DNA-纳米羟基磷灰石修饰电极的制备及在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA是活细胞中最重要的分子,它含有特定细胞的全部遗传信息,在分子生物学和生物医学领域的研究非常广泛。DNA生物传感器是当今生物传感技术的研究热点。用DNA修饰电极研究DNA与其他物质的相互作用,不仅能克服溶液电化学方法背景信号大,弱信号难以提取的缺点,而且DNA的用量大为减少,方法的灵敏度得到提高,以较少样品消耗得到多种作用参数。研究DNA与其它小分子的相互作用是生物化学和分子生物学中的重大课题,对疾病诊断、环境检测、医药研究和新药设计起着重要作用。水溶性阳离子卟啉具有优异的生物活性,可以作为潜在的抗癌、抗菌药物和核酸结构及动力学探针,其与DNA的相互作用成为研究的热门话题。对卟啉化合物与DNA结合模式的研究也有助寻求卟啉化合物的生物活性及其与DNA的结合模式之间的关系。DNA与药物分子等相互作用的研究,有助人们了解某些药物分子对DNA体内复制和转录的影响以及由此引起的物种性变异、各种化合物与DNA间亲和力的大小和化学核酸酶的作用机制等信息。
     本文合成了具有优良生物相容性和独特吸附性的羟基磷灰石(HAp),并制备了DNA-纳米羟基磷灰石修饰电极(dsDNA/HAp/GCE),用表面电化学法研究了DNA与其它小分子的相互作用。论文主要包括以下几个方面的内容:
     第一部分概述了DNA修饰电极制备方法的研究现状及DNA修饰电极的研究意义和应用。介绍了本论文的研究内容及特点。
     第二部分介绍了HAp的制备及表征。HAp [Ca10(PO4)6(OH)2]是常用的骨修复材料,其规则的立体化学结构和独特的多吸附位点使其在催化、蛋白质分离等领域倍受瞩目。本文采用共沉淀法与微乳液法方法,制备了纳米HAp,并分析了在微乳液介质中HAp的合成过程。
     第三部分研究了DNA与水溶性阳离子卟啉-三甲铵基苯基卟啉(TAPP)的相互作用及检测DNA损伤。利用滴涂法将具有优良生物相容性和独特吸附性的HAp修饰在玻碳电极上形成纳米薄膜。电化学实验结果证明该纳米HAp薄膜能有效地将双链DNA吸附其表面。采用循环伏安法和交流阻抗法系统研究了固定在HAp薄膜上的DNA与TAPP之间的相互作用并将此修饰电极用检测DNA损伤和测定卟啉类物质。实验结果表明,在50 ~ 250 mV·s-1扫描速度范围内该电极反应过程系表面吸附反应控制;在pH值为3.7 ~ 9.1的区间内,随pH值增大,TAPP的氧化还原峰都发生正移,这表明TAPP在DNA修饰电极上的氧化还原过程不仅有电子参与,而且还有质子参与;在pH = 7.0的磷酸盐缓冲溶液(PBS)中,随溶液离子强度增大,TAPP在DNA修饰电极上的表观式量电位不断正移,表明TAPP与DNA之间的相互作用主要是小沟槽的嵌入作用,二者可生成超分子化合物。根据Langmuir吸附公式,得出TAPP与DNA之间的结合常数为1.48×105 mol·L-1。
     第四部分研究了维生素B12与DNA的相互作用。采用循环伏安法系统研究了维生素B12与DNA在pH = 4.9的HAc-NaAc中相互作用的电化学行为,所得结论比溶液电化学法更具说服力。实验结果表明,DNA的存在能导致维生素B12还原峰电流的降低。通过测定裸玻碳电极和DNA修饰电极的一些电化学参数,证明维生素B12与DNA在该实验条件下结合生成了一种非电活性的超分子化合物,并利用一系列方程求得该超分子化合物的组成为1 : 1,结合常数β= 5.35×105 mol·L-1。
     第五部分研究了DNA修饰电极对氯霉素的电催化作用。利用dsDNA/HAp/GCE对氯霉素的电催化作用,建立了对氯霉素含量进行定量分析的一种电分析方法。在pH = 6.0的KH2PO4-Na2HPO4缓冲溶液和0.1 mol·L-1 KCl溶液中,氯霉素的浓度在2.80×10-7 ~ 3.60×10-6 mol·L-1范围内与峰电流呈良好的线性关系,线性回归方程和线性相关系数分别为:ip(μA) = 5.865 + 0.4784 c (μmol·L-1),r = 0.9942,检测限可达1.35×10-7 mol·L-1。利用该法对氯霉素滴眼液进行定量分析,8次平行样品分析结果的相对标准偏差小3 %,完全满足定量分析的要求。
DNA is the most important molecule in living cell, it contains all the genetic information of a specific cell. DNA biosensor is the hot topic in bio-sensor technology today. Compared with solution electrochemical methods, using DNA modified electrode to study interactions between DNA and other species can not only overcome shortcomings of the big background signal of the solution electrochemical methods and the weak signal difficult to extract, but also have a significant reduction in the amount of DNA. The method can improve the sensitivity and make people obtain a variety of parameters with less sample consumption. Studying the interactions between DNA and other elements is a major research topic in biochemistry and molecular biology, which plays an important role in disease diagnosis, environmental testing, and pharmaceutical research and in the design of new drugs. Water-soluble cationic porphyrins have excellent bioactivity, and they can be used as potential anticancer or antibacterial agents and probes for the structure and dynamics of DNA. Studies on the interaction of DNA with porphyrin can help to seek the relationship between the biological activity of porphyrin and the binding model. Investigations on the interaction of DNA with drug molecules help people to understand the effect of some drug molecule to the copying and transcription of DNA, and variation caused by this, which can also provide important information on the affinity between DNA and other compounds, and the mechanism of some nuclease.
