粘接剂与隔膜力学行为对锂离子电池失效及安全影响机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有极佳的比容量,锂离子电池广泛地应用于便携式电子产品、绿色可替代能源储能及电动车等领域。尤其是电动车应用,它要求锂离子电池能够有更高的能量及功率密度、更长的循环及搁置寿命以及更具安全可靠性。为满足这些性能要求,学术及产业界针对锂离子电池中的电化学活性材料,如正负极活性材料及电解液,开展了大量的研究。相比,作为电池中电化学惰性材料的粘接剂和隔膜却受到极少的关注。实际上,它们对电池性能以及安全性的影响不容忽视:倘若电极颗粒间以及电极复合膜和集流体间的粘接强度不足以承受充放电循环,那么电池即会发生失效;对于绝缘隔离正负极片的多孔隔膜,一旦其发生变形、断裂或者击穿,将直接影响电池的性能及安全性。因此,本文通过从力学角度研究粘接剂和隔膜可能发生的力学行为,找到这两类材料导致锂离子电池发生失效及出现安全性问题的力学作用机理。
     本文首先分析了粘接剂在保持锂离子电池电极力学完整性方面所发挥的作用机制。基于对失效的锂离子电池负极片形态完整性的分析,将粘接剂粘接强度细分为观的电极活性材料颗粒间的粘接强度以及宏观的电极复合膜与集流体间的结合强度,并针对上述宏-观两类粘接强度提出了基于刻划的综合评价方法与手段。应用该综合评价方法、原位拉伸/光学显成像以及数字图像相关(DIC)分析技术对不同聚偏氟乙烯(PVDF)粘接剂含量的负电极片开展了实验研究。由粘接剂含量与刻划中得到的摩擦系数及临界正压力之间的依赖关系揭示了粘接剂与其自身、颗粒(C)以及集流体(Cu)界面间的粘接强度大小顺序:Cu/PVDF     其次分析了隔膜在外力作用下的变形行为对锂离子电池失效的影响。分析了隔膜在电池充放电以及搁置过程中的受力状态,并基于该分析推导并应用了Carroll-Holt模型计算压缩应力与隔膜孔间的演化关系,设计完成了隔膜压缩实验,验证了上述模型。采用压缩后的隔膜制备了锂离子电池,完成了电池的电化学表征,表征结果揭示了隔膜的压缩所致闭合行为是导致锂离子电池容量衰减失效的一个重要影响机理。
     本文在研究了隔膜外力所致的力学行为之外,还研究了隔膜在高温热场作用下的热力学行为对锂离子电池失效的影响机理。通过原位热场原子力显镜成像、功率谱密度和DIC分析技术,发现了聚丙烯-聚乙烯-聚丙烯三层复合隔膜(Celgard2325产品)的表面形貌在热场下的演化过程。实验结果表明:隔膜的聚丙烯表面在90°C温度下会在隔膜的机器方向发生收缩,同时在横向方向由于纳米纤丝的膨胀发生孔闭合的行为。这种在低于隔膜的热闭合温度(120°C)以及其熔点(165°C)的温度下即发生的孔闭合行为是锂离子电池在热场下快速失效的一个重要影响机理。
     在电池滥用条件下,隔膜的力学可靠性也直接影响着电池的安全性。因此,本文随后研究了隔膜的拉伸与断裂力学行为及形变机理。针对五种干湿法制得的商品化隔膜开展了常规拉伸以及原位拉伸/原子力显镜成像实验。揭示了隔膜的观结构与拉伸性能的演变机制:对于干法制得的隔膜,由于隔膜表面观结构中的片晶组在不同方向有着显著不同的形变机理,因此隔膜的观结构决定了隔膜的力学特性具有强烈的方向性。而且,为研究隔膜的断裂行为,本文采用了基本断裂功方法对隔膜完成了表征,明晰了隔膜的断裂性能与观结构的依赖关系及演化机制。
     论文最后部分主要讨论了拉伸-压缩耦合应力对隔膜击穿强度的影响作用。在分析隔膜受力状态及传统击穿强度测试方法不足的基础上,发现了预拉伸应力可极大地降低隔膜的击穿强度的隐患点。为全面评价隔膜在多应力耦合作用下的可靠性,提出了一种拉伸-压缩多应力耦合作用下隔膜可靠性测试的新方法,实现了对已受到拉伸应力作用的隔膜击穿强度的测量。在大量的基于新方法的测试实验基础上,明确了隔膜在多应力耦合作用下的失效过程及机理。
Because of their superior gravimetric and volumetric capacities, lithium-ion secondary batteries (Li-ion batteries) are increasingly employed in systems such as mobile electronics, alternative energy storage, and plug-in hybrid electric vehicles (PHEV)/all-electric vehicles (EV). Especially for PHEV and EV applications, much higher energy/power density, longer shelf/cycle life, and greater reliability are essential. To achieve such performance, intense research has been focused on the electrochemically active cell materials: positive and negative electrode active materials (AM) and electrolytes. In contrast, less attention has been paid to binders and separators, the electrochemically inactive materials, although for the former the electrochemical performance of batteries such as specific capacity and cycle life cannot be achieved if the adhesion strengths between electrode particles and between electrodes film and current collectors are insufficient to endure charge-discharge cycling, while for the latter any pore closure or rupture/penetration could lead to cell performance degradation or catastrophic consequences such as explosion and thermal runway. Therefore, in this thesis the mechanical behaviors of binders and separators were characterized to unveil the mechanical mechanisms that contribute to the ageing and reliability in Li-ion batteries.
