金属钯纳米颗粒的形貌控制合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米粒子因其在催化、光学、微电子学、磁学、光学传感、信息存贮、生物标记等领域的广泛应用而倍受关注。金属纳米材料的性质与其颗粒大小、形貌、组成和结构紧密相关。Pd作为一种重要的铂族元素一直吸引着人们的广泛兴趣。Pd被广泛用作催化剂,其在催化方面的应用与其显著的吸氢能力密切相关。近十年来,为进一步提高其催化活性,人们致力单分散的Pd纳米结构的尺寸和形貌控制研究,利用表面活性剂、高分子化合物等作为稳定剂制备得到了各种不同形貌的Pd纳米颗粒,但是,所得到的Pd纳米颗粒形貌不单一,大小不均匀,为多种形貌的混合物。为此,本文探索单一形貌的Pd纳米颗粒的控制合成方法。
     利用微波-多醇法,以H2PdCl4为前驱体,以三缩四乙二醇为溶剂和还原剂,以聚乙烯吡咯烷酮(PVP)为稳定剂,在适量KOH存在下,合成得到了正二十面体的钯纳米颗粒,并用紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、粉末X-射线衍射(XRD)以及X-射线光电子能谱(XPS)等对产物进行了表征。通过改变反应体系中前驱体H2PdCl4的浓度,可以有效地控制二十面体的平均粒径大小。
     采用阳离子型表面活性剂十六烷基三甲基溴化铵(CTAB)和PVP两者协同作用,以三缩四乙二醇为溶剂和还原剂,使用微波-多醇法成功地制备了平均粒径为23.8nm的立方体钯纳米结构。通过在反应体系中引入KBr、KCl和十六烷基三甲基氯化铵(CTAC)等物质考察CTAB对钯纳米结构的影响,表明Brˉ对立方体钯纳米结构的控制起主要作用。在反应之前CTAB中的Brˉ取代H2PdCl4中的Clˉ离子,不仅改变了反应前驱体的组成,而且改变了氧化还原电极电势,从而改变了还原反应速率。通过改变CTAB的浓度,可以制备出形貌单一的立方体钯纳米颗粒。
     利用油浴加热法,以H2PdCl4为前体,以三缩四乙二醇为溶剂和还原剂,当只采用PVP作为稳定剂时,合成的钯纳米结构为二十面体;采用CTAB和PVP协同稳定时,得到的钯纳米颗粒主要是立方八面体或棒状纳米结构;对不同形貌的钯纳米颗粒的XRD分析表明,所制备的不同形貌的Pd纳米颗粒,其晶形均为fcc结构,并且对{111}晶面择优取向的纳米结构最明显的是棒状,其次是立方八面体,最后是二十面体。
Considerable attention has been paid to metal nanoparticles owing to their potential applications in many fields such as catalysis, optics, microelectronics, magnetic, information storage, optical sensing, biological labeling and among others. The properties of metal nanoparticles are strongly dependent on their size and shape, as well as their composition, crystallinity and structure. As one of the noble metals, palladium has also attracted great interests because of its extraordinary properties. It can be widely used as the primary catalyst and its applications in catalysis are related to its remarkable capacity for hydrogen absorption. To improve its catalytical activity, a lot of efforts have also been devoted in the past decade to the fabrication of palladium nanostructures with monodispersive sizes and well-defined morphologies. Palladium nanoparticles with various morphologies have been prepared by using surfactants, polymers and others. However, only some mixtures of various geometric shapes of palladium were obtained generally. In this paper, shape-controlled synthesis of the monomorphological palladium nanoparticles was investigated.
     Palladium icosahedra were prepared in a high yield for a shorter time in tetraethylene glycol solution with H2[PdCl4] as a precursor and polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KOH under microwave irradiation. The as-prepared palladium nanopartcles were characterized by UV-vis absorption spectroscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectrometry. The average size of the palladium icosahedra can be controlled by changing the concentration of precursor salt.
