基于纳米探针技术的DNA杂交分析与免疫分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA杂交分析及免疫分析在生命科学研究中具有重要的意义,广泛应用于生物学、医学诊断等方面。已有分析方法的局限性促使研究者们积极的研究普遍适用性好、操作简便、灵敏度高的DNA杂交检测及免疫检测新方法。
     本文将纳米探针技术与高灵敏化学发光技术结合应用于DNA杂交检测及免疫检测,对特定序列的寡聚核苷酸,人IgG及黄曲霉毒素B1进行了超微量检测,取得了令人满意的结果。
     以CoFe_2O_4/Au核壳复合纳米颗粒标记巯基化沙门氏菌特异寡核苷酸序列,用纳米金标记沙门氏菌另一特异寡核苷酸序列,通过DNA杂交反应与沙门氏菌特异目标DNA序列互补形成夹心结构。经过简单的磁分离,去除其他没有杂交的部分,最后将磁分离得到部分的纳米金溶出成为Au~(3+),结合luminol化学发光体系实现对目标DNA的高灵敏检测。结果表明,发光强度和目标DNA浓度在1-100 pmol·L~(-1)范围内相关性良好,对目标DNA的检测限为0.3 pmol·L~(-1)(3S/N),相对标准偏差为3.6%(10 pmol·L~(-1), n=7)。
     同时以CoFe2O4/Au核壳复合纳米颗粒为载体与羊抗人IgG构建捕获探针复合结构,首先与目标分析物人IgG发生免疫反应,捕获的人IgG再与纳米金标记的二抗(金标羊抗人IgG)发生免疫反应,形成三明治夹心结构;通过磁分离去除未结合物质干扰,将分离得到的标记纳米金溶出成为Au~(3+),结合Au~(3+)催化luminol化学发光分析方法实现对目标分析物人IgG的高灵敏检测。在实验优化条件下,化学发光强度与人IgG的浓度在2-100 ng·mL~(-1)范围内呈良好的线性关系,检测限为0.5 ng·mL~(-1)。
     黄曲霉毒素B1的快速灵敏检测在食品安全检测工作中具有重要意义。本文建立了两种基于银增强纳米金标记探针的高灵敏度免疫分析方法。第一种方法用黄曲霉毒素B1(AFB1)抗体与金标抗原、待测抗原进行竞争免疫反应,然后加入银增强溶液,以金为核沉积生长银,通过检测吸光度来确定待测物中AFB_1的含量,该方法的检出限可达到0.01 ng·mL~(-1)。第二种方法在前一种方法的基础上,将银化学溶出,通过化学发光法检测沉积的银的量来确定待测物中AFB1的含量,该方法的检出限可达到0.002 ng·mL~(-1)。
     论文还建立了纳米金标记-银增强-化学发光联用检测沙门氏菌的新方法。通过沙门氏菌捕获探针、金标沙门氏菌显示探针与沙门氏菌目标核酸序列之间的DNA杂交,形成三明治复合体,然后通过银增强在标记的纳米金表面选择性沉积银,实现第一次信号放大;随后结合溶出化学发光检测技术,实现信号第二次放大。结果表明,在优化条件下,化学发光强度和目标DNA浓度在1-1000 fmol·L~(-1)范围内相关性良好,对目标DNA的检测限为0.3 fmol·L~(-1)(3S/N),相对标准偏差为2.2%(10 fmol·L~(-1), n=7)。
DNA hybridization analysis and immunoassay play important role in life sciences. They have been widely used in biochemistry, molecular biology and medical diagnostics. The disadvantage of the routine methods urged the researchers to find the new analytical methods with high sensitivity, simple operation and widely used in molecular biology, biochemistry and clinical diagnosis.
     In the present work, we studied the applications of nano-robe in the detection of DNA hybridization and immunoassay by coulping with high sensitive chemiluminescence (CL) technique. The results of determination of specific sequence oligonucleotides, human IgG and aflatoxin B_1 (AFB_1) were satisfactory.
     At first, CoFe_2O_4/Au nanoparticles were functionalized with the SH-tagged salmonella-specific oligonucleotide. Another salmonella-specific oligonucleotide was also labeled with gold nanoparticles. Through DNA hybridization, above oligonucleotide probes captured the target salmonella-specific oligonucleotide to form sandwich-type complex. After magnetic separation to remove the unbound section, the obtained section by magnetic separation was treated with gold dissolving reagents. The tagged gold then were dissolve to form Au3+, which can be sensitively measured by luminol CL system, and the target DNA can be determined by the light intensity. The result shows that the CL intensity is proportional to the concentration of target oligonucleotides over the range of 1-100 pmol·L~(-1) and the detection limit is 0.3 pmol·L~(-1) (3S/N), and the relative standard deviation is 3.6%(10 pmol·L~(-1), n=7).
