针对电化学传感和光电化学优化的银纳米粒子—碳复合电极
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当今社会的发展,能源与健康问题已成为人类要面临的两大挑战。为了解决可能发生的能源危机,世界各国都不遗余力地开发新能源。与此同时,为了解决健康问题而发展起来的痕量分析技术在一些与人类健康密切相关的领域中的应用也日趋广泛。本论文结合纳米尺度银纳米粒子(AgNPs)所具有的独特光学及催化特性,基于团簇束流沉积技术在玻碳或石墨烯表面构建数密度和尺寸可控的AgNPs点阵,并在此基础上围绕AgNPs非酶H202电化学传感以及AgNPs-石墨烯光电复合膜特性调控两方面进行了深入的研究。论文研究结果如下:
     1.采用磁控等离子体气体聚集团簇束流源制备AgNPs,并在高真空下同步沉积在衬底表面。研究了冷凝距离、溅射和缓冲气体流量、溅射功率、沉积时间等对Ag团簇束流淀积速率的影响。在固定的磁控溅射条件下改变冷凝距离的长度,有利于获得高的AgNPs淀积速率。在固定的冷凝距离条件下,选择适当的溅射气体流量和缓冲气体流量,可以获得最高的沉积速率。在其他参数相同的条件下,根据团簇淀积速率随溅射功率的变化,可以优化束流源的溅射效率。因此,通过冷凝距离、缓冲和溅射气体流量、溅射功率等制备参数可对AgNPs淀积速率进行精细控制。对沉积于衬底表面的AgNPs的形貌、结构、空间分布参数进行了TEM和AFM显微表征分析。结果表明,在上述优化控制条件下制备的AgNPs,尺寸分布均一具有良好的分散性及洁净的表面,且尺寸分布满足标准的对数正态分布,其平均粒径约为6nm,半峰宽4.6nm,数密度高达1.4×104μm-2。通过HR-TEM及SAED表征显示AgNPs的结晶良好,结构呈规则的球形。采用气相团簇束流沉积制备的AgNPs点阵,能够在保持纯净的纳米粒子表面(无表面活性剂包裹)的同时,获得甚高的纳米粒子面密度,并且具有可调控的纳米粒子面间距,表明团簇束流沉积是可控制备密集排列金属AgNPs点阵的有效方法。
     2.首次提出利用团簇束流沉积技术在玻碳电极上牢固而又可控地固定贵金属纳米材料。通过调控束流沉积参数,制备数密度和尺寸可控的AgNPs修饰电极,构建新型H202非酶传感器。该方法克服了传统修饰电极中催化剂聚集和易脱落的难题,并且避免了导电粘结剂的使用,提高了修饰电极的有效催化面积和稳定性,加速了电子在电极与催化剂之间的直接传递。通过循环伏安、线性扫描伏安、计时电流等测试手段分析了AgNPs数密度、尺寸、覆盖率对电极性能的影响。研究表明,AgNPs修饰电极的检测限、灵敏度和线性范围随着纳米粒子沉积量的增加并不是简单的递增,而是存在一个达到最佳电极性能的适当沉积量:使AgNPs的数密度达到最大值。过高的沉积量,会使得新到达表面的AgNPs与表面上原有的AgNPs融合长大,数密度逐渐降低,从而导致电极的有效催化面积变小,性能变差。在当前最佳的制备条件下构建的Ag纳米粒子修饰的玻碳电极在H202非酶生物传感中灵敏度可达63μA/mM、响应速度<1s、检测限达1μM。最后,在实验基础上阐明了AgNPs密集点阵催化H202的电化学传质过程与机理。
     3.以膨胀石墨为原料,辅以高温热膨胀,采用高功率超声实现石墨烯的快速液相剥离,克服了当前低功率液相超声剥离法耗时长及难获得大尺寸石墨烯的不足,并通过高分辨透射(HR-TEM)和扫描透射(STEM)两种电子显微镜测量模式的组合,实现对石墨烯层厚的高效率表征与统计。研究了热膨胀温度、超声时间、超声功率对产物石墨烯层数和尺寸的影响。实验表明,热膨胀温度越高越有助于膨胀石墨的快速剥离,而长时间或过高功率的超声则不利于大尺寸薄层石墨烯的形成。在当前最佳的制备条件下,所制备的石墨烯(FLG)典型的厚度约为5层单石墨烯层,平面尺寸为微米级。通过蒸发部分溶剂可获得浓缩的FLG分散液,浓度约5μg mL-1,即每毫升约含5×105片FLG。此外,采用XPS、Raman等手段对所得石墨烯的缺陷和含氧官能团进行表征分析。结果显示,产物中含氧官能团及缺陷获得了良好的控制。通过本方法,可以高效可控制备高质量FLG。
     4.采用团簇束流沉积制备AgNPs,并在高真空下可控沉积到FLG修饰电极表面制备出AgNPs-FLG新型光电复合膜修饰电极,避免了当前化学法合成的AgNPs-FLG复合膜被修饰到电极上发生部分堆叠导致AgNPs之间的不可控聚集。在此基础上,系统地研究了AgNPs尺寸、AgNPs覆盖率、入射光波长、入射光功率以及电极偏压等因素对AgNPs-FLG光电复合膜光电化学性能的影响。实验显示,小尺寸AgNPs的密集点阵更有助于增强石墨烯光电流的产生,并且AgNPs-FLG光电流的大小与入射光波长及功率高度相关。据此,阐明了AgNPs的局域表面等离激元(LSP)增强石墨烯光电流产生的可能机制:LSP不仅能提高石墨烯光生电子与空穴的产生效率,也能减小光生电子在FLG内部及电极/电解液界面的淬灭几率,使电子有更加充分的时间在电极偏压的作用下由FLG向玻碳电极方向转移,促进了光生电子与空穴的有效分离,从而增强了石墨烯光电流。
Recently, silver nanoparticles (AgNPs) have attracted much interest due to their unique optical and catalytic properties and found applications in new energy development as well as trace analysis. In this thesis, AgNPs were deposited on glass carbon electrodes and graphene by means of gas phase cluster beam deposition for non-enzymatic hydrogen peroxide detection and high-efficiency photocurrent generation, respectively. The main research results are as follows:
     1. The AgNPs fims were fabricated by using gas phase cluster beam deposition. The operation parameters of the source, such as the condensation distance, sputtering power and flow rate of sputtering or buffering gas were systematically investigated to improve the deposition rate of the AgNPs. It was found the deposition rate of the AgNPs can be well controlled by tuning the above parameters and an enhanced deposition rate was realized under a smaller condensation distance and proper sputtering power as well as a special flow rate of sputtering and buffering gas. The morphology, coverage and size distribution of the optimized AgNPs was characterized with transmission electron microscopy (TEM), atomic force microscope (AFM) and selected area electron diffraction (SAED). The results show that the AgNPs fabricated by this method have the merits of well-crystallized, high surface density (1.4×104μm-2), homogeneous size distribution (-6nm), good dispersity and clean surface. Therefore, the technique of gas phase cluster beam deposition is a promising technology for fabricating close-packed AgNPs particles.