     In this article, nano-hydroxyapatite (HAp) was prepared by combining co-precipitation with microemulsion method, which exhibited strong adsorption for DNA based on the advantages of its excellent biocompatibility and particular adsorbability. DNA and HAp were easily modified onto glassy carbon electrode (GCE) by simple and convenient“tip-coating”method. We studied the interaction of DNA with other small molecules by surface electrochemical method. The main contents of the paper were provided as followed.
     In the first part, we described the research significance and status of the preparation methods and application of DNA modified electrod briefly. The research contents and characteristics of this paper were also included.
     The second part is about the preparation and characterization of HAp. HAp (Ca10(PO4)6(OH)2), is widely used as implants or as coatings on prostheses in the field of medicine. The stereoscopic chemistry structure and unique locus of adsorption make HAp focused in the field of protein separation and catalytic. We prepared HAp by combining co-precipitation with microemulsion method, and analyzed the synthesis process of HAp in microemulsion medium.
     The interaction of DNA with meso-tetra-(4-trimethylaminophenyl) porphyrin by DNA-hydroxyapatite modified electrode (dsDNA/HAp/GCE) and detection of DNA damage were studied in the third part. Cyclic voltammetry was used to investigate the interaction of meso-tetra-(4-trimethylaminophenyl) porphyrin (TAPP) with DNA immobilized on HAp film as well as the detection of DNA damage and determination of porphyrin. The redox currents of TAPP on DNA modified GCE increased with scan rate from 50 to 250 mV·s-1, showing a linear relationship as expected for a surface-controlled process. Both reduction and oxidation peak potentials of TAPP underwent a positive shift with increasing pH from 3.7 to 9.1, which indicated that the redox process of TAPP had both electron and proton involved. In phosphate buffer solution (PBS) with pH 7.0, the featured potential for TAPP on dsDNA/HAp/GCE shifted positively with the increase of ionic strength of solution, suggesting an intercalation mode existed between TAPP and DNA, with a formation of supramolecular compounds. According to Langmuir adsorption formula, the binding constant of TAPP to DNA was calculated to be 1.48×105 mol·L-1.
     And in the fourth part, the interaction between DNA and Vitamin B12 was investigated. Cyclic voltammetry was used to investigate the interaction of DNA immobilized on the HAp film with vitamin B12 (VB12). The existence of DNA led to the decrease of reduction current of VB12. Both the electron transfer coefficient (α) and the standard rate constant (ks) were different obtained on GCE and dsDNA/HAp/GCE, which indicated the formation of an electrochemical inactive super molecular complex DNA-nVB12. The equilibrium constant of this complex was calculated to be 5.35×105 mol·L-1 and the binding number between DNA and VB12 of the complex was determined to be 1.