     First, the role of binders in the mechanical integrity of electrodes for Li-ion batteries was studied. Based on the morphological analysis of the anode electrodes from aged Li-ion batteries, the strength of the binder was redefined as the micro-scale carbon particle/particle cohesion strength and macro-scale the electrode-film/copper-current-collector adhesion strength. Accordingly, a comprehensive evaluation method of the above micro-macro strength based on microscratch was proposed. This method coupled with microindentation and digital image correlation (DIC) techniques were used to study the mechanical properties of anode electrodes with different polyvinylidene fluoride (PVDF) binder loading. The dependences of microscratch coefficient of friction and the critical delamination load on the polyvinylidene fluoride (PVDF) binder content suggest that the strength of different interfaces is ranked as follows: Cu/PVDF     The role of separator deformation in response to external mechanical stimuli in electrochemical performance of batteries was then studied. Based on the analysis of stress generated in separator due to lithium insertion/deinsertion induced electrode expansion and storage conditions, the process of pore closure in separators resulted from external stress was determined by Carroll-Holt pore-collapse relation model, which was then varificated by compression testing. Electrochemical characterization of mechanically stressed separators was also performed. We find the pore closure in the electrochemically inactive separator to be a cause of battery capacity fade.
     In addition to the external mechanical stress induced deformation, the mechanical behavior of polymeric separators in Li-ion batteries at elevated temperatures was also characterized by in-situ high temperature surface imaging using an atomic force microscope (AFM) coupled with power spectral density (PSD) analysis and DIC technique. The temperature dependent micro-scale morphology change of PP (polypropylene)-PE (polyethylene)-PP sandwiched separators (Celgard2325) was found. Both PSD and DIC analysis results show that the PP phase significantly closes its pores by means of dilation of the nanofibrils surrounding the pores in the transverse direction and shrinkage in the machine direction, when cycled at90°C, even below the separator’s shutdown temperature (120°C) and its own melting temperature (165°C).
     Besides the important role of separator in the battery ageing, the reliability of the separator is also crucial to the abuse tolerance of a battery. Therefore, deformation and fracture behaviors of five commercially available wet and dry processed polymer separators were investigated by conventional tensile testing coupled with in-situ tensile testing under an AFM. The evolution mechanism between the separator tensile properties and its microstructures was explained. For separators made by the dry process, material direction dictates the significant diversity of overall mechanical integrity of the separator, which is a result of the distinct deformation mechanism of the stacked lamellea in the separator. Moreover, in order to evaluate the fracture properties of these separators, the essential work of fracture (EWF) approach was adopted. The EWF results show that the fracture properties for the dry processed separators also present orientation dependence, which is then found to be results of different toughening mechanisms.
     The remainder of this dissertation focuses on the effects of tensile-penetration coupled stress on the penetration strength of lithium-ion battery separators. Because the pre-tensile stress has the potential to dramatically decrease the penetration strength of the separator, we thus proposed a new method that is able to measure the penetration strength of a battery separator under the pre-stressed condition. Moreover, the process and mechanism of the penetration into the separator under coupled stress were also elucidated.
引文
[1] Brodd R J. Batteries for sustainability[M]. New York City: Springer,2012:319-359.
    [2] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J].Chemistry of Materials,2010,22(3):587-603.
    [3] Yuan L-X, Wang Z-H, Zhang W-X, et al. Development and challenges ofLiFePO4cathode material for lithium-ion batteries[J]. Energy&Environmental Science,2011,4(2):269-284.
    [4]陈立泉.电动车锂离子电池的材料问题[J].中国工程科学,2002,4(11):32-36.
