金属纳米粒子点阵增强LED发光的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发光二极管(LEDs)由于其优异的光电性能,已经被广泛应用于照明、显示、光通信等领域。以GaN基发光二极管产生白光替代传统光源已被各界认可,然而目前其量子效率距离半导体照明的实际要求还有一定的距离。因此,如何提高LED的发光效率,设计制造出高亮度、高效率的LED,具有十分重要的研究与应用价值。用金属表面等离激元增强LED发光是行之有效的方法之一。
     本文用PECVD和ALD方法在GaN量子阱表面制备了氮化硅和氧化铝的介质层,在介质层表面通过团簇束流沉积法制备了不同覆盖率的Ag纳米粒子点阵,研究了表面等离激元耦合提高LED发光内量子效率和光取出效率的有效性,以及为实现有效耦合对介质表面金属纳米粒子点阵表面等离激元性质的调控方法。
     我们研究了氮化硅和氧化铝两种介质的Spacer层表面的Ag纳米粒子点阵的表面等离激元共振性质的变化规律,并通过选择氮化硅介质层并加热退火,调制Ag纳米粒子点阵的表面等离激元共振峰,实现了其与GaN量子阱的450nm发光波长的匹配。
     我们通过光致发光(PL)谱的测量,研究Ag纳米粒子点阵的表面等离激元对GaN量子阱量子效率的影响。设计了一种独特的综合测量配置,分析Ag纳米结构的反射、散射和消光作用对所测得量子阱PL强度的综合影响,实现了对LED发光增强系数的定量分析。
     我们选择5nm厚的氮化硅介质层作为LED量子阱与Ag纳米粒子点阵间的Spacer层,来研究Ag纳米粒子的表面等离激元对LED内量子效率的作用。结果表明,在适当的纳米粒子沉积量下,LED内量子效率随Ag纳米粒子覆盖率增加而提高,最高发光增强可达3倍。光致发光寿命谱的分析也表明,Ag纳米粒子覆盖率越高,辐射复合的寿命越短,速率越快,因而量子阱发光的内量子效率提高。氮化硅表面的Ag表面等离激元共振峰在450nm附近,与量子阱的发光波长匹配,会产生大量的SP-QW共振耦合模式,高的态密度及能量的耦合转移能够促进自发辐射速率提高,这是LED内量子效率提高的原因。
     我们以500nm厚的氮化硅介质层作为LED量子阱与Ag纳米粒子点阵间的Spacer层,来研究表面等离激元对LED光取出效率的作用。探讨了利用金属纳米结构表面等离激元对介质/空气界面上由于全内反射而产生的疏逝波的散射作用,以提高LED光取出效率的方案。并通过在三棱镜表面制备Ag纳米颗粒结构,在全内反射条件下探测其对全反射光的导出来模拟这个散射过程。结果表明,在低覆盖率时光取出效率随Ag纳米颗粒沉积量增大而提高,然而在高覆盖率情况下,光取出效率却随沉积量增加而开始降低。因此,通过设计一个合适的Ag纳米颗粒覆盖率,可使LED的量子效率达到最大提高。
     我们的研究表明:只要选择合适的介质Spacer层和金属纳米粒子材料,精确控制纳米粒子的尺寸、形貌及覆盖率等,就能够实现对金属表面等离激元的调制,从而提高LED内量子效率和光取出效率,使高亮度、高效率LED的实现成为可能。
Light emmiting diodes (LEDs) have been widely used in lighting, display, optical communication and other fields for its excellent optical and electrical performance. It is universally believed that GaN-based LEDs for white lighting is replacing the fluorescent lamps in the near future. However, the emission efficiency of GaN-based LEDs has to be further improved for solid state lighting. Therefore, it is of great importance to improve the LEDs efficiency and thus, to realize high efficiency bright LEDs. A promising way to enhance LEDs light output is the use of surface plasmons (SPs) induced by metal/dielectric nanostructures.
     In this paper, a dielectric layer of silicon nitride (SixN) or alumina (Al2O3) was prepared on the surface of GaN quantum wells (QWs) by PECVD or ALD. A layer of silver nanoparticles with different coverage was then fabricated on the spacer layer by means of gas-phase cluster beam deposition. The enhancement of internal quantum efficiency (IQE) and light extraction efficiency (LEE) through effective SPs coupling, as well as the controlling of SPs properties induced by silver nanoparticle arrays on dielectric spacer layer has been investigated.
