Bi_(1.5)ZnNb_(1.5)O_7陶瓷的合成与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bi_2O_3-ZnO-Nb_2O_5(BZN)系微波介质陶瓷作为一类很有发展前途的低温烧结陶瓷,自问世以来,已受到人们的广泛关注。在以往对立方焦绿石结构的Bi_(1.5)ZnNb_(1.5)O_7陶瓷的研究中,粉体多由传统的固相法制备。固相法制得的粉体易团聚,容易引入杂质,煅烧温度高(~800℃)。陶瓷粉体的性能将影响陶瓷的烧结性能和电性能。为了克服固相法的不足,本论文采用水热法和熔盐法制备Bi_(1.5)ZnNb_(1.5)O_7陶瓷粉体,系统的研究不同工艺对合成粉体物相和显微组织的影响,以及对陶瓷烧结性能和介电性能的影响。
     采用水热法,以Bi(NO_3)_3·5H_2O,ZnO和Nb_2O_5为原料,以KOH作为矿化剂,合成单相Bi_(1.5)ZnNb_(1.5)O_7纳米粉体。结果表明:水热条件的变化对水热合成Bi_(1.5)ZnNb_(1.5)O_7粉体的物相和晶粒尺寸有很大影响,但对其形貌影响不大。TEM表明,合成的粉体均呈颗粒状,粒径30~50nm。当Nb:Bi=2.0(摩尔比)时,随KOH浓度增加和反应时间的延长,粉体粒径先变小,后变大,相应的比表面积变化正好与之相反;随温度升高,粉体粒径逐渐减小,比表面积逐渐增大,但在180℃后,其减小的趋势已很不明显。在KOH浓度为1.8mol·L~(-1),220℃水热反应24h的条件下,合成粉体的比表面积最大,为28.8m2·g-1,相应的粉体粒径最小,为51nm;由Scherrer公式计算得到的粉体晶粒也最小,为43nm。
     将固相法与水热法合成的粉体按一定比例混合后烧结的Bi_(1.5)ZnNb_(1.5)O_7陶瓷试样,物相并不发生改变。随纳米粉体掺入量X(wt%)的增加和烧结温度的提高,介电常数ε先增大,后减小,介电损耗tanδ变化与之相反。掺入纳米粉体后,晶粒得到细化,但烧结致密度下降。当X=20,30,在晶粒细化的同时,出现了少量晶粒的急剧长大,介电性能相应变差。总体看来,在X=10,1000℃烧结陶瓷样品的ε最大,约148,tanδ最小,约3.365×10~(-4),表现出更高的频率稳定性。
     以各组分氧化物为原料,KCl为熔盐,采用熔盐法在800~950℃得到(α+β)复相粉体,在950~1000℃可以合成单相颗粒状的Bi_(1.5)ZnNb_(1.5)O_7粉体。合成温度对粉体形貌和尺寸影响较大,随温度升高,粉体粒径增大,呈明显的颗粒状,且棱角分明;熔盐含量和保温时间对其影响相对较小。当料盐比为1:1(质量比)时,在1000℃保温2h,粉体粒径约2~5μm。与固相法相比,合成粉体分散性较好,粒度分布比较均匀,无团聚现象,但合成温度较固相法高,粉体粒径也比固相法大。烧结样品最大致密度与固相法相当,但烧结温度略有升高。在1050℃时熔盐法制备的陶瓷样品的ε= ~155,tanδ= ~3.1×10~(-3)。
Microwave dielectric ceramics based Bi_2O_3-ZnO-Nb_2O_5(BZN) system have been widely noted as a promising low temperature cofiring ceramics system since they were explored. In the course of previous study on the cubic pyrochlore phase Bi_(1.5)ZnNb_(1.5)O_7, the powders were prepared by the conventional solid state method (CS). The solid state reaction lead to agglomeration and impurity easily, and the calcining tmperature of the powders prepared by CS is high (about 800℃). The capability of powders will affect on the bulk density and dielectric behaviors of ceramics. To overcome the shortcomings of CS, the Bi_(1.5)ZnNb_(1.5)O_7 powders was synthesized by hydrothermal method(HTM) and molten salt synthesis(MSS) in this paper, and the systemic investigations were focused on the effects of different HTM parameters on the phase and microstructure of the powders and the bulk density and dielectric behaviors of ceramics.