     Palladium nanocubes with a mean size of about 23.8nm were also successfully synthesized with tetraethylene glycol as the reducing agent and solvent by the cooperation of cetyltrimethylammoniumbromide (CTAB) and PVP under microwave irradiation. The effect of CTAB on the shape of palladium nanopartcles was investigated by using KBr, KCl or cetyltrimethylammoniumcloride (CTAC) instead of CTAB in the reaction system. The results show that the formation of palladium nanocubes is dependent on the Brˉion. Clˉion in H2PdCl4 was substituted by Brˉion before reaction and the composition of the precursor as well as the standard electrode potential was changed. This resulted in a change of the reducing rate as well as the process of the nucleation and growth of nanoparticles. Monomorphological palladium nanocubes can be obtained by changing the concentration of CTAB.
     By oil-bath heating, palladium icosahedra were also obtained in a high yield with only PVP as the protecting agent. However, palladium cuboctahedra or nanorods were synthesized when PVP was cooperated with CTAB. Palladium nanopartcles with different shapes were characterized by X-ray diffraction and the results indicated that Pd nanocrystallines with the same face-centered cubic (FCC) structure prefer to a preferential {111} orientation. The order of preferential growth on this {111} face is nanorod, cuboctahetron, and then icosahedron.
引文
[1]黄惠忠.纳米材料分析.北京:化学工业出版社, 2003.
    [2] Y. Xia, N. J. Halas. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin, 2005, 30: 388-394.
    [3] A. Henglein. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews, 1989, 89:1861-1873.
    [4] H. Anders, G. Michael. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995, 95:49-68.
    [5]柳闽生,张迈之,蔡生民.半导体纳米粒子的基本性质及光电化学特性,化学通报,1997, 1:20-24.
    [6] L. J. de Jongh, J. Baak, H. B. Brom, D. van der Putten, Physics and chemistry of finite system: from clusters to crystals. Kluwer Academic: Dordrecht, 1992, 2, 839-851.
    [7] J. M. Thomas. Colloids Metal: Past, Present and Future. Pure Appl. Chem., 1988, 60:1517-1528.
    [8] U. Simon, G. Schon, G. Schmid. The application of au55 clusters as quantum dots. Angew. Chem., Int. Ed. Engl., 1993, 32: 250-254.
    [9] R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. O'Horo, B. N. Ganguly, V Mehrotra, M. W. Russell, and D. R. Huffmann. Matrix-mediated synthesis of nanocrystalline-Fe2O3, a new optically transparent magnetic material. Science, 1992, 257: 219-223.
    [10] X. Yan, M. Liu, H. Liu, K. Liew. Role of Boron Species in the Hydrogenation of Chloronitrobenzene over Polymer-Stabilized Ruthenium Colloidal Catalysts. Physical Review Letters, 2001, 169: 225-233.
    [11]曹茂盛,关长斌,徐甲强.纳米材料导论.哈尔滨:哈尔滨工业大学出版社, 2001, 8, 11-12.
    [12] P. E. Cavicchi, R.H. Silsbee. Coulomb suppression of tunneling rate from small metal particles. Physical Review Letters, 1984, 52: 1453-1456.
    [13]藤岛昭,等著.电化学测定方法.北京:北京大学出版社, 1995. P354.
    [14]张立德.纳米材料的主要应用领域.中国高新技术企业杂志, 2000, (Z1): 26-35.
    [15]钟俊辉.纳米粉末的制取方法.粉末冶金技术, 1995, 13(1) : 48.
    [16]高善民,等.纳米材料的制备.现代化工, 1999, 19(10) :46.
    [17]徐华蕊,等.沉淀法制备纳米粒子的研究.化工进展, 1996 , (5): 29.
    [18]沈兴海,等.纳米微粒的微乳液制备法.化学通报,1995 , (11) :6.
    [19]戴遐明.喷雾热解—一种重要的微粉制备工艺.粉体技术,1995, 1(2): 28.
    [20]林铭章,朱清时.人工控制液相金属纳米粒子的组装.化学进展, 1998, 10(3): 237-245.
    [21] K.Mitsuhiro , N. Masatoshi, T. Toshifumi. Preparation of Au-TiO2 hybrid nano particles in silicate film made by sol-gel method. Diabetologia, 1988, 31:110-112.