     Secondly, uing CoFe_2O_4/Au nanoparticles as the carrier, a probe complex were constructed by combining the gold-capped magnetic nanoparticles with sheep anti-human IgG (anti-IgG). The nanoparticles tagged anti-IgG firstly immune affinity to bind with IgG, which then captured by the gold nanoparticles labeled second anti-IgG and form a sandwich complex. After removal of free sections interference by magnetic separation, the labeled gold nanoparticles was dissolved to become Au3+, which can be used to catalyze luminol CL to achieve the objective of the highly sensitive detection of IgG. Under the selected conditions, it was found that the CL intensity is proportional with the concentration of IgG in 2-100 ng·mL~(-1) with a detection limit comes to 0.5 ng·mL~(-1) (3S/N).
     Thirdly, two methods for the competitive heterogeneous immunoassay of aflatoxin B1 (AFB1) was developed. The rapid, sensitive measurement of AFB_1 is of great importance in food safty detection. The first one is based on the competitively immune bind to AFB1 antibody between the tested antigen and nanogold-labeled antigen. A silver enhancement process then was conducted to deposit silver around bond nanogold. Measuring the absorbance of silver at 630 nm can identify the content of AFB_1. The detection limit for the proposed method is 0.01 ng·mL~(-1). Based upon the first method, the deposited silver was then dissolved to form Ag+, which was measured with a sensitive CL system. And the CL intensity was found to be proportional with the content of AFB1 with a detection limit of 0.002 ng·mL~(-1).
     Finally, a novel method based on nanogold labeling, silver enhancement and stripping CL analysis for ultrasensitive salmonella detection was proposed. It relies on a sandwich-type DNA hybridization analysis, in which the DNA targets were first hybridized to the captured oligonucleotide probes immobilized on polystyrene microwells, and then the gold nanoparticles modified with alkylthiol-capped oligonucleotides were used as probes to monitor the presence of the specific target DNA. After being anchored on the hybrids, the signals of gold nanoparticles were subsequently amplified by silver enhancement. Stripping CL was then applied for the second signal amplification. Under the selected conditions, it was found that the CL intensity is proportional to the concentration of target oligonucleotides over the range of 1-1000 fmol·L~(-1) with a detection limit of 0.3 fmol·L~(-1) (3S/N), and the relative standard deviation is 2.2%(10 fmol·L~(-1), n=7).
引文
1.张志,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000,1-65
    2.薛群基,徐康.纳米化学[J].化学进展,2000,12 (4): 431-444
    3. Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382:607-609
    4. Alivisatos AP, Johnssorr KP, Peng X, et al. Organization of `nanocrystal' using DNA. Nature,1996,382:609-611
    5. Yguerabide J, Yguerabide EE. Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications. J Cell Biochem Suppl,2001,37: 71-81
    6. Bendayan M. A review of the potential and versatility of colloidal gold cytochemical labeling for molecular morphology, Biotech. Histochem,2000,75:203-242
    7. ICrystal G,Macdonald C, Munt B, et al. A method for quantitating nanogram amounts of soluble protein using the principle of silver binding. Anal Biochem,1985,148:451-460
    8. Boratynsici J. Coiorimetric micromethod for the determination of protein in solution with silver ions and dithizone. Anal Biochem, 1985, 148: 213-219
    9.李正平,王愈聪,张伟伟.氢氧化铁(m)纳米粒子为探针的蛋白质吸光光度分析研究,国际网上化学学报,2004, 6(11)