     2. We demonstrate a novel method to coat AgNPs on glass carbon electrodes(GCE) with high adhesion and good dispersity by performing gas phase cluster beam deposition. A nonenzyme sensing platform for stable detection of H2O2was realized from the silver nanoparticle based electrode with an optimized nanoparticle coverage and number density. AgNPs electrodes fabricated with this method can avoid the problems of catalyst aggregation and shedding that would emerge in sensor applications. To examine the effects of the coverage and size distribution of the AgNPs on the reduction of the H2O2for optimizing the electrode conformation, we fabricated AgNPs-GCE electrodes with different deposition durations. The results show the electrode consists of small nanoparticles which are densely closely-spaced but sufficiently isolated from each other has significantly advantages in electroanalysis. As a result, the fabricated AgNP-GCE shows enhanced electrocatalytic activity toward the reduction of H2O2with a much reduced detection limit (typically1×10-6M) and response time (typically less than1second) as compared with those have been previously reported. Moreover, a possible reaction mechanism is proposed based on the experiments.
     3. Few-layer graphene sheets (FLG) were prepared by splitting expanded graphite (EG) using high-power sonication. FLG fabricated with this method can reduce the noise pollution and the FLG breaking that would emerge in long time low-power sonication. Atomic-level calibrated scanning transmission electron microscopy was used to obtain efficient layer statistics, enabling optimization of the experimental conditions. Herein, heating temperature of EG, ultrasonic power and duration were systematically investigated. This resulted in a two-step splitting mechanism in which the mean number of layers was first reduced to less than20by heating to1100℃and then to a few-layer region by a5-minute104W L-1-power-density sonication. Our method can fabricate FLG sheets with about five-layers on micro-lever at a yield of~1wt%, and we show that the FLG sheets concentration could potentially be improved by evaporating the solvent to give the concentration of up to~5μg mL-1, namely about5×105pieces per milliliter. X-Ray Photoelectron Spectrometer (XPS) and Raman spectroscopic (Raman) analysis confirm the above mechanism and demonstrate that the sheets are largely free of defects and functional groups. As a solution-phase method, this approach may be scaled up for high-efficient fabrication of the FLG.
     4. Closely spaced Ag nanoparticle arrays (AgNPs) were deposited on graphene sheets attached glassy electrode (FLG-GCE) by means of gas phase cluster beam deposition with controlled coverage and size distribution. This approach fabricated AgNPs-FLG electrode can avoid the overlap of the AgNPs on the electrode emerge during the chemically prepared AgNPs-FLG films were modified on the electrode. The fabricated AgNPs-FLG electrode show enhanced photocurrent generation compared with the FLG electrode. We employ an amperometric technique for high-efficiency photocurrent detection that enables the extensive study of the relationship between the localized surface plasmon (LSP) of AgNPs and the photocurrent enhancement of FLG in detail. The effects of the coverage of the AgNPs, the wavelength and intensity of the incident light, as well as the electrode potential were systematically investigated to improve the photoelectrochemistry performance of the AgNPs/FLG-GCE electrode. Moreover, the possible physical mechanism of the LSP enhanced photoelectrochemistry in the AgNPs-FLG composite film is proposed based on the experiments. Namely, the enhancement of the photocurrent from an illuminated AgNPs-FLG film is determined by the local electromagnetic fields near the AgNPs. On the one hand, they can increase the absorption of the incident light. On the other hand, they can confine the photoexcited electrons within graphene and depress its recombination within graphene and at the graphene/electrolyte interface. Thus, the electron-hole pairs are separated by this field and an enhanced photocurrent is observed.
引文
[1]Panacek A, Kvitek L, Prucek R, et al. Silver colloid nanoparticles:synthesis, characterization, and their antibacterial activity[J]. The Journal of Physical Chemistry B,2006,110(33): 16248-16253.
    [2]Ip M, Lui S L, Poon V K M, et al. Antimicrobial activities of silver dressings:an in vitro comparison[J]. Journal of Medical Microbiology,2006,55(1):59-63.
    [3]Roe D, Karandikar B, Bonn-Savage N, et al. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles[J]. Journal of antimicrobial chemotherapy,2008,61(4): 869-876.
    [4]Fichtner J, Guresir E, Seifert V, et al. Efficacy of silver-bearing external ventricular drainage catheters:a retrospective analysis:Clinical article[J]. Journal of neurosurgery,2010,112(4): 840-846.
    [5]Xu R, Ma J, Sun X, et al. Ag nanoparticles sensitize IR-induced killing of cancer cells[J]. Cell research,2009,19(8):1031-1034.
    [6]Nino-Martinez N, Martinez-Castanon G A, Aragon-Pina A, et al. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles[J]. Nanotechnology,2008,19(6): 065711.
    [7]Chen Q, Yue L, Xie F, et al. Preferential facet of nanocrystalline silver embedded in polyethylene oxide nanocomposite and its antibiotic behaviors[J]. The Journal of Physical Chemistry C,2008,112(27):10004-10007.
    [8]Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature,2003, 424(6950):824-830.
    [9]Raether H. Surface plasmons on smooth and rough surfaces and on gratings[J]. Springer tracts in modern physics,1988,111.
    [10]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003,107(3):668-677.