     At last, we setted up an electroanalysis method of determining Chloramphenicol (CAP) based on the eletrocalysis property of DNA modified electrod. In KH2PO4-Na2HPO4 buffer solution with pH 6.0 cotaining 0.1 mol·L-1 KCl, the peak current was proportional to the concentration of CAP in the range of 2.80×10-7 to 3.60×10-6 mol·L-1, with a detection limit of 1.35×10-7 mol·L-1. The linear regress equation was ip (μA) = 5.865 + 0.4784 c (μmol·L-1), and the linear correlation coffcient was r = 0.9942. The method has been successfully applied to the quantitative analysis of CAP in real Chloramphenicol eye drops samples, which totally meet the demand of microanalysis. The relative standard deviation of eight samples analysis results was 1ess than 3%.
引文
[1]杨涛,杨婕,张伟等.聚合物膜与自组装膜法制备电化学DNA传感器的研究进展.分析测试学报,2007,26(3):431-437.
    [2] Taton T.A, Mirkin C.A, Letsinger R.L. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289:1757-1760.
    [3] Reichert J., Csáki A., K?hler J.M, et al. Chip-based optical detection of DNA hybridization by means of nanobead labelling. Anal Chem, 2000, 72(24): 6025-6029.
    [4] Mascini M., Palchetti I., Marrazza G. DNA electrochemical biosensors. Fresenius’Journal Analytical Chemistry, 2001, 369: 15-22.
    [5] Pividori M. I, Merkoci A., Alegret S. Electrochemical genosensor design: immobilization of oligonucleotides onto transducer surfaces and detection methods. Biosensors and Bioelectronics, 2000, 15: 291-303.
    [6] Wang J., Rivas G., Cai X. H, et al. DNA electrochemical biosensors for environmental monitoring: a review. Analytica Chimica Acta, 1997, 347: 1-8.
    [7] Belosludtsev Y., Iverson B., Lemeshko S., et al. DNA microarrays based on noncovalent oligonucleotide attachment and hybridization in two dimensions. Anal Biochem, 2001, 292: 250-256.
    [8]周忠亮,郭秀锐,鲁理平等.DNA-纳米金修饰玻碳电极用水中甲醛的测定.分析测试学报,2009,28(6):697-700.
    [9]杨丽菊,彭图治.特定序列脱氧核糖核酸电化学生物传感器进展.分析化学,2001,29(3):355-360.
    [10]黄海珍,杨秀荣.脱氧核糖核酸电分析化学研究进展.分析化学,2002,30(4):491-497.
    [11] Heli H., Bathaie S. Z, Mousavi M. F. An electrochemical study of neutral red-DNA interaction. Electrochimica Acta, 2005, 51: 1108-1116.
    [12] Wang L. P, Lin L., Ye B. X. Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA. Journal of Pharma-ceutical and Biomedical Analysis, 2006, 42: 625-629.
    [13] Ovadekova R., Jantova S., Letasiova S., et al. Nanostructured electrochemical DNAbiosensors for detection of the effect of berberine on DNA from cancer cells. Anal Bioanal Chem, 2006, 386: 2055-2062.
    [14] Gherghi I. H, Girousi S. T, Voulgaropoulos A. N, et al. Study of interactions between actinomycin D and DNA on carbon paste electrode (CPE) and on the hanging mercury drop (HMDE) surface. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31: 1065-1078.
    [15]黄强,刘红英,方宾.电化学DNA生物传感器研究的应用进展.化学进展,2009,21(5):1052-1059.
    [16]刘盛辉,孙长林,何品刚等.单链脱氧核糖核酸在石墨电极表面固定化的研究.分析化学,1999,27:130-134.
    [17]毛斌,韩根亮,马莉萍等.DNA电化学生物传感器的原理与研究进展.化学传感器,2009,29(1):9-15.
    [18]乔雷,张云怀,肖鹏等.DNA功能化碳纳米管电极的制备及与青蒿素相互作用的研究.材料导报,2009,23(1):17-21.
    [19]赵元弟,庞代文,张敏等.DNA修饰电极的研究(IX)DNA探针在金基底上的固定、表征及其表面分子杂交.高等学校化学学报,2001,22(5):744-748.
    [20] Maeda M., Nakano K., Uchida S., et al. Mg-Selective eletrode comprising double-helical DNA as receptive entity.Chem Lett, 1994: 1805-1809.
    [21] Prabhzkar N., Arora K., Singh S. P, et al. DNA entrapped polypyrrole-polyvinyl sulfonate film for application to electrochemical biosensor. Analytical Biochemistry, 2007, 366: 71-79.