    10. Part PO, Lopez E, Mathis G Europium(III)cryptate: a fluorescent label for the detection of DNA hybrids on solid support. Anal. Biochem., 1991, 195: 283-289
    11. Ci YX, Zheng YQ, Tie JK, et al. Chemiluminescence investigation of the interaction of metalloporphyrins with nucleic acids. Anal. Chim. Acts,1993,282:695-701
    12. Wang DG, Fan JB, Siao CJ, et al .Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science,1998,280:1077-1082
    13. Service RF. Microchip arrays put DNA on the spot. Science,1998,282:396-399
    14.马立人,蒋中华.生物芯片[M].北京:化学工业出版社,2000: 16-33; 92-100
    15.胡瑞省,刘善堂,朱涛,等.金纳米粒子通过形成Au-S键的组装[J].物理化学学报,1999,15(11):961-964
    16. Hainfeld JF. A small gold-conjugated antibody label: improved resolution for electron microscopy.Science,1987,236:450-453
    17. Powell RD, Halsey CM, Spector DL, et al. A covalent fluorescent-gold immunoprobe: simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy. Histochem.Cytochem.,1997,45 (7): 947-956
    18. Freeman RQ Grabar KC, Allison KJ, et al. Self-assembled metal colloid monolayer: an approach toSERS substrate. Science, 1995, 267:1629-1632
    19. Grabar KC, Smith PC, Musick MD, et al. Kinetic control of interparticle spacing in Au-colloid-basedsurface: Rational nanometer scale architecture.Am. Chem. Soc.,1996,118: 1148-1153
    20.刘善堂,胡瑞省,朱梓华,等.金纳米粒子组装中的表面重组现象[J].物理化学学报,2004, 16(4):294-297
    21. Storhoff JJ, Mirkin CA. Programmed materials synthesis with DNA. Chem. Rev,1999,99:849-1862
    22. He L, Musick MD, Nicewarner SR, et al. Colloidal Au-Enhanced Surface Flasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Am. Chem. Soc.,2000,122(38): 9071-9077
    23. Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382:607-609
    24. Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection of polynucleotides-based on the distance-dependent optical properties of gold nanoparticles. Science,1997, 277:1078-1081
    25. Storhoff JJ, Elghanian R, Mucic RC, et al. One-pot coiorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes..Am. Chem. Soc.,1998,120:1959-1964
    26. Mucic RC, Storhoff JJ, Mirkin CA, et al. DNA-directed synthesis of binary nanoparticle net work materials. Am. Chem. Soc., 1998, 120: 12674-12675.
    27. Taton TA, Mucic RC, Mirkin CA, et al. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. Am. Chem. Soc.,2000,122: 6305-6306
    28. Collier CP, Vossmeyer T, Heath JR Nanocrystal Superlattices. Annu. Rev. Physchem., 1998, 49:371-404
    29. Cao YW, Jin RC, Mirkin CA. DNA-Modified Core-Shell Ag/Au Nanoparticles. Am. Chem. Soc.2001,123:7961-7962
    30. Taton TA,Mirkin CA, Letsinger RL. Scanometic DNA array detection with Nanoparticle probes.Science, 2000, 289 (8):1757-1760
    31.缪谦,金葆康,林祥钦.ss-DNA在纳米金上固载和杂化的电化学传感研究[J].高等学校化学学报,2000, 21 (1): 27-30
    32.徐春,蔡宏,何品刚,等.二茂铁标记DNA电化学探针的研制及性质研究[J].高等学校化学学报,2001,22 (9): 1 492-1 495
    33. Xu C, Cai H, He PG, et al. Ferrocenecarboxaldehyde labeled DNA probe for the study on DNA damage and protection. Anal. Chem., 2000, 367 (6): 593-595
    34. Xu C, He PG, Fang YZ. Electrochemical labeled DNA probe for the detection of sequence-specific DNA. Anal. Chim. Acta, 2000, 411:31-36
    35. Wang J, Xu D, Kawde AN, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 2001, 73: 5576-5581
    36. Authier L, Drossiord C, Brossier P. Gold nanoparticle-based quantitative a electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal. Chem. 2001, 73:4450-4456
    37. Han SV, Lin JQ, Zhou FM, et al. Oligonucleotide-capped gold nanoparticles for improved atomic force microscopic imaging and enhanced selectivity in polynucleotide detection. Biochem. Biophys. Res.Commun., 2000, 279: 265-269
