ZrO_2(3Y)-CaO-SiO_2-TiO_2纳米复相陶瓷的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复相陶瓷具有优良的室温和高温力学性能,使其在切削刀具、轴承、高温发动机部件等诸多方面都有广阔的应用前景。利用纳米复相陶瓷在高温下具有的超塑性进行成形加工是实现复杂形状零件近净成形的重要手段。本文以ZrO_2(3Y)-CaO-SiO_2-TiO_2纳米复相陶瓷为研究对象,按照“粉体合成-块体制备-性能测试”这一工艺路线并结合组织性能分析来研究ZrO_2(3Y)-CaO-SiO_2-TiO_2纳米复相陶瓷。
     采用醇-水溶液加热法结合共沉淀过程制备了分散性良好的纳米ZrO_2(3Y)-CaO-SiO_2-TiO_2粉体。着重研究了煅烧温度对粉体成分、物相组成、晶粒尺寸以及粉体烧结活性的影响。利用透射电镜、扫描电镜、电子探针、X射线衍射仪、比表面积测定仪等测试手段监测整个制备工艺过程并对粉体进行表征。最终得到了平均粒径为11~15nm,比表面积为69.15m~2·g~(-1),各组分均匀分布的ZrO_2(3Y)-CaO-SiO_2-TiO_2纳米复合粉体。
     采用真空热压烧结方法制备了陶瓷块体,研究了烧结温度对ZrO_2(3Y)-CaO-SiO_2-TiO_2陶瓷块体微观组织和力学性能的影响,结果表明其合适的真空热压烧结温度为1250~1300℃。1300℃烧结时制得的陶瓷块体平均晶粒尺寸为230nm左右,相对密度可达97.8%,硬度值达1400.58kgf·mm~(-2)。
     陶瓷的超塑性压缩实验表明,在1400~1450℃的温度范围内,材料表现出良好的超塑成形性能。在整个压缩变形过程中,材料没有出现明显的应变软化,显示出与超塑性拉伸变形截然不同的特性。
Owning excellent mechanical properties from ambient to elevated temperature, nanocomposite ceramics are considered as promising materials with their application in cutting-tools, bearing and engine components, et al. Components with complex shape can be made of nanocomposite ceramic by taking advantages of its superplasticity, which is an important way in near-net shape forming. ZrO_2 (3Y)-CaO-SiO_2-TiO_2 nanocomposite ceramic was studied under the route of“powders synthesis—composite sintering—performance testing”. The microstructures and mechanical properties of ZrO_2(3Y)-CaO-SiO_2-TiO_2 nanocomposite ceramic have been investigated systematically.
     ZrO_2(3Y)-CaO-SiO_2-TiO_2 powders with excellent chemical homogeneity were synthesized by heating of ethanol-aqueous salt solutions combined co-precipitation method. The influences of sintering temperature on compositions, phase composition, particle size and sintering activity were studied. TEM, SEM, XRD, BET and other instruments were used to test the whole process and identify the powder’s characteristic. Nano-scaled ZrO_2(3Y)-CaO-SiO_2-TiO_2 powders with particle size of 15~20nm,specific surface area of 69.15m2·g-1 can be obtained. The powders also showed uniform grain size, less agglomeration and good sintering activity.
     ZrO_2(3Y)-CaO-SiO_2-TiO_2 ceramic composite was obtained by vacuum hot- pressing sintering. The microstructure and the mechanical properties of the ceramics under different sintering temperature were investigated. After hot-pressing sintering at 1300℃, the average grain size of the ceramic material is about 230nm, the relative density is up to 97.8% and the hardness is 1400.58kgf·mm~(-2).
     Superplastic compressive tests demonstrate that the material behaves good deformability in temperature range of 1400℃to 1450℃. During the compression tests, the material did not show any strain softening, which was quite different from the results obtained in the tensile tests of this kind of material.
引文
[1] Gleiter H, Nanocrystalline Materials[J]. Pro. Mater. Sci., 1989, 33: 223-231.
    [2] 新原皓一.セラミツクス复合体のナノ构造制御と机械の性质[J].粉体および粉末冶 金,1990, 37(2): 43-46.
    [3] 单妍,王昕,尹衍升等.ZTA 纳米复相陶瓷的研究[J].硅酸盐通报,2002, 21(2): 43-46.
    [4] Sakka Y, Ishii T, Suzuki T S, et al. Fabrication of High-strain Rate Superplastic Yttria-doped Zirconia Polycrystals by Adding Manganese and Aluminum Oxides[J]. J. Euro. Ceram. Soc., 2004, 24(2): 449-453.
    [5] 高濂,李蔚.纳米陶瓷[M].北京:化学工业出版社,2002, 2-6.