     We studied the surface plasmon resonance (SPR) of Ag nanoparticle arrays on SixN and Al2O3spacer layers. By selecting the silicon nitride dielectric layer and annealing process, we realized the modulation of SPs of Ag nanoparticles for the match between SPR and the luminescent wavelength of GaN-based LEDs (450nm).
     We also studied the influence of SPs in GaN quantum wells by the method of photo luminescence (PL) spectra measurements. A unique combinational configuration of measurements is designed to achieve quantitative analysis of LEDs emission enhancement factor, by taking into account the role of reflection, scattering and extinction of the Ag nanostructures.
     A5nm-thick dielectric spacer layer of silicon nitride was fabricated between the GaN quantum wells and the silver nanoparticle layer, to study the internal quantum efficiency enhancement due to the surface plasmons. The results show that, within an appropriate coverage, the IQE is increasing with the coverage of silver nanoparticles. A3-fold photoluminescence (PL) enhancement has been achieved. Time-resolved photoluminescence (TRPL) analysis provides further evidence that higher coverage of Ag nanoparticles can result in shorter lifetime and faster rate of radiative recombination, leading to the enhancement of IQE. Since SPR of silver nanoparticles on SixN layer peaks at about450nm, it results in high density of states near the QWs, which accelerates the spontaneous emission, In addition, the coupling of spontaneous emission from QWs into the SP modes can also improve the IQE of LEDs.
     A500nm-thick silicon nitride dielectric layer was fabricated to study the light extraction efficiency enhancement owing to surface plasmons. We proposed an approach to scatter the evanescent wave accompanying the total internal reflection (TIR) by nanoparticle arrays in order to improve LEDs light extraction efficiency. We also performed a quantitative measurement on an analogous system by fabricating silver nanoparticle arrays on a spectro-prism surface. The results show that the LEE is increasing with the coverage of silver nanoparticles at low coverage, and decreasing at high coverage as well. Therefore, the LEDs quantum efficiency can be improved by a suitable coverage tailoring of Ag nanoparticles.
     Our results indicate that the surface plasmons induced by metal nanoparticles can be precisely controlled, choosing a suitable dielectric spacer layer and metal material, along with tailoring the size, morphology and coverage of nanoparticles. Then high efficiency bright LEDs can be realized by improve its internal quantum efficiency and light extraction efficiency through surface plasmons.
引文
[1]R. M. Fletcher, Opt. Photonics News 10,19(1999).
    [2]E. F. Schubert, J. K. Kim, Science 308,1274(2005).
    [3]C. Y. Chen, D. M. Yeh, Y.C. Lu, C. C. Yang, Appl. Phys. Lett.89,203113 (2006).
    [4]Chu-Young Cho, Min-Ki Kwon, Sang-Jun Lee, Jang-Won Kang, Se-Eun Kang, Sang-Heon Han, Seong-Ju Park, Dong-Yul Lee, Nanotechnology,21,205201(2010).
    [5]Kwon M.K., Kim J.Y., Kim B.H., Park I.K., Cho C.Y., Byeon C.C., Park S.J., Adv. Mater.20,1253-1257 (2008).
    [6]Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, J. Appl. Phys.93, 9383 (2003).
    [7]J. K. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, H. Kim, C. Sone, and Y. Park, Appl. Phys. Lett.93,221111 (2008).
    [8]F. Ishida, K. Yoshimura, K. Hoshino, and K. Tadatomo, Phys. Status Solidi C 5, 2083 (2008).
    [9]J.A.P.,1969,40,2253.
    [10]H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J], Japanese Journal of Applied Physics,1989, vol.28(12):L2112-L2114.
    [11]S. Nakamura, N. Iwasa, M. Senoh., Method of manufacturing P-type compound semiconductor, US Patent 5,306,662,1994.
    [12]Krames M R, Shehekin O B, Mueller-Mach R, et al., Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting[J], J Disp Technol,3(2): 160-175 (2007).