    [22] Prabhakar N., Arora K., Singh S. P, et al. Polypyrrole-polyvi-nyl sulphonate film based disposable nucleic acid biosensor. Analytica Chimica Acta, 2007, 589: 6-13.
    [23] Prabhakar N., Sumana G., Arora K., et al. Improved electro-chemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate. Electrochimica Acta, 2008, 53: 4344-4350.
    [24] Jiang X. H, Lin X. Q. Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Analytica Chimica Acta, 2005, 537: 145-151.
    [25] Yan F., Sadik O. A. Enzyme-Modulated Cleavage of dsDNA for Supramolecular Design of Biosensors. Anal Chem, 2001, 73: 5272.
    [26] Milla K. M, Saraullo A., Mikkelsen S. R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem, 1994, 66: 2943-2948.
    [27]程圭芳,黄翠华,赵洁等.新型磁性纳米电化学DNA生物传感器的研究.分析化学研究报告,2009,37(2):169-173.
    [28]仵博万.DNA生物传感器研究进展.化学世界,2004,45(12):659-662.
    [29]刘育,尤长城,张衡益.超分子化学.天津:南开大学出版社,2001.
    [30] Fiel R. J, Howard J. C, Mark E. H, et al. Interaction of DNA with a porphyrin ligand: Evidence for intercalation. Nu-cleic Acids Res, 1979, 6(9): 3093-3118.
    [31] Pasternack R. F, Gibbs E. J, Villafranca J. J. Interactions of porphyrins with nucleic acids. Biochemistry, 1983, 22(10): 5409-5417.
    [32] Kelly J. M, McConnell K. J, OhUigin C. A comparative study of the interaction of 5,10,15,20-tetrakis (N-methylpyri-dinium-4-yl)porphyrin and its zinc complexwith DNA using fluorescence spectroscopy and topoisomerisation. NucleicAcids Res, 1985, 13(1): 167-184.
    [33] Ford K., Fox K. R, Neidle S., et al. DNAsequence preferences for an intercalating porphyrin compound revealed by foot-printing. Nucleic Acids Res, 1987, 15(5): 2221-2234.
    [34] Strickland J. A, Marzilli L. G, Gay K. M, et al, Porphyrin and metalloporphyrin binding to DNApolymers:rate and equilibrium binding studies. Biochemisrty, 1988, 27(29), 8870-8878.
    [35] Mckinnie R. E, Choi J. D, Bell J. W, et al. Porphyrin induced Z to B conversion of poly(dG-dC)2 in ethanol. J Inorg Biochem, 1988, 32(3), 207-224.
    [36] Qu Feng, Li Nanqiang, Jiang Yuyang. Electrochemical Studies of CuTMAP Interaction with DNA and Determination of DNA. J Microchemical, 1998, 58(1): 39-51.
    [37] Qu Feng, Li Nanqiang, Jiang Yuyang. Electrochemical studies of NiTMpyP and Interacting with DNA. Talanta, 1998, 45(5): 787-793.
    [38] Matsumoto Y., Terui N., Tanaka S. Accumulated detection of ethidium bromide using a UV-irradiated DNA film modified electrode and its application for electrochemical detection of an environmental pollutant. Journal of Electroanalytical Chemistry, 2007, 610: 193-198.
    [39]干宁,王志颖,徐伟民等.DNA电化学生物传感器测定水中痕量铅.广东微量元素科学,2007,14(1):51-55.
    [40] Wang J., Rivas G., Cai X. Screen-printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen. Electroanalysis, 1997, 9: 395-398.
    [41] Rauf S., Nawaz H., Akhtar K., et al. Studies on sildenafil citrate (Viagra) interaction with DNA using electrochemical DNA biosensor. Biosensors and Bioelectronics, 2007, 22: 2471-2477.
    [42] Nawaz H., Rauf S., Akhtar K., et al. Electrochemical DNA biosen-sor for the study of ciprofloxacin-DNA interaction. Analytical Biochemistry, 2006, 354: 28-34.
    [43] Shah R. A, May F., Rishi R. P, et al. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem, 2007, 79(6): 2583-2587.
    [44] Brett A. M. O, Serrano S. H. P, Macedo T. A, et al. Electrochemical determination of carboplatin in serum using a DNA-modified glassy carbon electrode. Electroanalysis, 1996, 8: 992-995.
    [45] Yang Z. S, Zhao J., Zhang D. P, et al. Electrochemical determination of trace promethazine hydrochloride by a pretreated glass carbon electrode modified with DNA. AnalyticlScience, 2007, 23: 569-572.