    [22] W. T. Von, K.Revrin, U. Fisher, et al. Rapid liquid chromatography- tandem mass spectrometry method for quantification of ziprasidone in human plasma. Biomedical Biochimical Acta, 1989 48(11-12): 943.
    [23] E. J.Costa, U.Higgins, A. P. Turner. An assessment of mediators as oxidants for glucose oxidase in the presence of oxygen. Biosensors, 1986, 2( 2): 71-73.
    [24] H. J.Hecht, H. M.Kalisz, J.Hendle, et al. Evidence indicating that the human proteasome is a complex dimer. Journal of Molecuar Biology, 1993, 229: 15-18.
    [25] M. K. Weibel, H. J. Bright. The glucose oxidase mechanism. interpretation of the pH dependence. Journal of Biological Chemistry, 1971, 246: 2734-2744.
    [26] D. B. Kell, C. L. Davery. Conductimetric and impedimetric devices. In Cass AEG .(ed.) Biosensors, A practical approach. Oxford, 1990: p.125.
    [27] E. S. Wilkins, M. G. Wilkins. Estimation of critical rate of temperature rise for thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC. Harmful Metablic Resive Supply, 1988, 20: 5-8.
    [28] A. I. M. Schoonen, F. J. Schmidt, H. Hasper, et al. Development of a potentially wearable glucose sensor for patients with diabetes mellitus,design and in-vitro evaluation. Biosensors and Bioelectrons.,1990, 5: 37-46.
    [29] D. A. Gough, J. Leypoldt, J. C. Armor. Progress toward a potentially implantable, enzyme-based glucose sensor. Diabetes Care, 1982, 5: 190-198.
    [30] A. Miyazaki, K. Takeshita, K. Aita, Y. Nakano. Formation of ruthenium colloid in ethylene glycol, Chem. Lett., 1998: 361-362.
    [31] W. O. Milligan, R. H. Morriss. Morphology of colloidal gold-a comparative study. J. Am. Chem. Soc. 1964, 86: 3461-3467.
    [32] M. Antonietti, C. Goltner. Superstructures of functional colloids: chemistry on the nanometer scale, Angew. Chem. Int. Ed. 1997, 36: 910-914.
    [33] Y. Zhou, C. Y. Wang, Y. R. Zhou, Z. Y. Chen. A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem. Mater., 1999, 11:2310-2312.
    [34] T. S. Ahmadi, Z. L. Wang, A. Heglein, M. A. El-Sayed.“Cubic”colloidal platinum nanoparticles. Chem. Mater., 1996, 8: 1161一1163.
    [35] D. G. Duff, A. C. Curbs, P. P. Edward, D. A. Jefferson, B. F. G. Johson, D. E. Logan. Morphology and nanostructure of colloidal gold and silver, Angew.Chem., 1987, 99: 688-691.
    [36] H. P. Choo, K. Y. Liew, W. A. K. Mahmood and H. Liu. Morphology and crystalline structure of polymer stabilized Pd nanoparticles. J. Mater. Chem., 2001, 11:2906-2908.
    [37] O. Vidoni, K. Philippot, C. Amiens, B. Chaudret, O. Balmes, J. Bovin, F. Senocq, and M. Casanove. Novel, spongelike ruthenium particles of controllable size stabilized only by organic solvents, Angew. Chem. Int. Ed., 1999, 38: 3736-3738.
    [38] W. L. F. Armarego, D. D. Perrin. Purification of Laboratory Chemical Butterworth-Heinemann, 1997 (4): 123.
    [39] J. A. Creighton, D.G. Eadon. Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans., 1991, 87: 3881-3891.
    [40] J. C. W. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, B. E. Muilenberg. Perkin-Elmer Handbook of X-Ray photoelectron spectroscopy, Physical Electronics Division. Eden Prairie, 1979: 106.
    [41] F. Fievet, J. P. Lagier, M. Figlarz. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull, 1989, 14: 29-33.
    [42] F. Fievet, J. P. Lagier, B. Blin, et al. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics, 1989, 32133: 198-205.