    [13]Koike M, Shibata N, Kato H, et al., Development of high efficieney GaN-based multiquantum-well light-emitting diodes and their applications [J], Selected Topics in Quantum Electronics, IEEE Journal 2002,8(2):271-7.
    [14]Raether H., Surface Plasmon on smooth and rough surfaces and on gratings[M], Berlin:Springer-Verlag,40-58,1988.
    [15]Ritchie, R. H. (June 1957). "Plasma Losses by Fast Electrons in Thin Films". Physical Review 106 (5):874-881, (1957).
    [16]M Fleischman, P.J. Hendra and A. J. McQuillan, Raman Spectra of Pyridine Adsorbed at a silver Electrode, Chemical Physics Letters 26,123 (1974).
    [17]J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, "Surface enhanced Raman spectroscopy:new materials, concepts, characterization tools, and applications," Faraday Discuss 132,9-26 (2006).
    [18]K. Kneipp et al, Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS), Phys. Rev. Lett.78,1667 (1997).
    [19]S. M. Nie, S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science 275,1102 (1997).
    [20]Eric Le Ru and Pablo Etchegoin, "principles of surface enhanced raman spectroscopy," (2009).
    [21]H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4 (10),1576-1599 (2008).
    [22]Nylander C, Liedberg B, Lind T, Sensors and Actuators,3:79 (1982).
    [23]Liedberg B, Nylander C, Lundstrom I, Sensors and Actuators,4:299 (1983).
    [24]Vidal M M B, Lopez R, Aleggrel S, et al., Sensors and Actuators B, 11(1-3):455 (1993).
    [25]Matsubara K, Kawata S, Minami S, Appl Opt,27(6):1160 (1988).
    [26]Liedberg B, Lundstrom I, Stenberg E, Sensors and Actuators B, 11(1-3):63 (1993).
    [27]Zhang L M, Uttamchandani D, Electron Lett,24(23):1469, (1988).
    [28]Jorgenson R C, Yee S S, Sensors and Actuators B,12(3):213 (1993).
    [29]Vukusic P S, Bryarr Brown G P, Sambles J R, Sensors and Actuators B,8(2):155 (1992).
    [30]Nelson S G, Johnston K S, Yee S S, Sensors and Actuators B,35(1-3):187 (1996).
    [31]Kruchinin A A, Vlasov Y G, Sensors and Actuators B,30(1):77 (1996).
    [32]Homola J, Yee S S, Sensors and Actuators B,54(1-2):16 (1999).
    [33]Pfeifer P, Aldinger U, Schwotzer G, et al., Sensors and Actuators B,54(1-2):166 (1999).
    [34]Karlsson R, Stahleberg R, Anal Biochem,228(2):274 (1995).
    [35]Seddon N, Bearpark T., Science 302(5650):1573 (2003).
    [36]Hocheol Shin, Shanhui Fan, All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielect-Metal Structure, Phys. Rev. Lett..96,073907 (2006).
    [37]Henri J. Lezec, Jennifer A. Dionne, Harry A. Atwater, Negative Refraction at Visible Frequencies, Science 316,430 (2007).
    [38]Xiebin Fan, Guo Ping Wang, Jeffery Chi Wai Lee, C. T. Chan, All-Angle Broadband Negative Refraction of Metal Waveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration, Phys. Rev. Lett.97,073901 (2006).
    [39]N. Fang, H. Lee, C. Sun, X. Zhang, Sub-Diffraction-Limited Optical Imaging with a Silver Superlens, Science 308.534 (2005).
    [40]Zhaowei Liu, Hyesong Lee, Yi Xiong, Chen Sun, Xiang Zhang, Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects, Science 315:1686 (2007).
    [41]Pendry J. Phys. Rev. Lett,85(18):3966 (2000).
    [42]M. Allione, V. V Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, "Surface plasmon mediated interference phenomena in low-Q silver nanowire cavities," Nano Letters 8(1),31-35 (2008).
    [43]M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, "Nanoparticle-mediated coupling of light into a nanowire," Nano Letters 7 (8), 2346-2350 (2007).
    [44]A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Letters 6 (8),1822-1826 (2006).
    [45]H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys Rev Lett 95 (25),-(2005).
    [46]OZBAY E. Plasmonics:merging photonics and electronics a t nanoscale dimensions [J], Science,2006,311:189-193.