    [46] Bonanni A., Pividori M. I, del Valle M. Application of the avidin-biotin interaction to immobilize DNA in the development of electro-chemical impedance genosensors. Anal Bioanal Chem, 2007, 389: 851-861.
    [47]祝宁宁,张爱平,何品刚等.基硫化镉纳米团簇标记DNA电化学传感的研究.化学学报,2003,61:1682-1685.
    [48] Kafi A. K, Lee D. Y, Park S. H, et al. DNA as a support for glucose oxidase immobilization at Prussian blue-modified glassy carbon elec-trode in biosensor preparation. J Nanosci\Nanotechnol, 2006, 6(11): 3539-3542.
    [49] Xiao L. Z, Shi P. S, Jiong Z, et al. A Target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc, 2007, 129(5): 1042-1043.
    [50] Millan K. M, Saraullo A., Mikkelsen S. R. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem, 1994, 66: 2943-2948.
    [51] Wang J., Chicharro M., Rivas G., et a1. Narasalah dontha percio A M Farias and Haruki Shirashi Anal. Anal Chem, 1996, 68(13):2251-2254.
    [52]孙星炎,徐春.DNA电化学传感器在DNA损伤研究中的应用.高等学校化学学报,1998,19(9):1393-1396.
    [53]李长江.电化学DNA生物传感器应用现状.黄山学院学报,2007,9(3):71-73.
    [54]杨丽霞,罗胜联,蔡青云等.二氧化钛纳米管阵列的制备、性能及传感应用研究.科学通报,2009,54(23):3605-3611.
    [55]初凤红,蔡海文,瞿荣辉等.纳米金在光学和电化学传感器中的应用.激光与光电子学进展,2009,46(11):58-64.
    [56] Esumi K., Takei N., Yoshimura T. Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids and Surfaces B, 2003, 32(2): 117-123.
    [57] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56.
    [58] Li J., Wang Y. B, Qiu J. D, et al. Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor. Anal Bioanal Chem, 2005, 383(6): 918.
    [59] Chen R. J, Zhang Y. G, Dai H. J, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001, 123: 3838.
    [60]闫永臣,王宗花,毛蕾蕾等.L-酪氨酸功能化多壁碳纳米管的制备及表征.分析试验室,2006,25(8):17.
    [61] Dieckmann G. R, Dalton A. B, Johnson P. A, et al. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc, 2003, 125(7): 1770.
    [62] Goux-Capes L., Filoramo A., Cote D., et al. Coupling carbon nanotubes through DNA linker using abiological recognition complex. Phys Stat Sol(a), 2006, 203(6): 1132.
    [63] Yun Y. H, Bange A., Heineman W. R, et al. Ananotubearray immunosensor for direct electrochemical detection of antigen-antibody binding. Sensors and Actuators B, 2006, 123: 177.
    [64] Laghzizil A., El Herch N., Bouhaouss A., et al. Comparison of Electrical Properties between Fluoroapatite and Hydroxyapatite Materials. J. Solid State Chem. 2001, 156(1): 57-60.
    [65] Takaho W., Koji M., Hiroyuki N., etc. Separation of double-strand DNA fragments by high-performance liquid chromatography using a ceramic hydroxyapatite column. Analytica Chimica Acta , 1999, 386(1-2): 69-75.
    [66] Simionescu C. I, Dumitriu S. Apatite: a new catalyst in synthetic organic chemistry. J.Chem. Technol, 1978, 12: 585-589.
    [67] Suzuki T. Synthetic hydroxyapatite as inorganic cation exchanger: Exchange characteristics of lead ion (Pb2+) J. Chem. Soc. Faraday Trans., 1984, 80: 3157-3165.
    [68]秦玉华,张袁健,徐修冬等.细胞色素c在羟基磷灰石修饰玻碳电极上的直接电化学.化学学报,2004,62(9):860-863.
    [69]曹献英,李世普,张然等.羟基磷灰石纳米粒子对人肝癌细胞增殖及细胞周期的作用研究.肿瘤防治杂志,2003,10(3):256-258.
    [70] Lingyun F., Shipu L., Yuhua Y. Effects of CaCO3 and TiO2 nanometer particles on A59 and L929 cells. Bioceramics, 2000, 13, 325-328.
    [71]郭广生,王颖,王志华等.化学沉淀法制备羟基磷灰石纳米粒子.化学通报,2004,67(11):830-834.