    [43] C.Viau, F. Fievet-Vincent, F. Fievet. Nucleation and growth of bimetallic CoNi and FeNi monadisperse particles prepared in polyols. Solid State lonics, 1996, 84: 259-270.
    [44] P. Toneguzzo, C. Viau, O. Acher, et al. Monodisperse Ferromagnetic Particles for Microwave Applications. Adv Mater., 1998, 10, 1032-1035.
    [45] F. Bonet, V. Delmas, S. Grugeon, et al. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostr. Mater., 1999, 11: 1277-1284.
    [46] W. S. Jones. Tamplin in Glycols (Eds.: G. O. Curme, Jr., F. Johnston), New York: Reinhold, 1952.
    [47] Y. Sun, B. Gates, B. Mayers, et al. Crystalline silver nanowires by soft solution processing. Nano Lett.,2002, 2: 165-168.
    [48] Y. Sun, Y. Xia. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176-2179.
    [49] Y. Sun, Y. Y'm, B. Mayers, et al. Uniform silver nanowires can be synthesized by reducing AgNO3 with ethylene glycol in the presence of seeds and polyvinyl pyrrolidone. Chenz. Mater., 2002, 14: 4736-4745.
    [50] Y. Sun, Y. Xia. Large-scale synthesis of uniform silver nanowires through a soft self-seeding polyol process. Adv. Mater., 2002, 14: 833-837.
    [51] Y. Sun, Y. Xia. Triangular nanoplates of silver: synthesis, characterization, and their use as sacrificial templates in generating triangular nanorings of gold. Adv. Mater., 2003,15: 695-699.
    [52] Y. Sun, B. Mayers, Y. Xia. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett., 2003, 3: 675-679.
    [53] Y. Sun, B. Mayers, T. Herricks, et al. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett., 2003, 3: 955-960.
    [54] B. Wiley, T. Herricks, Y. Sun, et al. Polyol synthesis of silver nanoparticles:use of chloride and oxygen to promote the formation of single-crystal,truncated cubes and tetrahedrons, Nano Lett., 2004, 4: 1733-1739.
    [55] B. Wiley, Y. Sun, J. Chen, et al. Silver and gold nanostructures withwell-controlled shapes. MRS Bulletin, 2005, 30, 356-361.
    [56] B. Wiley, Y. Xiong, Z. Y. Li, Y. Xia. Right bipyramids of silver: a new shape derived from single twinned seeds, Nano Lett., 2006, 6: 765-768.
    [57] J. Chen, T. Herricks, M. Geissler, Y. Xia. Single crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J. Am. Chem. Soc., 2004, 126: 10854-10855. [58 ] S. Lee, S. Cho, J. Cheon. Anisotropic shape control of colloidal tnorganic nanocrystals. Adv. Mater., 2003, 15: 441-444.
    [59] G. Wei, C. Nan, Y. Deng, Y. Lin. Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method. Chem. Mater., 2003,15: 4436-4441.
    [60] N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316: 732-737.
    [61] Y. Xiong, J. M. McLellan, Y. Yin, and Y. Xia. Synthesis of palladium icosahedra with twinnedstructure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. Int. Ed., 2007, 46: 790-794.
    [62] Y. Xiong, H. Cai, B. J. Wiley, J. Wang, M. J. Kim, Y. Xia. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc., 2007, 129: 3665-3675.
    [63] T. Herricks, J. Chen, Y. Xia. Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett., 2004, 412: 2367-2371.
    [64] S. Komarneni, R. K. Rajha, H. Karsuki. Microwave-hydrothermal processing of titanium dioxide. Mater. Chem. Phy., 1999, 61: 50-54.
    [65] S. Komarneni, M. Bruno, et a1. Synthesis of ZnO with and without microwaves. Mater. Res. Bull., 2000, 35(11): 1787-1790.
    [66] M. Tsuji, M. Hashimoto, Y. Nishizawa, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chem. Eur. J., 2005, 11: 440 440-452.
    [67] Y. Wada, H. Kuramoto, T. Sakata, et al. Preparation of. nano-sized nickel metal particles by microwave irradiation. Chemistry letters, 1999, 7: 607-608.
