相合成铁酸盐粉末及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁酸盐是一类重要的合成磁性氧化物,它有几种不同的晶体结构。其中,尖晶石型是一种最重要的结构,它又分尖晶石和反尖晶石结构两种。铁酸盐被广泛用于许多领域,如铁磁流体,磁药物传输,磁高密度信息存储。铁酸镍和铁酸镍锌是两种重要的铁酸盐,它的性质与合成方法有关,长期以来一直是人们关注的焦点。为此,本研究采用低热固相反应法合成了NiFe_2O_4和Zn_(0.5)Ni_(0.5)Fe_2O_4纳米晶。同时,对Zn_(0.5)Ni_(0.5)Fe_2O_4结晶动力学进行了研究。本研究论文共分为四章:
     第一章绪论
     综述了固相反应法制备无机材料的原理、研究进展及其在合成无机材料中的优点。介绍了铁酸盐的性质、用途及其合成研究进展。并对结晶动力学进行了概述。
     第二章铁酸镍的低热固相合成与表征
     在表面活性剂聚乙二醇-400存在下,以NH_4HCO_3、NiSO_4·7H_2O、Fe_2(SO_4)_3为原料,采用低热固相法合成了反尖晶石型NiFe_2O_4纳米晶,用TG/DTA、IR、XRD、TEM和VSM对前驱体及其煅烧产物进行表征。用均匀设计法确定最优实验条件。获得的最佳条件为:NH_4HCO_3与NiSO_4·7H_2O的物质量比为10,表面活性剂(聚乙二醇-400)的用量为499.8μL,研磨时间为38min,前驱体的灼烧温度为550℃,前驱体的灼烧时间为170min。在最佳条件下,得到了近似球形、平均颗粒粒度约为55nm的立方晶反尖晶石结构的铁酸镍纳米晶。NiFe_2O_4的比饱和磁化强度为50.7emu·g-1,矫顽力Hc为40Oe,剩磁Mr为1.5emu·g-1,结晶度为88.5%。
     第三章铁酸镍锌的低热固相合成与表征
     以ZnSO_4·7H_2O、NiSO_4·7H_2O和NH_4HCO_3为原料,采用低热固相法合成Zn_xNi_(1-x)Fe_2O_4。用TG/DTA、IR、XRD、SEM和VSM对前驱体及其煅烧产物进行表征,用均匀设计法确定最优条件。获得的最佳条件为:x=0.5,NH_4HCO_3用量为理论量的1.2倍,煅烧温度为800℃。在此条件下,得到了组成为Zn_(0.5)Ni_(0.5)Fe_2O_4、形貌近似球形、平均颗粒粒度约为59.1nm的立方Zn_(0.5)Ni_(0.5)Fe_2O_4纳米晶。该产物的比饱和磁化强度为75.4emu·g-1,矫顽力Hc为40Oe,剩磁Mr为3emu·g-1,结晶度为91.5%。
     第四章铁酸镍锌的结晶动力学研究
     分别以等温结晶动力学分析理论和非等温结晶动力学分析理论为基础,研究了Zn_(0.5)Ni_(0.5)Fe_2O_4的晶化过程。等温结晶动力学分析理论研究结果表明:结晶活化能为110.6~113.3kJ/mol,结晶指数Avrami参数(n)为0.2~0.6之间,结晶过程以三维(3D)生长机理的Jander模型处理。非等温结晶动力学分析理论结果表明,Zn_(0.5)Ni_(0.5)Fe_2O_4的结晶过程的结晶活化能为155.6~242.4KJ·mol~(-1),结晶指数Avrami参数(n)为0.4579,频率因子1nv为17.81~36.16。动力学机理函数为Jander模型中的三维扩散机理函数g(x)为[1-(1-x)~(1/3)]~(1/2)。
Ferrites are a broad class of complex magnetic oxides of considerable technological importance,which occur in several different crystal structure forms.Within this group,spinel is a kind of the most important structure that occurs in two forms:spinel and inverse spinel structure.Ferrites are widely applied in many fields such as ferrofluids,magnetic drug delivery,magnetic high-density information storage.Nickel ferrite and zinc nickel ferrite are two kinds of ferrites which properties depend on their preparation methods.Therefor,they have been received considerable amount of attention.In this paper,pure phase nanocrystalline NiFe_2O_4 and Zn_(0.5)Ni_(0.5)Fe_2O_4 were synthesized via solid-state reaction at low heat.Besides, thermal decomposition kinetics of Zn_(0.5)Ni_(0.5)Fe_2O_4 precursor and crystallization kinetics of Zn_(0.5)Ni_(0.5)Fe_2O_4 were also investigated.The paper consists of four chapters:
     Chapter one:Introduction
     Principle,preparation progress,and its advantage of preparing inorganic material via solid-state reaction were summarized.Characteristic,purpose,and preparation progress of ferrite were also introduced.Crystallization kinetics of was summarized.