    [47]Okamoto K, Niki I, Scherer A., Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy[J], Appl. Phys. Lett.,2005,87(7):1102.
    [48]HEIDEL T D, MAPEL J K, CELEBI K, et al., Surface plasmon polariton mediated energy transfer in organic phot ovoltaic devices [J]. Appl. Phys. Lett.,2007, 91:093506/1-093506/3.
    [49]CATCHPOLE K R, POLMAN A, Plasmonic solar cells [J], Op tics Express, 2008,16 (26):21793-21800.
    [1]陈元灯 《LED制造技术与应用》 电子工业出版社
    [2]史国光《半导体发光二极管及固体照明》科学出版社
    [3]方志烈《半导体发光材料和器件》复旦大学出版社
    [4]N. F. Gardner et al., Appl. Phys. Lett.74,2230 (1999).
    [5]T. Baba et al., Jpn. J. Appl. Phys.35.97 (1996).
    [6]H. Sugawara, M. Ishikawa, Y. Kokubun, S. Naritsuka, K.Itaya, G. Hatakoshi, and M. Suzuki, "Semiconductor light emitting device", US Patent 5,153,889 (1992).
    [7]Okamoto K, Niki I, Scherer A., Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy[J], Appl. Phys. Lett.,2005,87(7):1102.
    [8]Neal Terrell D, Okamoto Koichi, Scherer Axel, Time resolved photoluminescence spectroscopy of surface-plasmon-enhanced light emission from conjugate polymers[J]. Appl. Phys. Lett.,2006,89(22):1106.
    [9]Purcell EM, Spontaneous emission at radio frequencies [J], Phys. Rev.,1946,69: 681681.
    [10]Gontijo I, Boroditsky M, Yablonovitch E, Coupling of InGaN quantum well photoluminescence to silver surface plasmons [J], Phys. Rev. B,1999,60(16): 11564-11567.
    [11]Koichi Okamoto, Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals, J. Opt. Soc.,2006,23(8):1674-1678.
    [12]Barnes William L, Turning the tables on surface plasmons [J], Nature Materials, 2004,3.
    [13]赵佳《利用金属-介质纳米结构增强LED发光的FDTD数值模拟研究》2011年
    [14]A. A. Erehak, D.J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode", Appl. Phys. Lett., vol.78, pp.563-565,2001.
    [15]M. Boroditsky, T. F. Krauss, R.Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals", Appl. Phys. Lett., vol.75, pp.1036 - 1038,1999.
    [16]T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiangb, "Ⅲ-nitride blue and ultraviolet photonic crystal light emitting diodes", Appl. Phys. Lett., vol.84, pp.466-468,2004.
    [17]J. J. Wierer, M. R.Krames, J. E.Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas", InGaN/GaN quantum-well heterostructure light- emitting diodes employing photonic crystal structures", Appl. Phys. Lett., vol.84, pp.3885-3887,2004.
    [18]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, "High Extraction Effieieney of Spontaneous Emission from Slabs of Photonic Crystals", Phys. Rev. Lett., vol.78, PP.3294-3297,1997.
    [19]D.H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J.S. Im, C. Sone, Y. park, W. J. Choi, and Q. H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns", Appl. Phys. Lett., vol.87, P.203508,2005.
    [20]C. F. Lin, J. H. Zheng, Z. J. Yang, et al. High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure [J]. Appl, Phys. Lett.,2006, 88(8):083121.
    [21]H. W. Huang, H. C. Lai, C. F. Lai, et al. High-performance GaN-based vertical-injectionl ight-emitting diodes with TiO2-SiO2 ornnidirectional reflector and n-GaN roughness [J]. IEEE PhotonicsTechnology Letters,2007,19(8):565-567.
    [22]Y Gao, T. Fujii, R. Sharma, K. Fujito, S. P. DenBaars, S. Nakamura, and E.L Hu, "Roughening hexagonal surface morphology on laser lift-off(LLO) N-face GaN with simple photo-enhanced chemical wet etehing" Jpn. J. Appl. Phys., vol.43, p. L637, 2004.
    [23]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S.P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening", Appl. Phys. Lett., vol.84, P.855,2004.