    38.赵红秋,林琳,唐季安,等.利用纳米金颗粒增强DNA探针在传感器上的固定程度和识别能力[J].科学通报,2001, 46(4): 292-295
    39.刘成辉. DNA杂交及免疫分析中纳米粒子化学发光探针研究[D]:[硕士学位论文].河北:河北大学化学与环境科学学院,2006
    40. Lyon LA, Musick MD. Surface plasmon resonance of colloidal Au-modified gold film. Sensors and Actuators B,1999,54:118-124
    41. Powell D. Dual-labled probes for fluorescence and electron microscopy. Proceedings of the 56th Annual Meeting. Microscopy Society of America, New York: Springer,1998: 9922-9931
    42.詹曦箫,秦晓勇.胶体金标记技术在免疫检测中的应用与发展[J].现代中西医结合杂志,2001,10(24):2422-2424
    43. Dickson RB, Willingham MC, Pastan I. alpha 2-macroglobulin adsorbed to colloidal gold: a new probe in the study of receptor-mediated endocytosis. Cell. Biol.,1981,89: 29-34
    44. Geotghegan WD, Ackerman CA. Histochem. Cytochem.,1977,25: 187-1200
    45. Moeremans M, Daneels C, Van DA, et al. Sensitive visualization of antigen-antibody reactions in dotand blot immune overlay assays with immunogold and immunogold/silver staining. Immunol. Methods.1984, 74: 353-360
    46. Fraulks WP, Taylor GM. Communication to the editors:An immunocolloid method for the electron microscope. Immunochemistry, 1971, 8:1081-1083
    47. Roth J, Bendayan M, Orci Z. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. Histochem. Cytochem.,1978,26:1074-1081
    48. Roth J. Application of lectin-gold complexes for electron microscopic localization ofglycoconjugates on thin sections. Histochem. Cytochem.,1983,31:987-999
    49. Hornysk GL, Patdssi CJ, Martin CR. Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit. Phys. Chem. B.1997,101:1548-1555
    50. Bangs LB. New Developments in Particle-Based Immunoassays: Introduction. Pure. App1. Chem.,1996,68:1873-1879
    51. Medcalf EA, Newman DI, GomLan EQ et al. Rapid, robust method for measuring low concentrations of albumin in urine. Clin. Chem.,1990,36:446-449
    52. Chan WC, Nie SM. Quantum Dot Biaconjugates for Ultrasensitive Nonisotopic Detection. Science,1998, 281:2016-2018
    53. Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels.Science,1998,281:2013-2016
    54. Stoscheck CM. Protein assay sensitive at nanogran levels. Anal. Biochem.,1987,160: 301-305
    55. Ciesiolka T, Gablus HJ. An 8- to 10-fold enhancement in sensitivity for quantitation of proteins by modified application of colloidal gold. Anal. Biochem.,1988, 168(2):280-283
    56. Hunter JB, Hunter SM. Quantification of proteins in the low nanogram range by staining with the colloidal gold stain AuroDye. Anal. Biochem.,1987,164:430-433
    57. Maeremans M, Daneels GS De MJ. Sensitive colloidal metal (gold or silver) staining of protein blots on nitrocellulose membranes. Anal. Biochem.,1985,145: 315-321
    58. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.,1976,72: 248-254
    59. Zhang C, Zhang ZY, Yu BH, et al. Application of the biological conjugate between antibody and colloid Au nanoparticles as analyte to inductively coupled plasma mass spectrometry. Anal. Chem. 2002,74:96-99
    60. Nam JM, Park SJ, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. Am.Chem. Soc.2002,124:3820-3821
    61. Hirsch LR, Jackson JH, Lee A, et al. A whole blood immunoassay using gold nanoshells. Anal. Chem.2003, 75:2377-2381
    62. Ni J, Lipert RJ, Dawson GB, et al. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem., 1999,71:4903-4908
    63. Lyon LA, Musick MD, Natan MJ. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Cherry. 1998,70:5177-5183
    64. Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold Iabel. Anal. Chem. 2000, 72: 5521-5528