    [5] Atzori L, Iera A, Morabito G. The internet of things: A survey[J]. Computernetworks,2010,54(15):2787-2805.
    [6] Gubbi J, Buyya R, Marusic S, et al. Internet of things (IoT): A vision,architectural elements, and future directions[J]. Future Generation ComputerSystems,2013,29(7):1645-1660.
    [7] China Industrial Association of Power Sources. Brief overview on Li-ionbattery technology&market development[R].2013:23-40.
    [8] Freedonia Research Group. World batteries to2016[R].2012:310-320.
    [9] Bruce P G, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithiumbatteries[J]. Angewandte Chemie International Edition,2008,47(16):2930-2946.
    [10] Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeablebatteries[J]. Advanced Materials,2011,23(15):1695-1715.
    [11] Liu C, Li F, Ma L-P, et al. Advanced materials for energy storage[J].Advanced Materials,2010,22(8): E28-E62.
    [12] Avicenne Energy. The worldwide battery market2011-2025[R].2012:10-34.
    [13] Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithiumbatteries[J]. Nature,2001,414(6861):359-367.
    [14] Huang X. Separator technologies for lithium-ion batteries[J]. Journal ofSolid State Electrochemistry,2011,15(4):649-662.
    [15] Chen J, Liu J, Qi Y, et al. Unveiling the roles of binder in the mechanicalIntegrity of electrodes for lithium-Ion batteries[J]. Journal of theElectrochemical Society,2013,160(9): A1502-A1509.
    [16] International Energy Agency. Technology roadmap: electric and plug-inhybrid electric vehicles[R].2011:5-20.
    [17] Chen S-C, Wang Y-Y, Wan C-C. Thermal analysis of spirally wound lithiumbatteries[J]. Journal of the Electrochemical Society,2006,153(4):A637-A648.
    [18] Nelson P A, Santini D J, Barnes J. Factors determining the manufacturingcosts of lithium-ion batteries for PHEVs[R].2009:13-16.
    [19] Linden D, Reddy T. Handbook of batteries[M]. New York City:McGraw-Hill,2002:35.18-35.30.
    [20] Yazami R, Lebrun N, Bonneau M, et al. High performance LiCoO2positiveelectrode material[J]. Journal of Power Sources,1995,54(2):389-392.
    [21] Reimers J N, Dahn J R. Electrochemical and in situ X-ray diffraction studiesof lithium intercalation in LixCoO2[J]. Journal of the ElectrochemicalSociety,1992,139(8):2091-2097.
    [22] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0    [23] Tarascon J M, McKinnon W R, Coowar F, et al. Synthesis conditions andoxygen stoichiometry effects on Li insertion into the spinel LiMn2O4[J].Journal of the Electrochemical Society,1994,141(6):1421-1431.
    [24] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4asthe cathode material for rechargeable lithium batteries[J]. Journal of PowerSources,2001,97-98:508-511.
    [25] Goodenough J B. Cathode materials: A personal perspective[J]. Journal ofPower Sources,2007,174(2):996-1000.
    [26] Choi J, Manthiram A. Crystal chemistry and electrochemical characterizationof layered LiNi0.5-yCo0.5-yMn2yO2and LiCo0.5-yMn0.5-yNi2yO2(0≤2y≤1)cathodes[J]. Journal of Power Sources,2006,162(1):667-672.
    [27] Xia H, Lu L, Lai M O. Li diffusion in LiNi0.5Mn0.5O2thin film electrodesprepared by pulsed laser deposition[J]. Electrochimica Acta,2009,54(25):5986-5991.
    [28]张敬君.锂离子电池合金负极材料的理论设计和合成[D].上海;复旦大学,2008:4-14.
    [29] Hayashi K, Nemoto Y, Tobishima S-i, et al. Mixed solvent electrolyte forhigh voltage lithium metal secondary cells[J]. Electrochimica Acta,1999,44(14):2337-2343.
    [30] Sloop S E, Pugh J K, Wang S, et al. Chemical reactivity of PF5and LiPF6inethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical andSolid-State Letters,2001,4(4): A42-A44.
    [31] Chen Z H, Christensen L, Dahn J R. Large-volume-change electrodes forLi-ion batteries of amorphous alloy particles held by elastomeric tethers[J].Electrochemistry Communications,2003,5(11):919-923.
    [32] Liu G, Xun S, Vukmirovic N, et al. Polymers with tailored electronicstructure for high capacity lithium battery electrodes[J]. Advanced Materials,2011,23(40):4679–4683.