    [24]Chen C.H., Chang S.J., Su Y.K., Chi G.C., Sheu J. K., Chen J. F., High-efficiency InGaN-GaN MQW green light-emitting diodes with CART and DBR structures, IEEE Journal on selected topics in quantum electronics, vol.8, No.2, p284, 2002.
    [25]Y. P. Hsu, S. J. Chang, Y. K. Su, C. S. Chang, S. C. Shei, Y. C. Lin, C. H. Kuo, L. W. Wu and S. C. Chen, "InGaN/GaN light-emitting diodes with a reflector at the backside of sapphire substrates", Journal of Electronic Materials, Vol.32, No.5 (2003),403-406.
    [26]Kazuyuki Tadatomo, Hiroaki Okagawa, et al., High output power near ultraviolet and violet light-emittng diodes fabricated on patterned sapphire substrates using metal organic vapor phase epitaxy [A]. Third International Conference on Solid State Lighting [C],2003,50.83/S755:5187:243-249.
    [27]闫发旺;高永海;张扬;李晋闽;曾一平;王国宏;张会肖,一种利用图形化衬底提高GaN基LED发光效率的方法,CN200710118632.8,20070711.
    [28]Ya-Ping Hsieh, Chi-Te Liang, Yang-Fang Chen, Chih-Wei Lai and Pi-Tai Chou, Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites, Nanotechnology 18 (2007) 415707.
    [29]Nikoobakht B, BurdaC, BraunM, HunM and El-Sayed MA,2002 Photochem. Photobiol.75,591.
    [1]Raether H., Surface Plasmon on smooth and rough surfaces and on gratings[M], Berlin:Springer-Verlag,40-58,1988.
    [2]G. Mie, "Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions," Ann Phys-berlin 25 (3),377-445,1908.
    [3]Jackson J D. Classical Electrodynamics, New York:Wiley& Sons,1975.
    [4]C Bohren, Huffman,D, "Absorption and Scattering of Light by Small Particles Bohren,C, Huffman,D," 23 (2), Sr48-Sr48,1983.
    [5]M. Vollmer U. Kreibig, "Optical Properties of Metal Clusters," (1995).
    [6]Kelly K L, Cor onado E, Zhao L L, et al. J P hys Chem B,2003,107(3):668.
    [7]L. M. Liz-Marzan, "Tailoring surface plasmons through the morphology and assembly of metal nanoparticles," Langmuir 22 (1),32-41 (2006).
    [8]R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294 (5548), 1901-1903 (2001).
    [9]J. J. Mock, M. Barbie, D. R. Smith, D. A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J Chem Phys 116 (15),6755-6759 (2002).
    [10]C. J. Murphy, T. K. San, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li, "Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications," J Phys Chem B 109(29),13857-13870 (2005).
    [11]L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms," Nano Letters 6 (9),2060-2065 (2006).
    [12]C. Noguez, "Surface plasmons on metal nanoparticles:The influence of shpae and physical environment," Journal of Physical Chemistry C 111 (10),3806-3819 (2007).
    [13]M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, "Optical absorption spectra of nanocrystal gold molecules," J Phys Chem B 101 (19),3706-3712 (1997).
    [14]S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J Phys Chem B 103 (21),4212-4217 (1999).
    [15]C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, "Plasmon resonances in large noble-metal clusters," New Journal of Physics 4, (2002).
    [16]S. Link, Z. L. Wang, and M. A. El-Sayed, "Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition," J Phys Chem B 103 (18),3529-3533 (1999).
    [17]K. S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape, and metal composition," J Phys Chem B 110 (39),19220-19225 (2006).
    [18]R. Jha and A. K. Sharma, "Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region," J Opt A-pure Appl Op 11(4),-(2009).
    [19]J. H. Kim, W. W. Bryan, and T. R. Lee, "Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores," Langmuir 24 (19),11147-11152 (2008).
    [20]C. Noguez, "Surface plasmons on metal nanoparticles:The influence of shpae and physical environment," Journal of Physical Chemistry C 111 (10),3806-3819 (2007).
    [21]R. D. Averitt, D. Sarkar, and N. J. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells:Insight into multicomponent nanoparticle growth," Phys Rev Lett 78 (22),4217-4220 (1997).