    [11]Mattei G, Mazzoldi P, Bernas H. Metal nanoclusters for optical properties[M]//Materials Science with Ion Beams. Springer Berlin Heidelberg,2010:287-316.
    [12]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003,107(3):668-677.
    [13]Lin A, Hirsch L, Lee M H, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer[J]. Technology in cancer research & treatment,2004,3(1).
    [14]Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers[J]. The Journal of chemical physics,2004,120:357.
    [15]McFarland A D, Van Duyne R P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J]. Nano letters,2003,3(8):1057-1062.
    [16]Moskovits M. Surface-enhanced Raman spectroscopy:a brief retrospective[J]. Journal of Raman Spectroscopy,2005,36(6-7):485-496
    [17]Sonnichsen C, Reinhard B M, Liphardt J, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nature biotechnology,2005,23(6):741-745.
    [18]Edwards G, Inkson J C. Hole states in GaAs/AlAs heterostructures and the limitations of the Luttinger model[J]. Solid state communications,1994,89(7):595-599.
    [19]Sonnichsen C, Franzl T, Wilk T, et al. Drastic reduction of plasmon damping in gold nanorods[J]. Physical Review Letters,2002,88(7):077402.
    [20]Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics letters,1985,10(10):511-513.
    [21]Hache F, Ricard D, Flytzanis C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects[J]. JOSA B,1986,3(12):1647-1655.
    [22]Tokizaki T, Nakamura A, Kaneko S, et al. Subpicosecond time response of third-order optical nonlinearity of small copper particles in glass[J]. Applied physics letters,1994,65(8): 941-943.
    [23]Gong H M, Wang X H, Du Y M, et al. Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots[J]. The Journal of chemical physics,2006,125:024707.
    [24]Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearities using a single beam[J]. Quantum Electronics, IEEE Journal of,1990,26(4):760-769.
    [25]Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures[J]. TrAC Trends in Analytical Chemistry,1998,17(8):557-582.
    [26]Moskovits M. Surface-enhanced Raman spectroscopy:a brief retrospective[J]. Journal of Raman Spectroscopy,2005,36(6-7):485-496.
    [27]Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics[J]. Journal of Physics:Condensed Matter,2002,14(18):R597.
    [28]Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. science,1997,275(5303):1102-1106.
    [29]Andrade G F S, Fan M K, Brolo A G. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing[J]. Biosensors and Bioelectronics,2010,25(10): 2270-2275.
    [30]Cai H, Xu Y, Zhu N, et al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label[J]. Analyst,2002,127(6):803-808.
    [31]Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide[J]. Analytical and bioanalytical chemistry,2005,382(1):12-21.
    [32]李旭,光电检测技术,北京希望电子出版社,2005.
    [33]孙风久,应用光电子技术基础,东北大学出版社,2005.
    [34]Huang C H, Lin H Y, Lau B C, et al. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays[J]. Opt. Express,2010,18(26):27891-27899.
    [35]Nakanishi H, Bishop K J M, Kowalczyk B, et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles[J]. Nature,2009,460(7253): 371-375.
    [36]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2002, 298(5601):2176-2179.
    [37]Leopold N, Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride[J]. The Journal of Physical Chemistry B,2003,107(24): 5723-5727.
    [38]Li Y D, He Y P, Qian Y T. Synthesis of silver nanoparticles and study of surface characteristics [J]. J Chem Phys,1999,12(4):465-468.
    [39]Xiong Y, Siekkinen A R, Wang J, et al. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide[J]. Journal of Materials Chemistry,2007,17(25):2600-2602.
    [40]Tessier P M, Velev O D, Kalambur A T, et al. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating[J]. Advanced Materials,2001,13(6): 396-400.
    [41]Sherrington D C, Taskinen K A. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions[J]. Chemical Society Reviews,2001,30(2):83-93.
    [42]Zhou Q, Qian G, Li Y, et al. Two-dimensional assembly of silver nanoparticles for catalytic reduction of 4-nitroaniline[J]. Thin solid films,2008,516(6):953-956.
    [43]Raveendran P, Fu J, Wallen S L. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles[J]. Green Chem.,2006,8(1):34-38.
    [44]He B, Tan J J, Liew K Y, et al. Synthesis of size controlled Ag nanoparticles[J]. Journal of Molecular Catalysis A:Chemical,2004,221(1):121-126.
    [45]Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-Assisted Synthesis of Metallic Nanostructures in Solution[J]. Chemistry-A European Journal,2005,11(2):440-452.
    [46]Hu B, Wang S B, Wang K, et al. Microwave-assisted rapid facile "green" synthesis of uniform silver nanoparticles:self-assembly into multilayered films and their optical properties[J]. The Journal of Physical Chemistry C,2008,112(30):11169-11174.
    [47]McN aught A D, Wilkinson A. Compendium of chemical terminology[M]. Oxford:Blackwell Science,1997.
    [48]Li J, Kamata K, Watanabe S, et al. Template-and Vacuum-Ultraviolet-Assisted Fabrication of a Ag-Nanoparticle Array on Flexible and Rigid Substrates[J]. Advanced Materials,2007,19(9): 1267-1271.
    [49]Jin R, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science,2001,294(5548):1901-1903.
    [50]Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties [J]. Chemistry of Materials, 2008,20(16):5186-5190.
    [51]Liu Y, He L, Xu C, et al. Photochemical fabrication of hierarchical Ag nanoparticle arrays from domain-selective Ag+-loading on block copolymer templates[J]. Chem. Commun.,2009 (43): 6566-6568.
    [52]Gonzalez C M, Liu Y, Scaiano J C. Photochemical Strategies for the Facile Synthesis of Gold-Silver Alloy and Core-Shell Bimetallic Nanoparticles [J]. The Journal of Physical Chemistry C,2009,113(27):11861-11867.
    [53]Mallik K, Mandal M, Pradhan N, et al. Seed mediated formation of bimetallic nanoparticles by UV irradiation:A photochemical approach for the preparation of "core-shell" type structures [J]. Nano Letters,2001,1(6):319-322.
    [54]Tamai T, Watanabe M, Hatanaka Y, et al. Formation of metal nanoparticles on the surface of polymer particles incorporating polysilane by UV irradiation[J]. Langmuir,2008,24(24): 14203-14208.