    [72] George C. K, Alexandros P. K, Athanasios K. L, et al. Preparation of hydroxyapatite via microemulsion route. Journal of Colloid and Interface Science, 2003, 259(2): 254-260.
    [73]陈文君,李干佐,周国伟等.作为微反应器的微乳液体系研究进展.日用化学工业,2002,32(2):57-60.
    [74] Jiye F., Narayan S., Le Duc T., et al. Ultfine NiFe204 powder fabricated from reverse microemulsion process. Journal of Applied Physics, 2003, 93(10): 7483-7485.
    [75] Xu J., Li Y. Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions. Journal of Colloid and Interface Science, 2003, 259(2): 275-281.
    [76]哈润华,侯斯健,栗付平.微乳液结构和丙烯酰胺反相微乳液聚合.高分子通报,1995,(1):10-19.
    [77]刘燕.羟基磷灰石吸附有机物质的研究[硕士学位论文].济南:济南图书馆,2006.
    [78] Waring M. J. In drug action at the molecular level, Ed. Roberts, G.C.K., Maemillar, London, 1977, 167-189.
    [79] Ding L., Etemad-Moghadam G., Meunier B. Oxidative cleavage of DNA mediated by hybrid metalloporphyrin-ellipticine molecules and functionalized metalloporphyrin precursors. Biochemistry, 1990, 29(34): 7868-7875.
    [80] Fiel R. J, Beerman T .A, Mark E. H, et al. DNA strand scission activity of metalloporphyrins. Biochem. Biophys. Res. Commun, 1982, 107(3): 1067-1074.
    [81] Dabrowiak J. C, Ward B., Goodisman J. Quantitative footprint-ing analysis using a DNA-cleaving metalloporphyrin complex. Biochemistry, 1989, 28(8): 3314-3322.
    [82] Bernadou J., Pratviel G., Bennis S., et al. Potassium monoper-sulfate and a water-soluble manganese porphyrin complex, [Mn(TMPyP)](OAc)5, as an efficient reagent for the oxidative cleavage of DNA. Biochemistry, 1989, 28(18): 7268-7275.
    [83] Pitie M., Pratviel G., Bernadou J., et al. Preferential hydroxyla-tion by the chemical nuclease meso-tetrakis-(4-N-methylpyridiniumyl) porphyrinatomanganeseIII pentaacetate/KHSO5 at the 5′carbon of deoxyriboses on both 3′sides of three contiguous A·T base pairs in short double-stranded oligonucleotides. PNAS USA, 1992, 89(9): 3967-3971.
    [84] Dixon D. W, Marzilli L. G, Schinazi R. Porphyrins as agents a-gainst the human immunodeficiency virus. Ann NY Acad Sci,1990, 616(2): 511-513.
    [85] Sessler J. L, Cyr M. J, Lynch V. Synthetic and structural stud-ies of sapphyrin, a 22-electron pentapyrrolic“Expanded Por-phyrin”. J Am Chem Soc, 1990, 112(7): 2810-2813.
    [86] Makundan N. E, Petho G., Dixon D. W, et al. DNA-tentacle porphyrin interactions: AT over GC selectivity exhibited by an outside binding self-stacking porphyrin. Inorg. Chem. 1995, 34(14): 3677-3687.
    [87] Pasternack R. F. Circular dichroism and the interactions of water soluble porphyrins with DNA. Chirality, 2003, 15(4): 329-332.
    [88] Sari M. A, Battioni J. P, Dupre D., et al. Interaction of cationic porphyrins with DNA: importance of the number and position of the charges and minimum structural requirements for intercalation. Biochemistry, 1990, 29(17): 4205-4215.
    [89]段彩虹,陈欣,孙舒婷等.二溴羟基卟啉与核酸相互作用的光谱行为研究.光谱学与光谱分析,2007,27(5):969-972.
    [90]康敬万,吴海霞,卢小泉等.水溶性锌卟啉配合物的合成、表征及其与CT DNA的作用.高等学校化学学报,2005,26(6):997-1001.
    [91] Bütje K., Schneider J. H, Kim J. P, et al. J Inorg Biochem, 1989, 37: 119-134.
    [92] Dougherty G., Pasternack R. F. Base pair selectivity in the binding of copper (II) tetrakis (4-N-methylpyridyl)porphine to polynucleotides under closely packed conditions. Biophysical Chemistry, 1992, 44(1): 11-19.