    65. Chu X, Fu X, Chen K, et al. An electrochemical stripping metaltoimmunoassay based on silver-enhanced gold nanoparticle label. Biosens. Bioelectron. 2005,20:1805-1812
    66. Niemeyer CM, Ceyhan B. DNA-Directed Functionalization of Colloidal Gold with Proteins. Angew. Chem. Int. Ed. 2001, 40:3685-3688
    67. Hafeli U, Schut W t, Teller J, Zborowski M, Scientific and clinical applications of Magnetic. Plenum, New York,1997
    68. Wang J, Xu D, Erdem A, Polsky R,Salaza MA. r, Talanta 2002, 56, 931
    69. Palecek E, Billova S, Havran L, Kizek R, A. Miculkova, jelen F., Talanta 2002,56,919
    70. Luiz CD, Santa M, Marcia CA, Leite M, et al. Characterization of magnetic microspheres based on network styrene and divinylbenzene copolymers. Materials Letters, 2004, 58:3001-3006
    71. Cristina M, Liliana R, Jorge C. Stainless steel microbeads coated with sulfonated polystyrene-codiviny'benzene. Surface and Coatings Technology,2003,165:58-64
    72. Chang Y, Su Z. Preparation and characterization of thermosensitive magnetic particles.Materials Science and Engineering, 2002, A333: 55-159
    73. Urs O, Hafeli J, Pauer. In vitro and in vivo toxicity of magnetic microspheres. Journal of Magnetism and Magnetic Materials,1999,194:76-82
    74. Elkins KE, Vedantam TS, Liu JP, et al. Ultrafine Feet nanoparticles prepared by the chemical reduction method. Nano Lett, 2003, 3 (12):1647-1649
    75. Chen M, Liu JP, Sun S.H. One-Step synthesis of FePt nanoparticles with Tunable size. J Am Chem Soc, 2004,126:8394--8395
    76. Teng XW, Black D, Watkins NJ, et al. Platinum-Maghemite Core-Shell nanoparticles usinga sequential synthesis. Nano Lett, 2003, 3 (2): 261-264
    77.崔亚丽,惠文丽,汪慧蓉等. Fe3O4/Au复合微粒制备条件及性质研究[J].中国科学(B辑),2003, 33(6): 482-488
    78. Cui YL. The synthesis GoldMag nano-particles and its application for antibody immobilization. Biomed Microdevices, 2005, 7 (2):153-156
    79. Molday R,Yen, S.; Rembaum, A. Nature 1977, 266, 437
    80. Molday R,Molday, L. FEBS Lett. 1984,170, 232
    81. Miltenyi S,Muller, W.; Weichel, W.; Radbruch, A. Cytometry 1990, 1l,231
    82. Lee SM,Wroble MH.; Ross J. T. Appl. Biochemand Biotech. 1989, 22,1
    83. Nustad K. Magnetic Separation TechniquesApplied to cellular and Molecular Biology, Bristol, UK: Wordsmiths' Conference Publications,1991,39
    84.邹明静.免疫球蛋自M和人绒毛膜促性腺激索的金标记免疫共振散射光谱分析[D]:[硕士学位论文].广西:广西师范大学化学化工学院,2007
    85. Baeyenes WR, Schulman SG, Calokerinos AC. Chemiluminescence-Based Detection. Principles and analytical application in flowing streams and in immunoassys . Journal of Pharamaceutical and Biomedical Analysis, 1998,17:941
    86.王鹏,张文艳,周乱,等.电化学发光核酸杂交分析[J].科学通报1998,43(21): 2241-2247
    87. Xu XH, Yang HC, Mallouk TE, Bard AJ. Immobilization of DNA on an aluminum(III)A lkanebisphosphonate thin film with electrochemilu-minscent detection. Journal of the American Chemical Society, 1994,116: 8386
    88. Xu XH, Yang HC, Mallouk TE, Bard AJ. Immobilization and hybridization of DNA on an a luminum(III)alkanebisphosphonate thin film with electrochemiluminescent detection . Journal of the American Chemical Society, 1995, 117: 2627
    89.章竹君,拜明岐,张新荣.偶合反应化学发光酶免疫分析研究I .HRP及其标记物的化学发光测定[J].化学学报,1991, 49(4): 389
    90. Brow RC, Weeks I, Fisher M. Employment of a phenoxysubstituted acridinium ester as a long-lived chemiluminescent indicator of glucose oxidase activity and its application in an alkaline phosphatase amplification cascade immunoassay. Analytical Biochemistry, 1998, 259(1): 142
    91. Obenauer-kutner LJ, Jacobs SJ, Kolzk J. A highly sensitive electrochemiluminescence immuoassay for interferon alfa-2b in human serum . Journal of Immunological Methods, 1997, 206(1-2): 25 -33