    [55]Rodriguez-Sanchez L, Blanco M C, Lopez-Quintela M A. Electrochemical synthesis of silver nanoparticles[J]. The Journal of Physical Chemistry B,2000,104(41):9683-9688.
    [56]Starowicz M, Stypula B, Banas J. Electrochemical synthesis of silver nanoparticles [J]. Electrochemistry communications,2006,8(2):227-230.
    [57]Zhu J, Liu S, Palchik O, et al. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods[J]. Langmuir,2000,16(16):6396-6399.
    [58]Zhang W, Qiao X, Chen J, et al. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles[J]. Journal of colloid and interface science,2006,302(1):370-373.
    [59]Rong M, Zhang M, Liu H, et al. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin[J]. Polymer,1999,40(22):6169-6178.
    [60]Xu J, Yin J S, Ma E. Nanocrystalline Ag formed by low-temperature high-energy mechanical attrition[J]. Nanostructured materials,1997,8(1):91-100.
    [61]许北雪,吴锦雷,刘盛,等.稀土镧对真空蒸发沉积银纳米粒子团聚的影响[J].物理化学学报,2002,18(1):91-94.
    [62]Liu X, Cai X, Mao J. The design of ZnS/Ag/ZnS transparent conductive multilayer films [J]. Thin Solid Films,2003,441(1):200-206.
    [63]von der Linde D, Sokolowski-Tinten K. The physical mechanisms of short-pulse laser ablation [J]. Applied Surface Science,2000,154:1-10.
    [64]Craciun V, Bassim N, Singh R K, et al. Laser-induced explosive boiling during nanosecond laser ablation of silicon [J]. Applied surface science,2002,186(1):288-292.
    [65]Mafune F, Kohno J, Takeda Y, et al. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant [J]. The Journal of Physical Chemistry B,2001,105(22): 5114-5120.
    [66]Mafune F, Kohno J, Takeda Y, et al. Formation and size control of silver nanoparticles by laser ablation in aqueous solution [J]. The Journal of Physical Chemistry B,2000,104(39): 9111-9117.
    [67]P. Milani and S. Iannotta, Cluster Beam Synthesis of Nanostructured Materials, Springer-Verlag, Berlin Heidelberg, (1999).
    [68]Wegner K, Piseri P, Tafreshi H V, et al. Cluster beam deposition:a tool for nanoscale science and technology [J]. Journal of Physics D:Applied Physics,2006,39(22):439-459.
    [69]Binns C. Nanoclusters deposited on surfaces [J]. Surface science reports,2001,44(1):1-49.
    [70]Jensen P. Growth of nanostructures by cluster deposition:Experiments and simple models [J]. Reviews of Modern physics,1999,71(5):1695.
    [71]Han M, Xu C, Zhu D, et al. Controllable Synthesis of Two-Dimensional Metal Nanoparticle Arrays with Oriented Size and Number Density Gradients[J]. Advanced Materials,2007, 19(19):2979-2983.
    [72]Chen S, Yuan R, Chai Y, et al. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles [J]. Biosensors and Bioelectronics,2007,22(7):1268-1274.
    [73]Jiang L, Liu H, Liu J, et al. A sensitive biosensor based on Os-complex mediator and glucose oxidase for low concentration glucose determination [J]. Journal of electroanalytical chemistry, 2008,619:11-16.
    [74]Senel M, Cevik E, Abasiyanik M F. Amperometric hydrogen peroxide biosensor based on covalent immobilization of horseradish peroxidase on ferrocene containing polymeric mediator [J]. Sensors and Actuators B:Chemical,2010,145(1):444-450.
    [75]Lin J, Zhang L, Zhang S. Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode[J]. Analytical biochemistry,2007, 370(2):180-185.
    [76]Yang M, Yang Y, Yang Y, et al. Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode[J]. Analytical biochemistry,2004,334(1):127-134.
    [77]Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Analytica chimica acta,2006,556(1):46-57.
    [78]吴宝艳.新型生物传感器活性界面的构建及其评价[D].天津:南开大学,2007
    [79]Haes A J, Van Duyne R P. A highly sensitive and selective surface-enhanced nanobiosensor [C]//Materials Research Society Symposium Proceedings. Warrendale, Pa.; Materials Research Society; 1999,2002,723:133-140.
    [80]Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography:tunable localized surface plasmon resonance spectra of silver nanoparticles [J]. The Journal of Physical Chemistry B,2000,104(45):10549-10556.
    [81]Gao C, Li W, Jin Y Z, et al. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids [J]. Nanotechnology,2006,17(12):2882.
    [82]Zhao W, Wang H, Qin X, et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode [J]. Talanta,2009,80(2):1029-1033.
    [83]Guascito M R, Filippo E, Malitesta C, et al. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide [J]. Biosensors and Bioelectronics,2008,24(4): 1057-1063.
    [84]Campbell F W, Belding S R, Baron R, et al. Hydrogen peroxide electroreduction at a silver-nanoparticle array:investigating nanoparticle size and coverage effects [J]. The Journal of Physical Chemistry C,2009,113(21):9053-9062.
    [85]Liu S, Tian J, Wang L, et al. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection [J]. Carbon,2011,49(10): 3158-3164.
    [86]Becquerel AE. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. CR Acad. Sci.9,1839,145-148.
    [87]Becquerel E. Mcmoire sur les effets electriques produits sous l'influence des rayons solaires, CR Acad. Sci. Paris; 1839,9:561.
    [88]Adams W G, Day R E. The Action of Light on Selenium [J]. Proceedings of the Royal Society of London,1876,25(171-178):113-117.
    [89]Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power [J]. Journal of Applied Physics,1954,25(5):676-677.
    [90]Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. Journal of Applied Physics,1961,32(3):510-519.
    [91]Tiedje T, Yablonovitch E, Cody G D, et al. Limiting efficiency of silicon solar cells [J]. Electron Devices, IEEE Transactions on,1984,31(5):711-716.
    [92]De Vos A. Detailed balance limit of the efficiency of tandem solar cells [J]. Journal of Physics D:Applied Physics,1980,13(5):839.