     The single-phase Bi_(1.5)ZnNb_(1.5)O_7 nanopowder was successfully synthesized by HTM from the starting materials: Bi(NO_3)_3·5H_2O, ZnO, Nb_2O_5 and the mineralizer: KOH. The results show that the hydrothermal conditions have obvious effects on the phase and the grain sizes of Bi_(1.5)ZnNb_(1.5)O_7 nanopowders, but not obvious on the morphology. TEM photographs reveal that the powders present the regularly granular shape and its sizes are about 30~50nm. With the increase of KOH concentrations and reaction times, the sizes of Bi_(1.5)ZnNb_(1.5)O_7 nanopowders initially became small, and then big, but the tendency of the specific surface areas was reverse when the molar ratio of Nb to Bi was two. With the increase of synthesis temperature, the sizes of the powders also became increasingly small, and the specific surface areas became big, but the tendency was not very obvious when the synthesis temperature is above 180℃. The maximal specific surface area of the nanopowders is 28.8 m~2·g~(-1), the minimal powders’size is 51 nm and the minimal grain size calculated by Scherrer equation is 43nm when the Bi_(1.5)ZnNb_(1.5)O_7 powder is synthesized under the hydrothermal conditions with a synthesis temperature of 220℃, a reaction time of 24 h and a KOH concentration of about 1.8 mol·L~(-1).
     The phase of Bi_(1.5)ZnNb_(1.5)O_7 samples did not change when the ceramics was sintered using the compound of powders synthesized by HTM and CS. With the increase of X (wt%), the mass of nanopowders and sintering temperature, the dielectric constantsεinitially increased, and then decreased, and the change of dielectric losses tanδwas even reverse. The grain sizes of the ceramics samples became fined when the nanopowders synthesized by HTM was mixed with the powders synthesized by CS, but the bulk density decreased. However, when the X was 20 or 30, a few of grains grew unusually, and the dielectric behaviors decreased. As a whole, it can be obtained that the maximal dielectric constant is 148 and the minimal dielectric loss is 3.365×10-4 when X is 10.
     The phases ofαandβcould be obtained when the powders were synthesized by KCl molten salt synthesis at 800~950℃using the component oxides as raw materials. The phase ofαcould be obtained at 950~1000℃. The effect of synthesizing temperature on the morphology and sizes of the powders is obvious but the mass ratio of raw materials to salt and reaction times are not. With the increase of synthesis temperature, the powders appear to be grained shape and its sizes increase. The size of the powders synthesized by MSS at 1000℃for 2h is about 2~5μm when the weigh ratio of the raw materials to salts is one. Comparing with CS, the powders synthesized by MSS does not appear the tendency of agglomerate, but its sizes were bigger and synthesis temperature were high than those by CS. The bulk density of ceramics samples synthesized by MSS corresponds to those by CS, however, the sintering temperature lightly increased. The dielectric constant is about 155 and the dielectric loss is about 3.1×10-3.
引文
[1] Belyaev B A, Drokin N A, Leksikov A A. Investigation of materials at microwave frequencies using microstrip sensors[J]. Russ Phy J, 2006, 49(9): 952-959.
    [2] 杨辉,张启龙,王家邦. 微波介质陶瓷及器件研究进展[J]. 硅酸盐学报,2003, 31(10): 965-973.
    [3] 余洪滔,刘韩星,田中青. 滤波器用微波介质陶瓷材料[J]. 功能材料,2004, 35(增刊): 1407-1411.