    [93] Gray T. A, Yue K. T, Marzilli L. G. Effect of N-alkyl substituents on the DNA binding properties of meso-tetrakis (4-N-alkylpyridinium-4-yl)porphyrins and their nickel derivatives. J Inorg Biochem, 1991, 41(3): 205-219.
    [94] Ward B., Skorobogaty A., Dabrowiak J. C. DNA binding specificity of a series of cationic metalloporphyrin complexes. Biochemistry, 1986, 25(24): 7827-7833.
    [95] Lipscomb L. A, Zhou F. X, Presnell S. R, et al. Structure of a DNA?Porphyrin Complex. Biochemistry, 1996, 35(9), 2818-2823.
    [96] Kawasaki T., Takahashi S., Ikeda K. Further study of hydroxyapatite high-performance liquid chromatography using both proteins and nucleic acids, and a new technique to increase chromatographic efficiency. Eur J Biochem, 2005, 155(2): 361-371.
    [97] Bettelheim A., Parash R., Ozer D. J. Electrochem Soc, 1982: 129: 2247.
    [98]程志亮,杨秀荣.电化学交流阻抗技术表征自组装多层膜.分析化学,2001,29(1):6.
    [99] Wang H. S, Wang G. X, Pan Q. X. Electrochemical study of the interactions of DNA with redox-active molecules based on the immo-bilization of dsDNA on the Sol-Gel derived nano porous hydroxyapatite-polyvinyl alcohol hybrid material coating. Electroanal. 2005, 17: 1854-1860.
    [100] Zhao Y. D, Pang D. W, Hu S, et al. Optimization of covalent immobilization of DNA on self-assembled monolayers. Talanta, 1999, 49(4): 751-756.
    [101] Heli H., Bathaie S. Z, Mousavi M. F. An electrochemical study of neutral red-DNA interaction. Electrochimica Acta, 2005, 51: 1108-1116.
    [102] Wang L. P, Lin L., Ye B. X. Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA. Journal of Pharma-ceutical and Biomedical Analysis, 2006, 42: 625-629.
    [103] Guo M. L, Chen J. H, Liu D. Y, et al. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry, 2004, 62(1): 29.
    [104] Ovadekova R., Jantova S., Letasiova S., et al. Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells. Anal Bioanal Chem, 2006, 386: 2055-2062.
    [105] Cater M. T, Rodriguez M., Bard A. J. Voltammetric studies of the interaction ofmetal chelateswithDNA. 2. Tris-chelated comple-xes of cobalt(III) and iron( II) with 1, 10-phenanthroline and 2, 2′-bipyridine. J Am Chem Soc, 1989, 111(24): 8901-8911.
    [106] Pang D. W, Abruna H. D. Micromethod for the investigation of the interactions between DNA and redox-active molecules. Anal Chem,1998, 70(15): 3162-3169.
    [107] Yang P., Gao F. The Theory of Bioinorganic Chemistry. Beijing: Chinese Science Press, 2002.
    [108] Meng S., Maragakis P., Papaloukas C., et al. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett, 2007, 7 (1) 45-50.
    [109] Nykypanchuk D., Maye M. M, van der Lelie D., et al. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451 (31) 549-552.
    [110] Alina B., Anacona J. R. Metal complexes of the flavonoid quercetin: antibacterial. Transit Met Chem, 2001, 26: 20-23.
    [111] Tian X., Song Y. H, Dong H. M, et al. Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode. Bioelectrochemistry, 2008, 73(1): 18-22.
    [112] Wang F., Xu Y. X, Zhao J., et al. Electrochemical oxidation of morin and interaction with DNA. Bioelectrochemistry, 2007, 70 (2): 356-362.
    [113] Kang J. W, Zhuo L., Lu X. Q, et al. Electrochemical investigation on interaction between DNA with quercetin and Eu-Qu3 complex. J Inorg Biochem, 2004, 98 (1): 79-86.
    [114] Tong C. L, Hu Z., Liu W. P. Sensitive Determination of DNA based on the interaction between norfloxacin-Tb3+ complex and DNA. J Agric Food Chem, 2005, 53 (16): 6207-6212.
    [115] Girard C., Tranchant I., Gorteau V., et al. Development of a DNA interaction test with small molecules still grafted on solid phase. J Comb Chem, 2004, 6 (2): 275-278.
    [116] Oliveira S. C. B, Chiorcea-Paquim A. M, Ribeiro S. M, et al. In situ electrochemical and AFM study of thalidomide–DNA interaction. Bioelectrochemistry, 2009, 76: 201-207.