    [6] 刘刚,王铀.纳米陶瓷的发展及研究现状[J].陶瓷,2006, (1): 8-15.
    [7] 郑冶沙,严东生,高濂.氧化锆纳米陶瓷室温微区循环超塑性的研究[J].无机材料学报,1995, 10(4): 411-415.
    [8] 叶建东,陈楷.陶瓷材料的超塑性[J].无机材料学报,1998, 13 (3): 257-269.
    [9] 郑昌琼,冉均国.新型无机材料[M].北京:科学出版社,2003, 332.
    [10] Bhaduri S, Bhaduri S B. Enhanced Low Temperature Toughness of A12O3- ZrO2 Nano/nano Composites[J]. Nanostr. Mater., 1997, 8(6): 755-763.
    [11] Balmer M L, Lange F F, Jayaram V. Development of Nano-composite Microstructures in ZrO2-A12O3 via the Solution Precursor Method[J]. J. Am. Ceram. Soc., 1995, 78(6): 1489-1494.
    [12] 沙菲,宋洪昌.纳米陶瓷粉体的制备[J].中国粉体技术,2004, (1): 49-52.
    [13] George R A, Bessettb N F. Reducting the Manufacturing Cost of Tubular SOFC Technology[J]. Powder Source, 1998, 71: 131-137.
    [14] 舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J].无机化学学报,1999, 15(1): 1-8.
    [15] 施锦行.纳米陶瓷的制备及其特性[J].中国陶瓷,1997, 33(3): 36-38.
    [16] 高濂,李蔚,王宏志.超高压成型制备 Y-TZP 纳米陶瓷[J].无机材料学报,2000, (12): 1005-1008.
    [17] 袁望治,劳令耳.纳米 ZrO2(4Y)两次成型常压烧结致密特性及其电导率[J].材料科学与工程,2000, 18(3): 57-60.
    [18] Rhodes W H. Agglomerate and particlesize effects on sintering yttria-stabilized zirconia [J]. J. Am. Ceram. Soc., 1981, (64): 19-22.
    [19] Mayo M J. Processing of nanocrystalline ceramics from ultrafine particles[J]. Int. Mater. Rev.,1996, 41(3): 95.
    [20] Kumar K N P, Keizer K, Burggraaf A J, et al. Densification of nanostructured TiO2 assisted by a phase-transformation [J]. Nature, 1992, 382: 48-51.
    [21] Miller K T, Zukoski C F. Osmotic consolidation of suspensions and gels[J]. J. Am. Ceram. Soc., 1994, 77(9): 2473-2478.
    [22] Gao L, Li W, Wang H Z, et al. Fabrication of nano Y-TZP materials by super-high pressure compaction[J]. J. Euro. Ceram. Soc., 2001, (21): 135-138.
    [23] Raming T P, Winnubst A J A, Zyl W E V, et al. Densification of zirconia-hematite nanopowders[J]. J. Euro. Ceram. Soc., 2003, (23): 1053-1060.
    [24] Hyun T K, Young H H. Sintering of nanocrystalline BaTiO3[J]. Ceram. Int., 2004, (30): 1719-1723.
    [25] 李亚利,梁勇,佟百运等.纳米非晶 Si3N4 粉的超高压低温烧结[J].材料研究学报,1997, 11(5): 473-478.
    [26] Wan J L, Duan R G, Amiya K, et al. Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts[J]. Script. Mater., 2005, 53: 663-667.
    [27] Gao L, Wang H Z, Hong J S, et al. Mechanical Properties and Microstructure of Nano-SiC-Al2O3 Composites Densified by Spark Plasma Sintering[J]. J. Euro. Ceram. Soc., 1999, (19): 609-613.
    [28] 张久兴,刘科高,周美玲.放电等离子烧结技术的发展及应用[J].粉末冶金技术,2002, 20(3): 129-134.
    [29] Nygren M, Shen Z J. On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering[J]. Solid State Science, 2003, (5): 125-131.
    [30] 雷燕,熊惟皓.陶瓷材料纳米烧结研究进展[J].材料导报,2003, 17(5): 28-30.
    [31] 晋勇,薛屺,汤小文等.纳米金属陶瓷材料的微波烧结工艺研究[J].机械工程材料,2004, 28(12): 49-51.
    [32] Hahn H, Logas J, Averback R. Sintering Characteristics of Nanocrystalline TiO2[J]. J. Mater. Res., 1990, 5: 609.
    [33] 张凯峰,陈国清,王国峰.陶瓷材料超塑性研究进展[J].无机材料学报,2003, 18(4): 705-711.
    [34] 宋玉泉,徐进,胡萍等.结构陶瓷的超塑性[J].吉林大学学报,2005, 35(3): 225-242.