    92. Chiang MT, Chen CW, Wen W. Tris(2,2'-bipyridyl)ruthe-nium(III)-based for capillary electrophoresis . Journal of Chromatography A, 2001,934(1-2):59-66
    93.田银芳,王翌明.ELISA方法与国标法在检测鲜奶中沙门氏菌的比较研究[J].中国乳品工业,26 (5):32-33
    94.褚天新,苏丽霞,路文彬.MUCAP荧光试验快速检测沙门氏菌[J].中国公共卫生,2000,16(1):69-70
    95.任家玫,魏荣,余晓琼,等.ABC-dot-ELISA快速检测食品中沙门氏菌[J].山西农业大学学报,1995,15 (1):22-24
    96.曹同雪,唐中令,石如彦,等.SPA协凝试验法快速检验肉中沙门氏菌[J].肉品卫生,1997.6:1-5
    97. Garc-Campa AM, Baeyens WRG. Chemiluminescence in analytical chemistry. Marcel Dekker: New York, 2001
    98.国家健康与医学研究所.检测沙门氏菌属的寡核苷酸[P].法国专利,96104393.8.2005—01—19
    99.李建,赵保刚,李海,等.共沉法-酸蚀法制备磁性液体及其微粒分析[J].西南师范大学学报(自然科学版),2000,8,25(4):394-395
    100. Jennifer L. Lyon, David A. Fleming, Matthew B. Stone, Peter Schiffer, and Mary Elizabeth Williams.Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding. Nano Lett.2004,4(4)
    101.罗贵华,徐怀德,高志贤,胡志华,周焕英,刘楠.纳米金标记DNA的生物传感器[J].解放军预防医学杂志.2007,4,25(2):91-92
    102. Fan AP, Lau CW, Lu JZ. Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Analytical Chemistry, 2005, 77(8):3238-3242
    103. Li J, Xiao LT, Liu XM, et al. Amperometric biosensor with HRP immobilized on a sandwiched nano-Au/polymerized m-phenylenediamine film and ferrocene mediator. Analytical and Bioanalytical Chemistry, 2003, 07(376):902-907
    104.彭剑淳,刘晓达,丁晓萍,等.可见光光谱法评价胶体金粒径及分布[J].军事医学科学院院刊. 2000,09,24(3):211-212
    105. Elghanian R, Storhoff JJ, Mucic RC, et al. Selective colorimetric detection of polynucleotides based on the distance dependent optical properties of fold nanoparticles, Science, 1997, 277(5329):1078-1079
    106. Horisberger M., Rosset J. Colloidal fold, a useful marker for transmission and scanning electron microscopy. Journal of Histochemistry Cytochemisty, 1997, 25(4):295-301
    107. Cui YL , Wang YN , Hui WL , Zhang ZF, Xing AF , and Chen C.The Synthesis of GoldMag Nano-Particles and their Application for Antibody Immobilization. Biomedical Microdevices 2005,(7):2 ,153-156
    108.常玉荣,石,峻,殷华,夏静.透射比浊法与单向琼脂扩散法检测血清免疫球蛋白的比较和分析[J].华北医科大学学报,1994,5(2):161-164
    109. Chu FS, Bhatnaar D. Mycotoxins. in Fungal biotechnology in agricultural, food and environmental applications. (Arora, D. K. editor) [M]. Marcel Dekker, New York, Basel, 2004
    110.王晶,王林,黄晓蓉.食品安全快速检测技术[M].北京:化学工业出版社, 2002
    111. Li ZP Wang YC, Liu CH, et al. Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay Anal Chim Acta, 2005 551(1):85–91
    112. Hansen JA, Wang J, Kawde AN, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Am Chem Soc, 2006, 128(7): 2228-2229
    113. Liu JW, Lu Y Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles Angew. Chem. Int. Ed. 2006, 45(1): 90–94
    114. Nie LB,Chen H, Tan MJ,et al. Improvement of hybridization signals of gold label silver stain gene detection. Journal of Southeast University (English Edition). 2004, 10(2):463-466
    115. Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials Nature, 1996, 382 (6592): 607-609
    116. LI YY, Zhang C, Li BS ,et al. Ultrasensitive densitometry detection of cytokines with nanoparticle-modified aptamers Clin Chem, 2007, 653(6): 1061–1066
    117.耿征,武竟存,陈战国,等.偶合反应化学发光法测定痕量银的研究[J].分析化学, 1995, 23(2): 401-403
    118. Liu CH, Li ZP, Du BA, et al. Silver nanoparticle-based ultrasentitive chemiluminescent detection of DNA hybridization and single-nucleotide polymorphisms. Anal Chem, 2006, 78(8): 3738-3744
    119. Zhang ZL, Pang DW, Yuan H,et al. Electrochemical DNA sensing based on gold nanoparticle amplification. Anal Bioanal Chem, 2005,381(4):833-838

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700