    [68] W. Y. Yu, W.X. Tu, H. F. Liu, Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir, 1999, 15(1): 6-9.
    [69] W. X. Chen, J. Y. Lee, Z. Liu, Microwave-assisted synthesis of carbon supported pt nanoparticles for fuel cell applications. Chemistry communications, 2002: 2588-2589.
    [70] W. X. Tu, H. F. Liu. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. Journal of Materials Chemistry, 2000, 10(9): 2207-2211.
    [71] Y. Xiong, J. M. McLellan, Y. Yin, Y. Xia. Synthesis of Palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. Int. Ed., 2007, 46: 790 -794.
    [72] C. D. Wagner,W. M. Riggs, L. E. Davis, J. F. Moulder and B. E. Muilenberg. Handbook of X-Ray Photoelectron Spectroscopy, ed. Perkin-Elmer, Physical Electronics Division, Eden Prairie, 1979.
    [73] A. P. Collier. A ligment mechanisms between particles in crystalline aggregate. Journal of Crystal Growth, 2000, (208): 513-519.
    [74] W. Tu and H. Liu. Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. J. Mater. Chem., 2000, 10: 2207-2211.
    [75] Y.Liu, D. Hou, G. Wang. Synthesis and characterization of SnS nanowires incetyltrimethylammoniumbromide (CTAB) aqueous solution. Chemical Physics Letters, 2003,379: 67-73.
    [76] C. X. Guo, M. H. Cao, C. W. Hu. A novel and low-temperation hydrothermal synthesis of SnO2 nanorod. Inorganic Chemistry Communication, 2004, 7: 929-931.
    [77] G. J. Lee, S. Shin, Y. C. Kim. Preparation of silver nanorods Through the control of temperature and pH of reaction medium . Materials Chemistry and Physics, 2004 , 84 (223):197-204.
    [78] J. X. Gao, C. M. Bender, C. J. Murphy. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir, 2003, 19 (21):9065-9070.
    [79] G. Berhault, M.Bausach, L. Bisson. Seed-mediated synthesis of Pd nanocrystals: factors influencing a kinetic or thermodynamic-controlled growth regime. J. Phys. Chem. C, 2007, 111: 5915-5925.
    [80] T. Yonezawa, N. Toshima. Mechanistic consideration of formation of polymer-protected nanoscopic bimetallic clusters. Faraday Transactions, 1995, 91(22):4111-4119.
    [81] D. G. Duff, P. Edwards, B. F. G.. Johnson. Formation of polymer-protected platinum sol: a new understanding of the parameters controlling morphology. Journal of Physical Chemistry, 1995, 99: 15 934.
    [82]吴青松,赵岩,张彩碚.有机分子CTAB对银纳米颗粒形貌的影响.高等学校化学学报, 2005, 268: 1405-1409.
    [83] C. Chen, L. Wang, G. S. Jiang, H. Yu. Chemical preparation of special-shaped metal nanomaterials through encapsulation or inducement in soft solution. Rev. on Adv. Mater. Sci., 2006, 11: 34-40.
    [84] Y. Xia, P. Yang, Y. Sun, et al. One-dimensional nanostructures: synthesis,characterization, and applications. Adv. Mater., 2003, 15: 353-389.
    [85] Y. Sun, Y. Xia. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298: 2176-2179.
    [86] S. H. Im, Y. T. Lee, B. Wiley, Y. Xia. Large-scale synthesis of silver nanocubes:the role of hcl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed., 2005, 44: 2154-2157.
    [87] J. Prywer. Theoretical analysis of changes in habit of growth rates of individual faces. Journal of Crystal Growth, 1999, (197): 27-28.
    [88]崔英德,易国斌,廖列文.聚乙烯吡咯烷酮的合成与应用.北京:科学出版社, 2001: 35-37.
    [89] Y. Xiong and Y. Xia. Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv. Mater., 2007, 19(20): 3385-3391.
    [90]陈莉,王学伟,费广涛.用X-射线衍射研究不同直径镍纳米线阵列的生长方向.科学技术与工程, 2006, 618: 2994-2996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700