    [35] 周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995: 221-228, 264-265.
    [36] 卢旭晨,徐延献.陶瓷超塑性及其应用[J].硅酸盐通报,1997, (3): 50-54.
    [37] Hines J A, Ikuhara Y, Chokshi A H, et al. The Influence of Trace Impurities on the Mechanical Characteristics of a Superplastic 2 mol% Yttria Stabilized Zirconia[J]. Act. Mater., 1998,46(15): 5557-5568.
    [38] 叶建东,陈楷.超塑性 Y-TZP 的压缩塑性变[J].无机材料学报,1997, 12(2): 181-186.
    [39] Kim B N, Hiraga K, Sakka K. M. A High-strain-rate Superplastic Ceramic[J]. Nature, 2001, 413: 288-291.
    [40] Oka M, Tabuchi N. High Strain-rate Superplasticity in Zirconia-based Ceramics[J]. J. Mater. Sci. Tec., 2000, 40: 49-54.
    [41] Li W, Gao L. Nano ZrO2(Y2O3) Particles Processing by Heating of Ethanol Aqueous Salt Solutions[J]. Ceram. Int., 2001, 27: 543-546.
    [42] Lee D W, Ha G H, Kim B K. Synthesis of Cu-Al2O3 Nano Composite Powder[J]. Script. Mater., 2001, 44(8): 2137-2140.
    [43] Vahlas C, Caussat B, Serp P, et al. Angelopoulos Principles and applications of CVD powder technology[J]. Mater. Sci. Eng., 2006, 53(12): 1-72.
    [44] Sarkar D, Mohapatra D, Ray S, et al. Synthesis and characterization of sol-gel derived ZrO2 doped Al2O3 nanopowder. Ceram. Int., 2007, 33(7): 1275-1282.
    [45] Anné G, Vanmeensel K, Neirinck B, et al. Ketone-amine based suspensions for electrophoretic deposition of Al2O3 and ZrO2. J. Euro. Ceram. Soc., 2006. 26(16): 3531-3537.
    [46] 邓淑华,温立哲,黄慧民等.水热法制备纳米二氧化锆粉体[J].稀有金属,2003, 27(4): 486-490.
    [47] Feng R M, Yang X J, Ji W J, et al. Hydrothermal synthesis of stable mesoporous ZrO2-Y2O3 and CeO2-ZrO2-Y2O3 from simple inorganic salts and CTAB template in aqueous medium[J]. Materials Chemistry and Physics, 2007, (13): 1-5.
    [48] 高瑞平,李晓光.先进陶瓷物理与化学原理及技术[M].北京:科学出版社,2001, 267.
    [49] 陈小兵,余双平,邓淑华等.纳米粉体干燥方法的研究进展[J].无机盐工业,2004, 36(1): 7-9.
    [50] 郭瑞松,蔡舒,季惠明等.工程结构陶瓷[M].天津:天津大学出版社,2002, 36.
    [51] Li J G, Ikegami T, Lee J H et al. Co-precipitation Synthesis and Sintering of Yttrium Alumina Garnet(YAG) Powders: the Effect of Precipitant. J. Euro. Ceram. Soc., 2000, 20: 2395-2405.
    [52] 颜秀茹,郭伟巍,宋宽秀等.CaO-ZrO2 纳米粉体的制备和表征[J].硅酸盐通报,2002, 4: 52-55.
    [53] 李蔚,高濂,李强.热压烧结制备纳米 Y-TZP 材料形貌及结构的分析[J].硅酸盐学报,2001, 29(1): 84-86.
    [54] Shi J L, Lin R M, Yen T S. Crystallite Growth in Yttria Doped Superfine Zirconia Powders and their Compacts. A Comparison between Y-TZP and YSZ[J]. Ceram. Int, 1996, 22(2): 137.
    [55] Gouvea D, Castro R H R. Sintering: the Role of Interface Energies[J]. Applied SurfaceScience, 2003, 217: 194-201.
    [56] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982: 340.
    [57] 李标荣.电子陶瓷工艺原理[M].武汉:华中工学院出版社,1986: 135~136.
    [58] 王国峰.3Y-TZP 纳米陶瓷材料制备和超塑成形研究[D].哈尔滨:哈尔滨工业大学,2002, 4-6.
    [59] Herring C. Effect of change of sintering phenomena [J]. J. Appl. Phys., 1950, 2940: 301-303.
    [60] Bannister M J, Barners J M. Solubility of TiO2 in ZrO2 [J]. J. Am. Ceram. Soc., 1986, 69(11): 269-271.
    [61] Jin G R. Ceramic introduction [M]. Translationed by Inorganic Materials Laboratory of tinghua university. Beijing: Construction Industry Publishing House, 1982, 496-497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700