     Chapter two:Preparation of NiFe_2O_4 via solid-state reaction at low heat and Characterization
     The nanocrystalline NiFe_2O_4,with inverse spinel structure,was obtained via solid-state reaction at low heat in the presence of surfactant PEG-400 when NiSO_4·7H_2O,Fe_2(SO_4)_3 and NH_4HCO_3 were used as raw materials.The precursor and its calcined products were characterized by TG/DTA,IR,XRD,TEM,and VSM.The uniform design method was used for obtaining the optimal experimental conditions.The optimal experimental conditions as follow:molar ratio of NH_4HCO_3 to NiSO_4·7H_2O was 10:1,PEG-400 dosage was 499.8μL, grinding time was 38 min,calcining temperature and time were 550℃and 170 min respectively.The cubic NiFe_2O_4 crystalline with inverse spinel structure was obtained under the optimum conditions.Its appearance close to roundness,and average diameter about 55 nm. The saturation magnetization of NiFe_2O_4 was 50.7 emu·g-1,coercive force Hc was 40 Oe, remanence Mr was 1.5 emu·g-1,and crystallinity was 88.5%.
     Chapter three:Preparation of zinc nickel ferrite via solid-state reaction at low heat and Characterization
     The Zn_xNi_(1-x)Fe_2O_4 was prepared via solid-state reaction at low heat when ZnSO_4·7H_2O, NiSO_4·7H_2O,Fe_2(SO_4)_3,and NH_4HCO_3 were used as raw materials.The precursor and its calcined products were characterized by TG/DTA,IR,XRD,SEM,and VSM.The uniform design method was used for obtaining the optimal experimental conditions.The optimal experimental conditions as follow:x=0.5,NH_4HCO_3 dosage is as 1.2 times as theoretic value, grinding time was 38 min,calcining temperature was 800℃.The cubic Zn_(0.5)Ni_(0.5)Fe_2O_4 crystalline was obtained under the optimum conditions.Its appearance closes to roundness, and average diameter was about 59.1 nm.The saturation magnetization of Zn_(0.5)Ni_(0.5)Fe_2O_4 was 75.4 emu·g-1,coercive force Hc was 40 Oe,remanence Mr was 3 emu·g-1,and crystallinity was 91.5%.
     Chapter four:Study on crystallization kinetics of Zn_(0.5)Ni_(0.5)Fe_2O_4
     A study on crystallization process of Zn_(0.5)Ni_(0.5)Fe_2O_4 was carried out on the basis of theory of isothermal and non-isothermal crystallization kinetics.The kinetics parameters and mechanism functions of Zn_(0.5)Ni_(0.5)Fe_2O_4 crystallization process were obtained from different analysis theories respectively,that is:E = 110.6~113.3 kJ/mol,crystallization exponent Avrami constant(n)= 0.2~0.6,3D for growth mechanism for isothermal crystallization kinetics theory based on Jander model,and E = 155.6~242.4 kJ/mol,crystallization exponent Avrami constant(n)= 0.4579,lnv= 17.81~36.16 for non-isothermal crystallization kinetics theory,and crystallization kinetics mechanism function g(x)was[1-(1-x)~(1/3)]~(1/2),which is one of the Jandle model.
引文
[1]姜继森,高廉.高能球磨法制备纳米晶Zn铁氧体[J].材料研究学报,1999,13(2):142-146.
    [2]陈春霞,姜继森.高能球磨法制备聚合物-氧化铁纳米复合材料[J].粉体技术,1998,4(4):19-21.
    [3]Jiang J Z,Wynn P,Morup S,et al.Magnetics tructuree volution in mechanicallymilled nanostructured ZnFe_2O_4 particles[J].Nanostructured Materials,1999,12(5):737-740.
    [4]陈春霞,钱思明.用高能球磨制备氧化铁/聚氯乙烯纳米复合材料[J].材料研究学报,2000,14(3):334-336.