    [4] Wakino K. Recentdevelopment of dielectric resonator materials and filters in Japen[J]. Ferroelectrics, 1989, 91(3): 69-86.
    [5] Fang Y, Lanagan M T, Agraual D K, et al. An Investigation Demonstrating the Feasibility of Microwave Sintering of Base-Metal-Electrode Multilayer Capacitors[J]. J Electroceram, 2005, 15(1): 13-19.
    [6] Xu Y B, He Y Y, Chen X M, et al. Characteristics of Ba6-3XNd8+2XTi18O54 microwave dielectric ceramics derived from ethylenediamine tetraacetic acid precursor[J]. Mater Electr, 2002, 13(4): 1246-1249.
    [7] Grigor’eva L F, Petrov S A, Sinel’shchikova O Yu, et al. Investigation into the formation of phase with a B2Ti9O20-type structure in the BaO-TiO2 and BaO-SrO-TiO2 system[J]. Class phy Chem, 2007, 33(1): 72-79.
    [8] Liou Yi-Cheng, Wu Chi-Ting, Chung Tzu-Chin. Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process[J]. J Mater Sci, 2007, 42(10): 3580-3587.
    [9] 李龙土. 功能陶瓷材料研究的若干进展[J]. 功能材料,2004,35(增刊):21-23.
    [10]章锦泰,许赛卿,周东祥. 微波介质材料与器件的发展[J]. 电子元件与材料,2004,23(6):6-9.
    [11]Choy J H, Han Y S, Sohn J-H, et al. Microwave Characteristics of BaO-TiO2 Ceramics Prepared Via a Citrate Route[J]. J Am Ceram Soc, 1995, 78(5): 1169-1172.
    [12]Mhaisakar S G, Readey D W, Akbar S A, et al. Infared Reflectance Spectra of Doped BaTi4O9[J]. J Solid State Chem, 1991, 95: 275-282.
    [13]Masse D J. A New Low-loss-High-K Temperature-Compensated Dielectric for Microwave Application. Proc IEE, 1971, 59(11): 1628-1629.
    [14]Ploude J K, Ren C L. Application of Dielectric Resonators in Microwave Components.IEEE Trans. Microwave Theory Tech, 1998, MIT-19(8): 754-770.
    [15]Kutty T R N, Padmini P. Synthesis of Polytitanates from Ba(OH)2-TiO2-H2O System Though Gel to Crystallite Conversion[J]. J Mater Sci Lett, 1996, 15: 1973-1975.
    [16]Choy J H, Han Y S, KIM J T. Citrate Route to Ultra-fine Batium Polytitanates with Microwave Dielectric Properties[J]. J Mater Chem, 1995, 5(1): 57-63.
    [17]Gandhi O, Chen J. Millimeter-Resolution dosimetry for EM from mobile telephones and power lines[M]. Springer US, 1996, 139-150.
    [18]Negas T, Yeager G, Bell S, et al. BaTi4O9/ Ba2Ti9O20-Based Ceramics Resurrected for Modern Microwave application[J]. J Am Ceram Soc Bumm, 1993, 72(1): 80-89.
    [19]Takadan T, Wang S F. Effest of Glass Addition on BaO-TiO2-WO3 Microwave Ceramics[J]. J Am Ceram Soc, 1994, 77(7): 1909-1916.
    [20]Nishi S, Yano S. BaO-TiO2-WO3 Microwave Ceramics and Crystalline BaWO4[J]. J Am Ceram Soc, 1988, 71(1): 11-17.
    [21]宋英,王福平,张明福. BaO2-TiO2 系陶瓷微波介电性的近期研究进展[J]. 硅酸盐通报,1998,(3):50-52.
    [22]Kolar D, Gaberscek S, Volavsek B, et al. Synthesis and Crystal Chemistry of BaNd2Ti3O10, BaNd2Ti5O14 and Nd4Ti9O24[J]. J Solid State Chem, 1981, 38(2): 158-164.