    [93]Hao H, Liao X, Zeng X, et al. Light-induced changes in diphasic nanocrystalline silicon films and solar cells [J]. Journal of non-crystalline solids,2006,352(9):1904-1908.
    [94]Li H B T, Franken R H, Rath J K, et al. Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells[J]. Solar Energy Materials and Solar Cells,2009,93(3):338-349.
    [95]Atwater H A, Polman A. Plasmonics for improved photovoltaic devices [J]. Nature materials, 2010,9(3):205-213.
    [96]Liu W, Wang X, Li Y, et al. Surface plasmon enhanced GaAs thin film solar cells [J]. Solar Energy Materials and Solar Cells,2011,95(2):693-698.
    [97]Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of grapheme [J]. Science,2008,320(5881):1308-1308.
    [98]Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in grapheme [J]. Nano letters,2011,11(11):4688-4692.
    [99]Liu Z, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: grapheme [J]. Advanced Materials,2008,20(20):3924-3930.
    [100]Xu Y, Liu Z, Zhang X, et al. A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property [J]. Advanced Materials,2009,21(12): 1275-1279.
    [101]Gomez De Arco L, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics[J]. Acs Nano,2010,4(5):2865-2873.
    [102]Van Noorden R. Moving towards a graphene world [J]. Nature,2006,442(7100):228-229.
    [103]Stolyarova E, Rim K T, Ryu S, et al. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface [J]. Proceedings of the National Academy of Sciences,2007,104(22):9209-9212.
    [104]Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in grapheme [J]. nature,2005,438(7065):197-200.
    [105]Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J]. Nature nanotechnology,2008,3(4):206-209.
    [106]Novoselov K S, Jiang Z, Zhang Y, et al. Room-temperature quantum Hall effect in grapheme [J]. Science,2007,315(5817):1379-1379.
    [107]Wang Y, Huang Y, Song Y, et al. Room-temperature ferromagnetism of grapheme [J]. Nano Letters,2008,9(1):220-224.
    [108]Heersche H B, Jarillo-Herrero P, Oostinga J B, et al. Bipolar supercurrent in grapheme [J]. Nature,2007,446(7131):56-59.
    [109]Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer [J]. Physical Review Letters,2008,100(1):016602.
    [110]Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of grapheme [J]. Science,2008,320(5881):1308-1308.
    [111]Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of grapheme [J]. Science,2008,320(5881):1308-1308.
    [112]Inagaki M; Radovic L. R. Nanocarbons [J]. Carbon 2002,40 (12),2279-2282.
    [113]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nature nanotechnology,2008,3(2):101-105.
    [114]Pasricha R, Gupta S, Srivastava A K. A Facile and Novel Synthesis of Ag-Graphene-Based Nanocomposites [J]. Small,2009,5(20):2253-2259.
    [115]Tian J, Liu S, Zhang Y, et al. Environmentally Friendly, One-Pot Synthesis of Ag Nanoparticle-Decorated Reduced Graphene Oxide Composites and Their Application to Photocurrent Generation [J]. Inorganic Chemistry,2012,51(8):4742-4746.
    [1]Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma V K, Nevecna T J, Zboril R. Silver colloid nanoparticles:Synthesis, characterization, and their antibacterial activity[J]. The Journal of Physical Chemistry B,2006, (33):6248-16253.
    [2]Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science,1997,275(5303):1102-1106.
    [3]Andrade G F S, Fan M K, Brolo A G. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing[J]. Biosensors and Bioelectronics,2010,25(10): 2270-2275.
    [4]Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers[J]. The Journal of chemical physics,2004,120:357.
    [5]Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide[J]. Analytical and bioanalytical chemistry,2005,382(1):12-21.
    [6]Sonnichsen C, Reinhard B M, Liphardt J, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nature biotechnology,2005,23(6):741-745.
    [7]Milani P, Piseri P, Barborini E, et al. Cluster beam synthesis of nanostructured thin films[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2001,19(4): 2025-2033.
    [8]Wegner K, Piseri P, Tafreshi H V, et al. Cluster beam deposition:a tool for nanoscale science and technology[J]. Journal of Physics D:Applied Physics,2006,39(22):R439.
    [9]Binns C. Nanoclusters deposited on surfaces[J]. Surface science reports,2001,44(1):1-49.
    [10]Jensen P. Growth of nanostructures by cluster deposition:Experiments and simple models[J]. Reviews of Modern physics,1999,71(5):1695.
    [11]韩民.团簇束流与团簇淀积[D],1997.
    [12]Gatz P, Hagena O F. Cluster beams for metallization of microstructured surfaces [J]. Appl Surf Sci,1995,91(1-4):169-74.
    [13]Haberland H, Mall M, Moseler M, et al. Filling of micron-sized contact holes with copper by energetic cluster-impact [J]. Journal of Vacuum Science & Technology A,1994,12(5): 2925-30.
    [14]Haberland H, Karrais M, Mall M, et al. Thin films from energetic cluster impact:A feasibility study[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1992, 10(5):3266-3271.
    [15]Jensen P. Growth of nanostructures by cluster deposition:Experiments and simple models [J]. Reviews of Modern Physics,1999,71(5):1695-735.
    [16]韩民 罗陈.许万.基于团簇束流沉积的纳米结构制备:设备与机理[J].中国材料科技与设备,2005,2((4)):25-9.
    [17]Song F, Li Z, Li X, et al. Ion sputtering nanostructuring MgF2 surface and its energy-dependent surface roughness [J]. Modern Physics Letters B,2005,19(04):157-162.
    [18]Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. science,1997,275(5303):1102-1106.
    [19]Andrade G F S, Fan M K, Brolo A G. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing[J]. Biosensors and Bioelectronics,2010,25(10): 2270-2275.
    [20]Huang C H, Lin H Y, Lau B C, et al. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays[J]. Opt. Express,2010,18(26):27891-27899.
    [21]Nakanishi H, Bishop K J M, Kowalczyk B, et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles[J]. Nature,2009,460(7253): 371-375.
    [22]Raveendran P, Fu J, Wallen S L. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles[J]. Green Chem.,2006,8(1):34-38.
    [23]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment [J]. The Journal of Physical Chemistry B, 2003,107(3):668-677.