    [5]Bid S,Pradhan S K.Preparation of zinc fen'ite by high-energy ball-milling and microstructure characterization by Rietveld's analysis[J].Materials Chemistry,2003,82(1):27-37.
    [6]李春,何良惠,李升章.镍锌铁氧体粉体合成新方法[J].四川有色金属,2000,1(2):49-52.
    [7]禹长清,张武.共沉淀法制备超细锰锌铁氧体前驱体粉末[J].中国锰业,2000,18(3):82-83.
    [8]车仁超,李永清.钴铁氧体微粉的化学法制备工艺及其吸波性能[J].宇航材料工艺,1999,29(6):46-48.
    [9]方道来,郑翠红.NiFe_2O_4纳米晶的制备和磁性[J].材料研究学报,2000,14(2):159-162.
    [10]车仁超,李永清.钴铁氧体微粉的化学法制备工艺及其磁特性研究[J].功能材料,1999,30(6):615-616.
    [11]Massarotti V,Capsoni D,Bini M,et al.Characterization of Sol-Gel LiMn_2O_4 Spinel Phase[J].Solid State Chemistry,1999,147(2):509-515.
    [12]甘树才,洪广言.溶胶.凝胶法合成稀土铁氧体过程中的相变与形成机制[J].中国稀土报,2001,19(3):278-280.
    [13]Yue Z X,Zhou J,Wang X,et al.Efect of copper on the electromagnetic properties of Mg-Zn-Cu ferrites prepared by sol-gel auto-combustion method[J].Materials Science and Engineering:B,2001,86(1):64-69.
    [14]Kwang P C,Won K K,Sung H L,et al.Crystallographic and magnetic properties of Ti_xCo_(1+x)Fe_(2-2x)O_4 ferrite powders[J].Magnetism and Magnetic Materials,2001,232(3):133-138.
    [15]Yue Z X,Zhou J,Wang X,et al.Preparation and magnetic properties of titanium ubstituted Li Zn ferrites via a sol-gel auto-combustion process[J].European Ceramic Society,2003,23(1):189-193.
    [16]余忠,兰中文.溶胶-凝胶法制备MnZn铁氧体粉体[J].功能材料,2000,31(5):34-37.
    [17]岳振星,周济.溶胶-凝胶自燃烧法合成NiZn铁氧体纳米粉末[J].材料研究学报,1999,13(5):483-486.
    [18]胡季帆,钟定永.溶胶-凝胶法制备α-Fe_2O_3纳米微粒及其材料形貌研究[J].功能材料,2000,31(2):217-218.
    [19]牛新书,徐荭.溶胶-凝胶法制备Fe_2O_3纳米晶[J].应用化学,2000,17(6):611-614.
    [20]Yue Z X,Zhou J,Li L T,et al.Synthesis of nanocrystalline NiCuZn ferdte powders by sol-gel auto-combustion method[J].Magnetism and Magnetic Materials,2000,208(1):55-60.
    [21]黎少华.水热法合成(Mn,Zn)Fe_2O_4磁性晶体粉末[J].化工冶金,1997,18(1):32-37.
    [22]陈兴,邓兆祥.水热法制备超顺磁性铁氧体纳米微粒[J].无机化学学报,2002,18(5):460-465.
    [23]李汝军,施尔畏.水热法制备氧化锌粉体[J].无机材料学报,1998,13(1):26-32.
    [24]桑商斌,古映莹,黄可龙.锰锌铁氧体纳米晶的水热法制备及热动力学研究[J].功能材料,2001,32(1):27-29.
    [25]李冬梅,夏熙.水热法合成纳米氧化铜粉体及其性能表征[J].化学研究与应用,2002,14(4):484-486.
    [26]Kim Y,Kim D,Lee C S.Synthesis and characterization of CoFe_2O_4 magnetic nanoparticles prepared by temperature controlled coprecipitation method[J].Physica B:Condensed Matter,2003,337(1):42-51.
    [27]Wan G J,Chong P F.Microemulsionprocessing of manganese zinc ferrites[J].Materials Letters,1997,30(23):217-221.
    [28]Yu H F,Gadalla A M.Preparation of NiFe204 powder by spray pyrolysis of nitrate aerosols in NH_3[J].Materials Research,1996,11(3):663-670.
    [29]Liu J J,He H L,Jin X G,et al.Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties[J].Research Bulletin,2001,36(12):2357-2363.