    [23]Bolton R L. Temperature Compensating Ceramics Capacitors in the system Barium Rare-Earth-Oxide Titania. USA: University of Illinois, 1968, 12-18. [ 24 ] Ohsato H. Science of Tungstenbronze-Type Like Ba6-3xR8+2xTi18O54(R=Rare-Earth) Microwave Dielectric Solid Solutions[J]. J Eur Ceram Soc, 2001, 32(21): 2703-2711.
    [25]Ohsato H, Ohasti T, Nishigaki T, et al. Formation of Solid Solution of New Tungsten Bronze-type Microwave Dielectric Compound Ba6-3xSm8+2xTi18O54(R=Nd and Sm, 0≤x≤1) [J]. Jpn Appl Phys, 1993, 31(32): 4323-4326.
    [26]向勇,谢道华. ABO3 型氧化物的结构与性能及应用[J]. 材料工程,2000,(9):15-18.
    [27]徐建梅,周东祥. 微波介质陶瓷的研究现状及发展趋势[J]. 非金属矿,2001,24(增刊):47-49.
    [28]Wang H, Wang X L, Yao X. Phase transformation and phase distribution of pyrochlore structure in Bi2O3-ZnO-Nb2O5 system. 1996, IEEE: 192-195.
    [29]Liu D H, Liu Y, Huang S Q, et al. Phase structure and dielectric properties of Bi2O3-ZnO-Nb2O5-based dielectric ceramics[J]. J Am Ceram Soc, 1994, 76(8): 2129-2132.
    [30]Wang H, Wang X L, Yao X. Phase equilibrium in Bi2O3-ZnO-Nb2O5 system[J]. Ferroelectrics, 1997, 195: 19-22.
    [31]Wang H, Yao X. Structure and dielectric properties of pyrochlore-fluorite biphase ceramics in the Bi2O3-ZnO-Nb2O5 system[J]. Mater Res Soc, 2001, 1(16): 83-87.
    [32]Wang X L, Wang H, Yao X. Structure, phase transformations and dielectric properties of pyrochlores containing bismuth[J]. J Am Ceram Soc, 1997, 80(10): 2745-2748.
    [33]汪宏,王晓莉,姚熹. Bi2O3-ZnO-Nb2O5 系中焦绿石结构与相分布[J]. 材料研究学报,1998,12(2):167-170.
    [34]魏建中,张良莹,姚熹. Bi2O3-ZnO-Nb2O5(BZN)系陶瓷的熔融物性研究[J]. 硅酸盐学报,1999,27(3):362-364.
    [35]魏建中,陈忍昌,张良莹等. Bi2O3-ZnO-Nb2O(BZN)系低对称 β 相陶瓷的相转变与显微结构[J]. 硅酸盐学报,2001,29(2):142-145.
    [36]魏建中,陈忍昌,张良莹等. 银掺杂 Bi2O3-ZnO-Nb2O5系陶瓷介电及熔融物性的影响[J]. 无机材料学报,2001,16(2):319-324.
    [37]Yan M F, Ling H C, Rhodes W W. Low-firing temperature-stable composition based on bismuth nickel zinc niobates[J]. J Am Ceram Soc, 1990, 73(4): 1106-1107.
    [38]Wang H, Du H L, Peng Z, et al. Improvements of sintering and dielectric properties on Bi2O3–ZnO–Nb2O5 pyrochlore ceramics by V2O5 substitution[J]. Ceram Int, 2004, 30(7): 1225-1229.
    [39]任庆利. Bi2O3-ZnO-Nb2O5(BZN)系陶瓷介电常数及温度系数的优化[J]. 西安交通大学学报,2000,34(8):65-69.