    [117]周路,柴雅琴,袁若等.小牛胸腺DNA与天青I相互作用研究.化学传感器,2003,23(2):27-31.
    [118] Wright L. D. Significance of the Vitamins in human nutrition. J.Agric. Food chem., 1954, 2(13): 672-678.
    [119] Karl F. The Biochemistry of Vitamin B12. J Am Chem Soc, 1956, 78(17): 4500.
    [120] Victor H. The Inhibition and Promotion of Cancers by Folic Acid, Vitamin B12, and Their Antagonists. Xenobiotic Metabolism: Nutritional Effects, 1985.
    [121] Liu S. Q, Cao M. L, Dong S. L. Electrochemical and Ultraviolet-visible spectroscopicstudies on the interaction of deoxyribonucleic acid with vitamin B6. Bioelectrochemistry, 2008, 74 (1): 164-169.
    [122] Abeles R. H, Dolphin D. H. The vitamin B12 coenzyme. Acc Chem Res, 1976: 9(8): 114-120.
    [123]郭兴会,王丽丽,仪宏.HPLC法有效测定发酵液中维生素B12的含量.中国食品添加剂,2009,(1):152-156.
    [124]向伟,李将渊,马曾燕.维生素B12在多壁碳纳米管修饰玻碳电极上的电化学行为及其分析测定.应用化学,2007,24(8):921-924.
    [125] Max M. M, Norbert R. K. Separation and Determination of Crystalline Vitamin B12 in Synthetic Vitamin Mixtures. Anal Chem, 1951, 23(12):1773-1776.
    [126] Rudkin G. O, Taylor R. J. Chemical Method for Determining Vitamin B12. Anal Chem, 1952, 24(7): 1155-1156.
    [127] Fumio W., Shigeo T., Katsuo A., et al. Comparison of a Microbiological Assay and a Fully Automated Chemiluminescent System for the Determination of Vitamin B12 in Food. J Agric Food Chem, 1998, 46(4), 1433-1436.
    [128] Moreno P., SalvadóV. Determination of eight water- and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography. Journal of Chromatography A, 2000, 870(1-2): 207 -215.
    [129] Li H. B, Chen F. Determination of vitamin B12 in pharmaceutical preparations by a highly sensitive fluorimetric. Fresenius J Anal Chem, 2000, 368(8): 836-838.
    [130] Wang E. K. Analytical Chemistry for the 21st Century. Beijing: Science Press, 1999: 244.
    [131] Terry L. S, David M. H. Analytical Study of Chemiluminescence from the Vitamin B12- Luminol System. Anal Chem, 1977, 49(3): 446-450.
    [132] Alberto Z. G, Antonio G., Juan C. M, et al. Simultaneous Determination of Eight Water-Soluble Vitamins in Supplemented Foods by Liquid Chromatography. J Agric Food Chem, 2006, 54(13): 4531-4536.
    [133] Laviron E. J. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Electroanal Chem, 1979, 101: 19-28.
    [134]包晓玉,党元林,陈欣等.维生素B12与DNA相互作用的电化学研究.应用化学,2005,22(9):993-996.
    [135]向继渊.药理学.北京:科学出版社,2002.
    [136]岳秀英,彭莉,高岚.高效液相色谱法测定鸡蛋中氯霉素残留量.四川畜牧兽医,2004,31(3):22-23.
    [137]王雷,王世臣,杨新建等.一阶导数分光光度法测定复方氯霉素洗剂中氯霉素的含量.中国药师,2004,7(1):41-42.
    [138]杨元华,高红艳,何晓燕.氯霉素的单扫描示波极谱法测定.延安大学学报(自然科学版),2004,23(1):53-55.
    [139]胡劲波,尚军,李启隆.氯霉素在Pt/GC离子注入修饰电极上的伏安行为及其测定.分析试验室,2000,19(1):27-29.
    [140] Lindino C. A, Bulhoes L. O. S. Determination of chloramphen-icol in tablets by electrogenerated chemiluminescence. J Rev ASSOC Chem Bras, 2004, 15(2): 178.
    [141]杨元华,高红艳,和晓燕.氯霉素的单扫描示波极谱法测定.延安大学学报,2004,23(1):53-54.
    [142]曾庆慧,肖什文.氯霉素在聚茜素红薄膜修饰电极上的伏安行为及其测定.安徽化工,2005,31(1):33-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700