    [30]徐康,刘建军,徐兆,等.用冲击波合成法制备纳米铁酸锌粉体-一种制备纳米粉体的新方法[J].无机材料学报,1997,12(5):759-762.
    [31]Castro S,Gayoso M,Rodriguez C,et al.Structural and magnetic properties of barium hexaferrite nanostructured particles prepared by the combustion method[J].Magnetism and Magnetic Materials,1996,152(1):61-69.
    [32]雷立旭,忻新泉.室温固相化学反应与固体结构[J].化学通报,1997,2(2):1-7.
    [33]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.194-227.
    [34]周益明,忻新泉.低热固相合成化学[J].无机化学学报,1999,15(3):273-292.
    [35]常青,王燕,李小华,等.簇合物[WS_4Ag_3(PPh_3)_3{S_2P(OCH_2Ph)_2}]的合成、晶体结构及非线性光学性质[J].无机化学学报,2003,19(6):574-578.
    [36]李小华,马美华,张长丽,等.含硫原子簇化合物的三阶非线性光学性质[J].化学研究与应用,2003,15(3):753-757.
    [37]李道华,忻新泉.纳米材料的室温或近室温超声波固相化学反应合成[J].西南民族大学学报,2003,15(5):572-578.
    [38]Boldyrev V V.Reactivity of Solids Past Present and Future[J].Federation of European Biochemical Societies,1996,91(1):111-236.
    [39]Eric Charles Snelling.Soft Fen'ites:Properties and Applications[M].London:London Iliffe Books Ltd,1989.284-285.
    [40]刘玉红.软磁铁氧体材料的现状及其发展趋势[J].材料导报,2000,14(7):30-31.
    [41]聂才关.Mn-Zn功率软磁铁氧体磁芯在开关电源中的应用[J].电子元器件应用,2004,(4):52-53.
    [42]陈国华.21世纪软磁铁氧体材料和元件发展趋势[J].磁性材料及器件,2001,32(4):34-36.
    [43]吴雪予.抗EMI滤波器设计与应用原理[J].磁性材料及器件,1999,30(5):23-28.
    [44]田民波.磁性材料[M].北京:清华大学出版社,2001.60.
    [45]陈国华.21世纪软磁铁氧体材料和元件发展趋势[J].磁性材料及器件,2001,1(1):34-37.
    [46]何水校.软磁铁氧体材料的应用与市场[J].磁性材料及器件,1997,29(1):44-47.
    [47]Zeng M.Modem ferrite technologies and products[J].Materials and Product Technology,1994,9(4):265-280.
    [48]Topfer J,Schops W,Nauber P,et al.Modem developmental trend in the production and application of hard and soft Magnetic ferrite materials[J].CFI Ceram Forum Int,1999,76(9):49-55.
    [49]Christy R,Vestal Z,John Z.Magnetic spinel ferrite nanoparticles from microemulsions[J].International Journal of Nanotechnology,2004,1(1):240-263.
    [50]李荫远.铁氧体物理学[M].北京:科学出版社,1978.10-11.
    [51]Wohifarth E P,主编.刘增民,等译.铁磁材料-磁有序物质特性手册卷[M].北京:电子工业出版社,1993.28.
    [52]Albet Rousset.Reactibity of solids and new metastable phase:examples of mixedvalence defect spinel ferrites and manganites[J].Solid State Ionics,1993,63(31):236-242.
    [53]Laarj M,Kacim S,Gillot B.Cationic distribution and oxidation mechanism of trivalent manganese ions in submicrometcr Mn_xCoFe_(2-x)O_4 spinel ferrites[J].Solid State Chemistry,1996,125(1):67-74.
    [54]Gillot B,Domenichini B,Perriat P.Effect of the preparation method and grinding time of some mixed valency feferrite spinels on their cationed distribution and thermal stability towards oxygen[J].Solid State Ionics,1996,84(3):303-312.
    [55]Masahiro Tabata,Kazuhiro Akanuma,Kenichi Nishizawa,et al.Reactivity of oxygen-deficient Mn(Ⅱ)-bearing ferrites(Mn_xFe_(3-x)O)4,0 <x <1,)towards CO_2decomposition to carbon[J].Materials Science,1993,28(24):5753-5760.
    [56]周志刚.铁氧体磁性材料[M].北京:科学出版社,1981.55-57.
    [57]林德云,李国定.电磁场理论基础[M].北京:清华大学出版社,1990.23-25.
    [58]Neel L.Magnetic properties of ferrites:ferrimagnetism and antiferro-magnetism[J].Annals Physics Paris,1948,3(5):137-198.