    [40]杜慧玲,姚熹,张良莹. Bi2O3-ZnO-Nb2O5-CaO 四元焦绿石系统相结构与介电性能研究[J]. 功能材料,2001,10(增刊):628-631.
    [41]Valant M, Davies P K. Synthesis and dielectric properties of pyrochlore solid solutions in the Bi2O3-ZnO-Nb2O5-TiO2 system[J]. J Mater Sci, 1999, 34(2): 5437-5442.
    [42]周焕福,黄金亮,王茹玉等. Bi4Ti3O12 掺杂对(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 陶瓷结构与介电性能的影响[J]. 功能材料,2005,36(8):1204-1206.
    [43]周焕福,黄金亮,殷镖等. Sm2O3 掺杂的 Bi2O3-ZnO-Nb2O5 基陶瓷的结构与介电性能[J]. 功能材料与器件学报,2005,1(12):215-218.
    [44]周焕福,黄金亮,王茹玉等. BiVO4 掺杂对(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 陶瓷介电性能的影响[J]. 硅酸盐学报,2005,33(12):1453-1456.
    [45]Mousavand T, Takami S, Umetsu M, et al. Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles[J]. J Mater Sci, 2006, 41(5): 1445-1448.
    [46]付敏,江志东,马紫峰等. 微波水热法合成钛酸钠盐纳米管[J]. 无机材料学报,2005,20(4):808-814.
    [47]Hong M L. Single- and multi-hole baffles-a heat transfer and fluid flow control forhydrothermal growth[J]. J Cryst Growth, 2005, (275): 561–571.
    [48]Yan J, Shan J, Yong Z J, et.al. Preparation of SrTiO3 nanofibres by hydrothermal method [J]. J Mater Sci, 2005, (40): 6315-6317.
    [49]Kitsunai, Hiroshi, Development of miniature needle-type hydrophone with lead zirconate titanate polycrystalline film deposited by hydrothermal method[J]. Jpn J Appl Phys, 2006, 45(5): 4688-4692.
    [50]Hsing-I, Hsiang, Chia-Hou Chang. Molten salt synthesis and magnetic properties of 3BaO·2CoO·12Fe2O3 powder[J]. J Magn Mater, 2004, (278): 218–222.
    [51]侯麦珍,杨留栓,黄金亮,等. 熔盐法合成片状 SrBi2Nb2O9粉体[J]. 硅酸盐学报,2006,34(6):652-655.
    [52]Zha L L, Gao F, Zhang C S, et al. Molten salt synthesis of anisometric KSr2Nb5O15 particles[J]. J Cryst Growth, 2005, (276): 446–452.
    [53]涂朝阳,李坚富,游振宇等. 熔盐提拉法生长 Nd3+ : KGd(WO4)2 的单晶的性能研究[J]. 无机材料学报,2004,19(3):573-540.
    [54]吕文中,张道礼,黎步银等. 高εr微波介质陶瓷的结构介电性质及其研究进展[J]. 功能材料,2000,31(6):572-576.
    [55]Demazeau G. A route to the stabilization of new materials[J]. J Mater Chem, 1999, 9(1): 15-18.
    [56]Huang L Y, Xu K W, Lu J. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. Mater Medic, 2000, 11(11): 667-673.
    [57]邓宏,姜斌,曾娟等. 水热法在制备电子陶瓷粉体中的应用[J]. 材料导报,2001,15 (7):30-33.
    [58]王秀峰,王永兰,金志浩. 水热法制备纳米陶瓷粉体[J]. 稀有金属材料与工程,1995,24(4):1-6.
    [59]施尔畏,夏长泰,王步国. 水热法制备陶瓷粉体晶粒粒度[J]. 硅酸盐学报,1997,25(3):287-293.
    [60]元如林,施尔畏,夏长泰等.水热条件下钛酸钡晶粒生长基元模型[J].物理学报,1996,45(12):2082-2087.