    [33] Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brownalgae for use in high-capacity Li-Ion batteries[J]. Science,2011,333(6052):75-79.
    [34] Courtel F M, Niketic S, Duguay D, et al. Water-soluble binders for MCMBcarbon anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(4):2128-2134.
    [35] Li J, Le D-B, Ferguson P P, et al. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries[J].Electrochimica Acta,2010,55(8):2991-2995.
    [36] Magasinski A, Zdyrko B, Kovalenko I, et al. Toward efficient binders forLi-ion battery Si-based anodes: Polyacrylic acid[J]. ACS Applied Materials&Interfaces,2010,2(11):3004-3010.
    [37] Ding N, Xu J, Yao Y, et al. Improvement of cyclability of Si as anode forLi-ion batteries[J]. Journal of Power Sources,2009,192(2):644-651.
    [38] Kim G T, Jeong S S, Joost M, et al. Use of natural binders and ionic liquidelectrolytes for greener and safer lithium-ion batteries[J]. Journal of PowerSources,2011,196(4):2187-2194.
    [39] Lux S F, Schappacher F, Balducci A, et al. Low cost, environmentally benignbinders for lithium-ion batteries[J]. Journal of the Electrochemical Society,2010,157(3): A320-A325.
    [40] Chong J, Xun S, Zheng H, et al. A comparative study of polyacrylic acid andpoly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4electrodes and cells[J]. Journal of Power Sources,2011,196(18):7707-7714.
    [41] Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries[J].Journal of Power Sources,2007,164(1):351-364.
    [42] Arora P, Zhang Z M. Battery separators[J]. Chemical Reviews,2004,104(10):4419-4462.
    [43] Chen J J, Wang S Q, Cai D D, et al. Porous SiO2as a separator to improvethe electrochemical performance of spinel LiMn2O4cathode[J]. Journal ofMembrane Science,2014,449:169-175.
    [44] Wang H F, Li H B, Yu L J, et al. Synthesis of porous Al2O3-PVDF compositeseparators and their application in lithium-ion batteries[J]. Journal ofApplied Polymer Science,2013,130(4):2886-2890.
    [45] Chen J J, Wang S Q, Ding L X, et al. Performance of through-hole anodicaluminum oxide membrane as a separator for lithium-ion battery[J]. Journalof Membrane Science,2014,461:22-27.
    [46] Ko Y, Yoo H, Kim J. Curable polymeric binder-ceramic composite-coatedsuperior heat-resistant polyethylene separator for lithium ion batteries[J].RSC Advances,2014,4(37):19229-19233.
    [47] Zhang S S, Xu K, Jow T R. An inorganic composite membrane as theseparator of Li-ion batteries[J]. Journal of Power Sources,2005,140(2):361-364.
    [48] Chen H, Lin Q, Xu Q, et al. Plasma activation and atomic layer deposition ofTiO2on polypropylene membranes for improved performances oflithium-ion batteries[J]. Journal of Membrane Science,2014,458:217-224.
    [49] Henriksen G L, Amine K, Liu J, et al. Materials cost evaluation report forhigh-power Li-ion HEV batteries[R].2002:5-15.
    [50] Asakura K, Shimomura M, Shodai T. Study of life evaluation methods forLi-ion batteries for backup applications[J]. Journal of Power Sources,2003,119:902-905.
    [51] Fellner J P, Loeber G J, Sandhu S S. Testing of lithium-ion18650cells andcharacterizing/predicting cell performance[J]. Journal of Power Sources,1999,81:867-871.
    [52] Broussely M, Biensan P, Bonhomme F, et al. Main aging mechanisms in Liion batteries[J]. Journal of Power Sources,2005,146(1-2):90-96.
    [53] Dubarry M, Svoboda V, Hwu R, et al. Incremental capacity analysis andclose-to-equilibrium OCV measurements to quantify capacity fade incommercial rechargeable lithium batteries[J]. Electrochemical and SolidState Letters,2006,9(10): A454-A457.
    [54] Jungst R G, Nagasubramanian G, Case H L, et al. Accelerated calendar andpulse life analysis of lithium-ion cells[J]. Journal of Power Sources,2003,119:870-873.
    [55] Moss P L, Au G, Plichta E J, et al. Study of capacity fade of lithium-ionpolymer rechargeable batteries with continuous cycling[J]. Journal of theElectrochemical Society,2010,157(1): A1-A7.
    [56] Zhang D, Haran B S, Durairajan A, et al. Studies on capacity fade oflithium-ion batteries[J]. Journal of Power Sources,2000,91(2):122-129.