    [1]Kumar S A, Wang S F, Chang Y T. Poly (BCB)/Au-nanoparticles hybrid film modified electrode:Preparation, characterization and its application as a non-enzymatic sensor[J]. Thin Solid Films,2010,518(20):5832-5838.
    [2]Zhang G, Yang N, Ni Y, et al. A H2O2 electrochemical biosensor based on biocompatible PNIPAM-g-P (NIPAM-co-St) nanoparticles and multi-walled carbon nanotubes modified glass carbon electrode[J]. Sensors and Actuators B:Chemical,2011,158(1):130-137.
    [3]Delvaux M, Walcarius A, Demoustier-Champagne S.Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles[J]. Analytica chimica acta,2004,525(2): 221-230.
    [4]Matsubara C, Kawamoto N, Takamura K. Oxo [5,10,15,20-tetra (4-pyridyl) porphyrinato] titanium (Ⅳ):an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide[J]. Analyst,1992,117(11):1781-1784.
    [5]Hanaoka S, Lin J M, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt (Ⅱ)-ethanolamine complex immobilized on resin[J]. Analytica chimica acta,2001,426(1):57-64.
    [6]Tripathi V S, Kandimalla V B, Ju H. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite[J]. Biosensors and Bioelectronics,2006,21(8):1529-1535.
    [7]Zhang L. Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode [J]. Biosensors and bioelectronics,2008,23(11):1610-1615.
    [8]Liu H, Rusling J F, Hu N. Electroactive core-shell nanocluster films of heme proteins, polyelectrolytes, and silica nanoparticles[J]. Langmuir,2004,20(24):10700-10705.
    [9]Li L, Xu S, Du Z, et al. Electrografted poly (N-mercaptoethyl acrylamide) and Au nanoparticles-based organic/inorganic film:a platform for the high-performance electrochemical biosensors[J]. Chemistry, an Asian journal,2010,5(4):919.
    [10]Wang Y H, Gu H Y. Hemoglobin co-immobilized with silver-silver oxide nanoparticles on a bare silver electrode for hydrogen peroxide electroanalysis[J]. Microchimica Acta,2009, 164(1-2):41-47.
    [11]Liu Z M, Yang Y, Wang H, et al. A hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode[J]. Sensors and Actuators B:Chemical,2005, 106(1):394-400.
    [12]Liu S, Tian J, Wang L, et al. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection[J]. Carbon,2011,49(10): 3158-3164.
    [13]Ren J, Shi W, Li K, et al. Ultrasensitive platinum nanocubes enhanced amperometric glucose biosensor based on chitosan and nafion film[J]. Sensors and Actuators B:Chemical,2012, 163(1):115-120.
    [14]Rodriguez M C, Rivas G A. Glucose biosensor prepared by the deposition of iridium and glucose oxidase on glassy carbon transducer[J]. Electroanalysis,1999,11(8):558-564.
    [15]Zhou P, Dai Z, Fang M, et al. Novel dendritic palladium nanostructure and its application in biosensing[J]. The Journal of Physical Chemistry C,2007,111(34):12609-12616.
    [16]M. Janyasupab, C.W. Liu, Y. Zhang, K.W. Wang, C.C. Liu, Bimetallic Pt-M (M=Cu, Ni, Pd, and Rh) nanoporous for H2O2 based amperometric biosensors, Sensors and Actuators B: Chemical,2012,179,209-214.
    [17]Ammam M, Easton E B. High-performance glucose sensor based on glucose oxidase encapsulated in new synthesized platinum nanoparticles supported on carbon Vulcan/Nafion composite deposited on glassy carbon[J]. Sensors and Actuators B:Chemical,2011,155(1): 340-346.
    [18]Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide[J]. Analytical and bioanalytical chemistry,2005,382(1):12-21.
    [19]Gao C, Li W, Jin Y Z, et al. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids[J]. Nanotechnology,2006,17(12):2882.
    [20]Sun X, Qin X, Hu J, et al. Heat Treatment-Based One-Step Preparation of Highly Concentrated, Well-Stable Silver Colloids that Can Form Stable Films on Bare Electrodes for H2O2 Detection[J]. Current Nanoscience,2012,8(3):335-342.
    [21]Gao X, Jin L, Wu Q, et al. A Nonenzymatic Hydrogen Peroxide Sensor Based on Silver Nanowires and Chitosan Film[J]. Electroanalysis,2012,24(8):1771-1777.
    [22]Chang G, Luo Y, Lu W, et al. Hydrothermal synthesis of ultra-highly concentrated, well-stable Ag nanoparticles and their application for enzymeless hydrogen peroxide detection[J]. Journal of Nanoparticle Research,2011,13(7):2689-2695.
    [23]Zhang Y, Liu S, Wang L, et al. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing[J]. RSC Advances, 2012,2(2):538-545.
    [24]Zhang L, Li H, Ni Y, et al. Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing[J]. Electrochemistry Communications,2009,11(4): 812-815.
    [25]Wang Q, Yun Y, Zheng J. Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid[J]. Microchimica Acta,2009,167(3-4):153-157.
    [26]Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors[J]. Journal of the American Chemical Society,2003, 125(9):2408-2409.
    [27]Rahman M A, Kumar P, Park D S, et al. Electrochemical sensors based on organic conjugated polymers[J]. Sensors,2008,8(1):118-141.
    [28]Haberland H, Mall M, Moseler M, et al. Filling of micron-sized contact holes with copper by energetic cluster impact[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1994,12(5):2925-2930.
    [29]Han M, Xu C, Zhu D, et al. Controllable Synthesis of Two-Dimensional Metal Nanoparticle Arrays with Oriented Size and Number Density Gradients[J]. Advanced Materials,2007, 19(19):2979-2983.
    [30]Howald L, Haefke H, Luthi R, et al. Ultrahigh-vacuum scanning force microscopy: Atomic-scale resolution at monatomic cleavage steps[J]. Physical Review B,1994,49(8): 5651.
    [31]Ramirez-Aguilar K A, Rowlen K L. Tip characterization from AFM images of nanometric spherical particles[J]. Langmuir,1998,14(9):2562-2566.