    [22]A. Hilger, M. Tenfelde, and U. Kreibig, "Silver nanoparticles deposited on dielectric surfaces," Appl Phys B-lasers O 73 (4),361-372 (2001).
    [23]A. Pinchuk, A. Hilger, G. von Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15 (12),1890-1896 (2004).
    [24]A. J. Haes and R. P. Van Duyne, "A nanoscale optical blosensor:Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J Am Chem Soc 124 (35), 10596-10604(2002).
    [25]S. Underwood and P. Mulvaney, "Effect of the Solution Refractive-Index on the Color of Gold Colloids," Langmuir 10 (10),3427-3430 (1994).
    [26]S. K. Ghosh, S. Nath, S. Kundu, K. Esumi, and T. Pal, "Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids," J Phys Chem B 108(37),13963-13971 (2004).
    [27]S. Link, M. A. El-Sayed, and M. B. Mohamed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (vol 103B, pg 3073,1999)," J Phys Chem B 109 (20), 10531-10532(2005).
    [28]Anatoly V. Zayats, I.I.S., Alexei A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports,2005,408,131-314.
    [29]Barnes William L, T'urning the tables on surface plasmons[J]. Nature Materials, 2004,3.
    [30]I. Gontijo, Coupling of InGaN quantum-well photoluminescence to silver surface plasmons, Phy. Rev. B.,1999,60(16).
    [31]FUKUI, OKADA K, Surface and bulk-passivated large area multicrystalline silicon solar cells [J]. Solar Energy Materials and Solar Cells,1997,48:219-228.
    [32]P. Jensen, "Growth of nanostructures by cluster deposition:Experiments and simple models," Rev Mod Phys 71 (5),1695-1735 (1999).
    [33]罗浩俊,陈征,许长辉,万建国,韩民,基于团簇束流沉积的纳米结构制备:设备与机理,《中国材料科技与设备》,2005,2(4):25.
    [34]M. Han, C. H. Xu, D. Zhu, L. Yang, J. L. Zhang, Y. P. Chen, K. Ding, F. Q. Song, and G. H. Wang, "Controllable synthesis of two-dimensional metal nanoparticle arrays with oriented size and number density gradients," Adv Mater 19(19),2979 (2007)
    [35]I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. de Abajo, "Plasmons in nearly touching metallic nanoparticles:singular response in the limit of touching dimers," Opt Express 14 (21),9988-9999 (2006).
    [36]14 P. K. Jain, W. Y. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs:A plasmon ruler equation," Nano Letters 7 (7),2080-2088 (2007).
    [37]15 B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, "Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles," Nano Letters 5 (11),2246-2252 (2005).
    [38]16 C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat Biotechnol 23 (6),741-745 (2005).
    [1]Ya-Ping Hsieh, Chi-Te Liang, Yang-Fang Chen, Chih-WeiLai and Pi-Tai Chou, Nanotechnology 18,415707 (2007)
    [2]M. Han, C. H. Xu, D. Zhu, L. Yang, J. L. Zhang, Y. P. Chen, K. Ding, F. Q. Song, and G. H. Wang, "Controllable synthesis of two-dimensional metal nanoparticle arrays with oriented size and number density gradients," Adv Mater 19 (19),2979 (2007).
    [3]L. B. He, X. Chen, Y. W. Mu, F. Q. Song, M. Han, Nanotechnology 21,495601 (2010)
    [4]H. Mertens, J. Verhoeven, A. Polman, Appl. Phys. Lett.85,1317(2004).
    [5]J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, A. Polman, Appl. Phys. Lett. 88,131109(2006).
    [6]Yang Xizhen et al,.DLTS spectra of InAs/GaAs self-assembled quantum dots [J], Chinese Jounal of Luminescence,12:357-359, (1997).
    [7]Arlett, Yang F, Hinzer K. et al., Temperature independent lifetime in InAs quantum dots [J], J. Vac. Sci. Tech. B 16(2):578, (1998).
    [8]M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-plasmon-enhanced light-emitting diodes," Adv Mater 20 (7),1253-+ (2008).
    [9]A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys Rev B 66 (15), (2002).
    [10]I. Gontijo, Coupling of InGaN quantum-well photo luminescence to silver surface plasmons, Phy. Rev. B.,1999,60(16).
    [11]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Materials 3 (9),601-605 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700