    [59]潘道凯,赵成大,邓载兴,等.物质结构[M].北京:高等教育出版社,1996.516-518.
    [60]张玉龙,唐磊主编.人工晶体生长技术、性能与应用[M].北京:化学工业出版社,2005.1-2.
    [61]Thompson C V,Greer A L,Spaepen F.Crystal nucleation in amorphous (AU_(100-y)Cu_y)_(77)Si_9Ge_(14)Alloys[J].Acta Metallurgica,1983,31(1):1883-1894.
    [62]Ohlberg S M,Golob H R,Strickler D W.Crystal nucleation by glass in glass separation.In:Symposium on nucleation and crystallisation in glasses and melts,Columbus,OH[J].American Ceramic Society,1962,170(45):55-62.
    [63]Hancock J D,Sharp J H.Method of Comparing Solid-StateKinetic Data and itsApplication to the Decomposition of Kaolinite,Brucite and BaCO_3[J].American Ceramic Society,1972,55(2):74-77.
    [64]Beretka J.Kinetics analysis of solid-state reactions between powdered reactants[J].American Ceramic Society,1984,67(9):615-620.
    [65]Sharp J H,Brindley G W,Naraharl Acbar B N.Numerical data for some commonly used solid state reaction equations[J].American Ceramic Society,1966,49(7):379-382.
    [66]Taplin J H.Index of reaction-A unifying concept for the reaction kinetics of powders[J].American Ceramic Society,1974,57(3):140-143.
    [67]Carter R E.Kinetic model for solid-state reactions[J].Chemical Physics,1961,34(3):2010-2015.
    [68]Lebrun N,Foulon M,Geors C,et al.Nucleation-Growth Process and Isothermal Kinetics of Phase Transformations in Methylhydrazine Monohydrate[J].Crystal Growth,1997,178(3):367-377.
    [69]Mark C B,Jonas A M,Andrea R G.A Kinetics of desilication of synthetic spent Bayer liquor seeded with cancrinite and cancrinite/sodalite mixed-phase crystals[J].Crystal Growth,1999,200(1):251-264
    [70]Fogg A M,Price S J,Francis R J,O'Brien S,et al.Determination of the Kinetics of Crystallisation of Gibbsite using Time Resolved in situ Energy Dispersive Powder X-Ray Diffraction[J].Materials Chemistry,2000,10(4):2355-2357.
    [71]Grandjean D,Beale A M,Petukhov A V,et al,Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions[J].American Ceramic Society,2005,127(7):144-154.
    [72]Avrami M.Kinetics of phase change(Ⅰ)-General theory[J].Physical Chemistry,1939,7(12):1103-1112.
    [73]Avrami M.Kinetics of phase change(Ⅱ)-Transformation-time relations for random distribution of nuclei[J].Physical Chemistry,1940,8(12):212-224.
    [74]Avrami M.Kinetics of phase change(Ⅲ)-Granulationphase change and microstructure [J].Physical Chemistry,1941,9(2):177-184.
    [75]Bansal N P,Doremus R H,Bruce A J,et al.Kinetics of crystallization of ZrF_4-BaF_2-LaF_3glass by differential scanning calorimetry[J].American Ceramic Society,1983,66(4):233-238.
    [76]Jonhson W A,Mehl R F.Reaction kinetics in processes of nucleation and growth[J].Transactions of the Metallurgical Society of AIME,1939,135(4):416-442.
    [77]Ray C S,Huang W H,Day D E.Crystallization kinetics of a lithia-silica glass:effect of sample characteristics and thermal analysis measurement techniques[J].American Ceramic Society,1991,74(1):60-66.
    [78]Bansal N P,Doremus R H,Bruce A J,et al.Kinetics ofcrystallization of ZrF_4-BaF_2-LaF_3glass by differentialscanning calorimetry[J].American Ceramic Society,1983,66(4):233-238.
    [79]Dey S K,Chakraborty I N.Determination of reaction kinetic parameters from variable temperature DSC or DTA[J].Thermal Analysis and Calorimetry,2005,31(1):177-182.
    [80]Bansal N P,Bruce A J,Doremus R H,et al.The Influence of Glass Composition on the Crystal Growth Kinetics of Heavy Metal Fluoride Glasses[J].Non-Crystalline Solids,1985,70(10):379-396.