    [32]Ye H, Crooks J A, Crooks R M. Effect of particle size on the kinetics of the electrocatalytic oxygen reduction reaction catalyzed by Pt dendrimer-encapsulated nanoparticles[J]. Langmuir, 2007,23(23):11901-11906.
    [33]Wilson O M, Knecht M R, Garcia-Martinez J C, et al. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol[J]. Journal of the American Chemical Society,2006, 128(14):4510-4511.
    [34]Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science,2007,316(5825):732-735.
    [35]Cuenya B R. Synthesis and catalytic properties of metal nanoparticles:Size, shape, support, composition, and oxidation state effects[J]. Thin Solid Films,2010,518(12):3127-3150.
    [36]Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties[J]. Science,1998,281(5383):1647-1650.
    [37]Valden M, Pak S, Lai X, et al. Structure sensitivity of CO oxidation over model Au/TiO2 catalysts[J]. Catalysis Letters,1998,56(1):7-10.
    [38]Kim F, Connor S, Song H, et al. Platonic gold nanocrystals[J]. Angewandte Chemie,2004, 116(28):3759-3763.
    [39]Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods:role of the size and nature of the seed[J]. Chemistry of Materials,2004,16(19):3633-3640.
    [40]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2002, 298(5601):2176-2179.
    [41]Lin M S, Leu H J. A Fe3O4-Based Chemical Sensor for Cathodic Determination of Hydrogen Peroxide[J]. Electroanalysis,2005,17(22):2068-2073.
    [42]Wang L, Bo X, Bai J, et al. Gold nanoparticles electrodeposited on ordered mesoporous carbon as an enhanced material for nonenzymatic hydrogen peroxide sensor[J]. Electroanalysis,2010, 22(21):2536-2542.
    [43]Campbell F W, Belding S R, Baron R, et al. Hydrogen peroxide electroreduction at a silver-nanoparticle array:investigating nanoparticle size and coverage effects[J]. The Journal of Physical Chemistry C,2009,113(21):9053-9062.
    [44]Belding S R, Dickinson E J F, Compton R G. Diffusional Cyclic Voltammetry at Electrodes Modified with Random Distributions of Electrocatalytic Nanoparticles:Theory[J]. The Journal of Physical Chemistry C,2009,113(25):11149-11156.
    [45]Compton, R. G.; Banks, C. E. Understanding Voltammetry,1st ed.; World Scientific Publishing Co. Pte. Ltd.:Hackensack, NJ,2007.
    [46]Reller H, Kirowa-Eisner F, Gileadi E. Ensembles of microelectrodes:A digital-simulation[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1982,138(1):65-77.
    [47]Huber C A, Huber T E, Sadoqi M, et al. Nanowire array composites[J]. Science-AAAS-Weekly Paper Edition-including Guide to Scientific Information,1994, 263(5148):800-801.
    [48]Seddon B J, Shao Y, Girault H H. Printed microelectrode array and amperometric sensor for environmental monitoring[J]. Electrochimica acta,1994,39(16):2377-2386.
    [49]Amatore C, Saveant J M, Tessier D. Charge transfer at partially blocked surfaces:a model for the case of microscopic active and inactive sites[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1983,147(1):39-51.
    [50]Davies T J, Compton R G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes:Theory[J]. Journal of Electroanalytical Chemistry,2005,585(1): 63-82.
    [51]Pagels M, Hall C E, Lawrence N S, et al. All-diamond microelectrode array device[J]. Analytical chemistry,2005,77(11):3705-3708.
    [52]Flatgen G, Wasle S, Liibke M, et al. Autocatalytic mechanism of H2O2 reduction on Ag electrodes in acidic electrolyte:experiments and simulations[J]. Electrochimica acta,1999, 44(25):4499-4506.
    [53]Zhao W, Wang H, Qin X, et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode[J]. Talanta,2009,80(2):1029-1033.
    [54]He X, Hu C, Liu H, et al. Building Ag nanoparticle 3D catalyst via Na2Ti3O7 nanowires for the detection of hydrogen peroxide[J]. Sensors and Actuators B:Chemical,2010,144(1):289-294.
    [1]Hao H, Liao X, Zeng X, et al. Light-induced changes in diphasic nanocrystalline silicon films and solar cells[J]. Journal of non-crystalline solids,2006,352(9):1904-1908.
    [2]Li H B T, Franken R H, Rath J K, et al. Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells[J]. Solar Energy Materials and Solar Cells,2009,93(3):338-349.
    [3]Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature materials, 2010,9(3):205-213.
    [4]Liu W, Wang X, Li Y, et al. Surface plasmon enhanced GaAs thin film solar cells[J]. Solar Energy Materials and Solar Cells,2011,95(2):693-698.
    [5]De Vos A. Detailed balance limit of the efficiency of tandem solar cells[J]. Journal of Physics D:Applied Physics,1980,13(5):839.
    [6]Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308-1308.
    [7]Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano letters,2011,11(11):4688-4692.
    [8]Brodie B C. Philos Trans R Soc London,1859,149:249-259.
    [9]Staudenmaier L. Ber Dtsch Chem Ges,1898,31:1481-1487.
    [10]Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339.
    [11]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [12]Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets[J]. The Journal of Physical Chemistry C,2008,112(22):8192-8195.
    [13]Si Y, Samulski E T. Synthesis of water soluble graphene[J]. Nano Letters,2008,8(6): 1679-1682.
    [14]Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials,2009, 19(12):1987-1992.
    [15]Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature nanotechnology,2008,4(1):25-29.
    [16]Gao W, Alemany L B, Ci L, et al. New insights into the structure and reduction of graphite oxide[J]. Nature chemistry,2009,1(5):403-408.
    [17]Pei S, Zhao J, Du J, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon,2010,48(15):4466-4474.
    [18]Moon I K, Lee J, Ruoff R S, et al. Reduced graphene oxide by chemical graphitization[J]. Nature communications,2010,1:73.
    [19]Ramesha G K, Sampath S. Electrochemical reduction of oriented graphene oxide films:an in situ raman spectroelectrochemical study[J]. The Journal of Physical Chemistry C,2009, 113(19):7985-7989.
    [20]Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS nano,2009,3(9):2653-2659.
    [21]Zhou M, Wang Y, Zhai Y, et al. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films[J]. Chemistry-A European Journal,2009, 15(25):6116-6120.