    [61]施尔畏,夏长泰,仲维卓等.水热条件下钛酸钡粉体晶粒形成机理[J].硅酸盐学报,1996,24(1):45-53.
    [62]李汶军,施尔畏,仲维卓等.水热合成中负离子配位多面体生长基元模型与粉体的晶粒度[J].硅酸盐学报,1999,27(2):164-170.
    [63]仲维卓,刘光照,施尔畏.在热液条件下晶体的生长基元与晶体形成机理.中国科学(B),1994,24(4):394-399.
    [64]李汶军,施尔畏,郑燕青等. 氧化物晶体的成核机理与晶粒粒度[J]. 无机材料学报,2000,15(5):777-786.
    [65]Wang H, Liu J B, Zhu M K, et al. Hydrothermal synthesis of strontium bismuth tantalite powder[J]. Mater Lett, 2003, 57: 2371-2374.
    [66]Ma J, Cho J H, Lee Y H, et.al. Hydrothermal synthesis of (Bi0.5Na0.5)TiO3 piezoelectric ceramics,[J]. Mater Chem and Phys, 2006, (98): 5-8.
    [67]李雪冬, 朱伯铨. 熔盐法合成氧化物陶瓷粉体的研究进展[J]. 中国陶瓷,2006,42(3):11-15.
    [68]Kan Y M, Jin X H, Wang P L, et al. Anisotropic grain grouth of Bi4Ti3O12 in molten salt fluxes[J]. Mater Res Bulle, 2003, 33: 567-576.
    [69]Cahn J W. On the morphology Stability of growth crystals. in Crystal Growth, Edited by H. S. Peiser, Pergamon, Oxford, U.K. 1967, 681-690.
    [70]Park J H, Lee D H, Shin H S, et al. Transition of the particle-growth mechanism with temperature varation in the molten-salt method[J]. J Am Ceram Soc, 1996, 79: 1130-1132.
    [71]Champarnaud-Mesjard J C, Maniet M, Frit B, et al. Bismuth (III)-and antimony (V)-based ceramics with anion-deficient fluorite structure[J]. J Alloys Compd, 1992, 188: 174-178.
    [72]Cann D P, Randall C A, Shrout T R. Investigation of the dielectric properties of bismuth pyrochlore[J]. Solid State Commun, 1996, 100(7): 529-534.
    [73]Wang H, Elsebrock R, Schneller T, et al. Bismuth zinc niobate (Bi1.5ZnNb1.5O7) ceramics derived from metallo-organic decomposition precursor solution[J]. Solid State Commun, 2004, (132): 481-486.
    [74]Silva S A da, Zanetti S M, et al. Bismuth zinc niobate pyrochlore Bi1.5ZnNb1.5O7 from a polymeric urea-containing precursor[J]. Mater Chem and Phys, 2005, 10: 1-5.
    [75]翟学良,张素芳.水热条件对PbTiO3纳米晶粒径和形貌的影响[J].硅酸盐学报,2004,32(2):196-199.
    [76]王焕平,张启龙,杨辉.纳米粉体对低温烧结 CMS 微波介质陶瓷的改性[J]. 电子元件与材料,2006,25(9):37-42.
    [77]杨群保,李永祥,殷庆瑞等.晶化时间对水热法制备钛酸铋纳米粉体的研究[J].功能材料,2004,5(35): 585-587.
    [78]张学华,罗豪甦,仲维卓.负离子配位多面体生长基元模型及其在晶体生长中的应用. 中国科学(E 辑),2004,34(2):241 - 253.
    [79]Hayashi Y, Kimura T, Yamaguchi T. Mechanism of Ni-Zn Ferrite Formation in thePresence of Molten Li2SO4-Na2SO4[J]. J Am Ceram Soc Bull, 1985, 69(4): 322-325.
    [80]宋煜昕,李承恩,晏海学.熔盐法合成 SrBiTaO9 粉体[J].无机材料学报,2002,17(1):145-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700