    [81]Yi Zhang,Ming Lv,Dongdan Chen,Jianqing Wu.Leucite crystallization kinetics with kalsilite as a transition phase[J].Materials Letters,2007,61(5):2978-2981.
    [82]Rahul Vaish,Varma K B R.Glass transition and crystallization kinetics of CsLiB_6O_(10)glasses by differential scanning calorimetry[J].Crystal Growth,2007,307(2):477-482.
    [83]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001,47-111.
    [84]邓红梅,等.中国稀土学会第二界学术年会论文集[A].二分册,北京,1990,.126.
    [85]陈镜泓,李传儒.热分析及其应用[M].科学出版社,1985.183.
    [86]黄波.固体材料及应用[M].第一版,广州:华南理工大学出版社,1995.182-183.
    [87]Kumazawa H,Oki K,Cho H M.Hydrothermal synthesis of ult rafine ferrite particles[J].Chemical Engineering Communications,1992,115(3):25-33.
    [88]Upadhyay C,Verma H C,Rath C.Messbauer studies of nanosize Mn_(1-x)Zn_x Fe_2O_4[J].Alloys and Compounds,2001,326(12):94-97.
    [89]廖森.实验设计与数据挖掘技术[M].中国教育文化出版社,2006.135.
    [90]Llopiz J,Romero M M,Jerez A,et al.Generalization of the Kissinger equation for seceral kinetic models[J].Thermochemica Acta,1995,256(2):205-211
    [91]Nobuyoshi K.Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature[J].Thermochemica Acta,1995,258(1):145-159.
    [92]Mohamed A.Mohamed,Andrew K.Galwey,Samith A.Halawy.Kinetic and thermodynamic studies of the nonisothermal decomposition if anhydrous copper(Ⅱ)formate in different gas atmospheres[J].Thermochemica Acta,2004,411(1):13-20.
    [93]Nabajyoti Saikia,Pinaki Sengupta,Pradio Kumar Gogoi,et al.Kinetics of dehydroxylatioin of kaolin in presence of oil field effluent treatment plant sludgue[J].Applied Clay Science,2002,22(1):93-102.
    [94]常铁军,祁欣.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,1999.32-34.
    [95]马瑞廷,田彦文,毕韶丹,等.镍铁氧体纳米晶的制备及电磁性能研究[J].东北大学学报(自然科学版),2007,28(6):847-851.
    [96]Wei Q M,Li J B,Chen Y J.Cation distribution and infrared properties of Ni_xMn_(1-x)Fe_2O_4ferdtes[J].Materials Acience,2001,36(21):5115-5118.
    [97]Jean R,Patricia B R.The devitrification of a LAS glass matrix studied by X-ray powder Diffraction[J].Solid State Sciences,2002,4(7):999-1004.
    [98]Ohlberg S M,Strickler D W.Determination of percent crystallinity of partly devitrified glass by X-ray diffraction[J].American Ceramic Society,1962,45(3):170-171.
    [99]Lin S P,Fung K Z,Hon Y M,et al.Crystallization kinetics and mechanism of the Li_xNi_(2-Cx)O_2(0<x<p1)from Li_2CO_3 and NiO[J].Crystal Growth,2002,234(1):176-183.
    [100]Taplin J H.Index of reaction-A unifying concept for the reaction kinetics of powders[J].American Ceramic Society,1974,57(3):140-143.
    [101]Thompson C V,Greer A L,Spaepen F.Crystal Nucleation in Amorphous (Au_(100-yUCu_y)_(77)Si_9Ge_(14)Alloys[J].Acta Metallurgicaet Materialia,1983,31(1):1883-1894
    [102]Holzer J C,Kelton K F.Kinetics of amorphous to icosahedral phase transition in Al-Cu-V Alloy[J].Acta Metallurgicaet Materialia,1991,39(7):1833-1843
    [103]Ghosh G,Chandrasekaran M,Delaey L.Effect of micro-additions of Mo,P,Si and Ti on the thermal stability of Ni_(24)Zr_(76)metallic glass[J].Acta Metallurgicaet Materialia,1991,39(1):37-46.
    [104]Bakai A S,Hermarm H,Lazarev N P.Diffusion-limited crystallization of heterogeneous glasses[J].Philosophical Magazine A,2002,82(8):1521-1539.
    [105]袁爱群.聚磷酸铝、正磷酸锌及磷酸复盐的新法合成、光谱特征、热化学和分解动力学[D].南宁:广西大学图书馆,2007.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700