    [22]Wang Z, Zhou X, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. The Journal of Physical Chemistry C,2009,113(32):14071-14075.
    [23]Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. The Journal of Physical Chemistry B,2006,110(17): 8535-8539.
    [24]McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials,2007,19(18):4396-4404.
    [25]Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano letters,2008,8(1):323-327.
    [26]Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS nano,2008,2(3):463-470.
    [27]Zhou Y, Bao Q, Tang L A L, et al. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials,2009,21(13):2950-2956.
    [28]Zhu Y, Stoller M D, Cai W, et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets[J]. ACS nano,2010,4(2): 1227-1233.
    [29]Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. Acs Nano,2008,2(7):1487-1491.
    [30]Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite[J]. Journal of the American Chemical Society,2009,131(31): 11027-11032.
    [31]Manga K K, Zhou Y, Yan Y, et al. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties [J]. Advanced Functional Materials,2009,19(22):3638-3643.
    [32]Gilje S, Dubin S, Badakhshan A, et al. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications[J]. Advanced Materials,2010,22(3):419-423.
    [33]Abdelsayed V, Moussa S, Hassan H M, et al. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature [J]. The Journal of Physical Chemistry Letters,2010,1(19):2804-2809.
    [34]Jiao L, Wang X, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons[J]. Nature nanotechnology,2010,5(5):321-325.
    [35]Green A A, Hersam M C. Emerging methods for producing monodisperse graphene dispersions[J]. The journal of physical chemistry letters,2009,1(2):544-549.
    [36]Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology,2008,3(9):563-568.
    [37]Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature nanotechnology,2008,3(9):538-542.
    [38]Valles C, Drummond C, Saadaoui H, et al. Solutions of negatively charged graphene sheets and ribbons[J]. Journal of the American Chemical Society,2008,130(47):15802-15804.
    [39]Hao R, Qian W, Zhang L, et al. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets[J]. Chemical Communications,2008 (48):6576-6578.
    [40]Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. Journal of the American Chemical Society,2009, 131(10):3611-3620.
    [41]Behabtu N, Lomeda J R, Green M J, et al. Spontaneous high-concentration dispersions and liquid crystals of graphene[J]. Nature nanotechnology,2010,5(6):406-411.
    [42]Hamilton C E, Lomeda J R, Sun Z, et al. High-yield organic dispersions of unfunctionalized graphene[J]. Nano letters,2009,9(10):3460-3462.
    [43]Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science,2008,319(5867):1229-1232.
    [44]Liao K, Ding W, Zhao B, et al. High-power splitting of expanded graphite to produce few-layer graphene sheets[J]. Carbon,2011,49(8):2862-2868.
    [45]Liu Z, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material: graphene[J]. Advanced Materials,2008,20(20):3924-3930.
    [46]Xu Y, Liu Z, Zhang X, et al. A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property[J]. Advanced Materials,2009,21(12): 1275-1279.
    [47]Gomez De Arco L, Zhang Y, Schlenker C W, et al. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics[J]. Acs Nano,2010, 4(5):2865-2873.
    [48]Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature materials, 2010,9(3):205-213.
    [49]Liu W, Wang X, Li Y, et al. Surface plasmon enhanced GaAs thin film solar cells[J]. Solar Energy Materials and Solar Cells,2011,95(2):693-698.
    [50]Tian J, Liu S, Zhang Y, et al. Environmentally Friendly, One-Pot Synthesis of Ag Nanoparticle-Decorated Reduced Graphene Oxide Composites and Their Application to Photocurrent Generation[J]. Inorganic Chemistry,2012,51(8):4742-4746.
    [51]Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets[J]. The Journal of Physical Chemistry C,2008,112(22):8192-8195.
    [51]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical review B,2000,61(20):14095.
    [52]Ni Z H, Yu T, Lu Y H, et al. Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening[J]. Acs Nano,2008,2(11):2301-2305.
    [53]Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of modern physics,2009,81(1):109.
    [54]Ghosh S, Sharma M. Electron optics with magnetic vector potential barriers in graphene[J]. Journal of Physics:condensed matter,2009,21(29):292204.
    [55]Geim A K, Novoselov K S. The rise of graphene [J]. Nature materials,2007,6(3):183-191.
    [56]Venables J A, Spiller G D T, Hanbucken M. Nucleation and growth of thin films[J]. Reports on Progress in Physics,1984,47(4):399.
    [57]Wang J, Gudiksen M S, Duan X, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires[J]. Science,2001,293(5534):1455-1457.
    [58]Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in single-layer graphene[J]. Nano letters,2009,9(5):1742-1746.
    [59]Withers F, Bointon T H, Craciun M F, et al. All Graphene Photodetectors[J]. ACS nano,2013.
    [60]Hayashi H, Lightcap I V, Tsujimoto M, et al. Electron transfer cascade by organic/inorganic ternary composites of porphyrin, zinc oxide nanoparticles, and reduced graphene oxide on a tin oxide electrode that exhibits efficient photocurrent generation[J]. Journal of the American Chemical Society,2011,133(20):7684-7687.
    [61]McShane C M, Choi K S. Photocurrent Enhancement of n-Type Cu2O Electrodes Achieved by Controlling Dendritic Branching Growth[J]. Journal of the American Chemical Society,2009, 131(7):2561-2569.
    [62]Chen C, Cai W, Long M, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction[J]. ACS nano,2010,4(11):6425-6432.
    [63]Huang C H, Lin H Y, Lau B C, et al. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays[J]. Opt. Express,2010,18(26):27891-27899.
    [64]Nakanishi H, Bishop K J M, Kowalczyk B, et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles[J]. Nature,2009,460(7253): 371-375.
    [65]Mattei G, Mazzoldi P, Bernas H. Metal nanoclusters for optical properties[M]//Materials Science with Ion Beams. Springer Berlin Heidelberg,2010:287-316.
    [66]Hagfeldt A, Lindstrom H, Sodergren S, et al. Photoelectrochemical studies of colloidal TiO2 films:The effect of oxygen studied by photocurrent transients [J]. Journal of Electroanalytical Chemistry,1995,381(1):39-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700