    [57] Amine K, Chen C H, Liu J, et al. Factors responsible for impedance rise inhigh power lithium ion batteries[J]. Journal of Power Sources,2001,97-8:684-687.
    [58] Troltzsch U, Kanoun O, Trankler H R. Characterizing aging effects oflithium ion batteries by impedance spectroscopy[J]. Electrochimica Acta,2006,51(8-9):1664-1672.
    [59] Wang Q, Ping P, Zhao X, et al. Thermal runaway caused fire and explosionof lithium ion battery[J]. Journal of Power Sources,2012,208:210-224.
    [60] The U.S. Federal Aviation Administration. The FAA’s January16,2013airworthiness directive[EB/OL],2013(January16). http://www.faa.gov/news/press_releases/news_story.cfm?newsId=14233.
    [61] Biello D. Should battery fires drive electric cars off the road?[EB/OL],2013(November13). http://www.scientificamerican.com/article.cfm?id=battery-fires-in-electric-cars-danger&WT.mc_id=SA_CAT_ENGYSUS_20131115.
    [62] Broussely M, Herreyre S, Biensan P, et al. Aging mechanism in Li ion cellsand calendar life predictions[J]. Journal of Power Sources,2001,97-8:13-21.
    [63] Barre A, Deguilhem B, Grolleau S, et al. A review on lithium-ion batteryageing mechanisms and estimations for automotive applications[J]. Journalof Power Sources,2013,241:680-689.
    [64] Wohlfahrt-Mehrens M, Vogler C, Garche J. Aging mechanisms of lithiumcathode materials[J]. Journal of Power Sources,2004,127(1-2):58-64.
    [65] Hogstrom K C, Malmgren S, Hahlin M, et al. The influence of PMS-additiveon the electrode/electrolyte interfaces in LiFePO4/graphite Li-Ion batteries[J].Journal of Physical Chemistry C,2013,117(45):23476-23486.
    [66] Jung H M, Park S-H, Jeon J, et al. Fluoropropane sultone as an SEI-formingadditive that outperforms vinylene carbonate[J]. Journal of MaterialsChemistry A,2013,1(38):11975-11981.
    [67] Profatilova I A, Stock C, Schmitz A, et al. Enhanced thermal stability of alithiated nano-silicon electrode by fluoroethylene carbonate and vinylenecarbonate[J]. Journal of Power Sources,2013,222:140-149.
    [68] Yoon S, Kim H, Cho J-J, et al. Lactam derivatives as solid electrolyteinterphase forming additives for a graphite anode of lithium-ion batteries[J].Journal of Power Sources,2013,244:711-715.
    [69] Kostecki R, McLarnon F. Degradation of LiNi0.8Co0.2O2cathode surfaces inhigh-power lithium-ion batteries[J]. Electrochemical and Solid State Letters,2002,5(7): A164-A166.
    [70] Nakamura T, Okano S, Yaguma N, et al. Electrochemical performance ofcathodes prepared on current collector with different surfacemorphologies[J]. Journal of Power Sources,2013,244:532-537.
    [71] Boisset A, Menne S, Jacquemin J, et al. Deep eutectic solvents based onN-methylacetamide and a lithium salt as suitable electrolytes for lithium-ionbatteries[J]. Physical Chemistry Chemical Physics,2013,15(46):20054-20063.
    [72] Abraham D P, Twesten R D, Balasubramanian M, et al. Surface changes onLiNi0.8Co0.2O2particles during testing of high-power lithium-ion cells[J].Electrochemistry Communications,2002,4(8):620-625.
    [73] Thackeray M M, Shao-Horn Y, Kahaian A J, et al. Structural fatigue in spinelelectrodes in high voltage (4V) Li/LixMn2O4cells[J]. Electrochemical andSolid State Letters,1998,1(1):7-9.
    [74] Christensen J, Newman J. Stress generation and fracture in lithium insertionmaterials[J]. Journal of Solid State Electrochemistry,2006,10(5):293-319.
    [75] Zhou W, Hao F, Fang D. The effects of elastic stiffening on the evolution ofthe stress field within a spherical electrode particle of lithium-ion batteries[J].International Journal of Applied Mechanics,2013,5(4):1-16.
    [76] Purkayastha R, McMeeking R. A parameter study of intercalation of lithiuminto storage particles in a lithium-ion battery[J]. Computational MaterialsScience,2013,80:2-14.
    [77] Huang S, Fan F, Li J, et al. Stress generation during lithiation ofhigh-capacity electrode particles in lithium ion batteries[J]. Acta Materialia,2013,61(12):4354-4364.
    [78] Renganathan S, Sikha G, Santhanagopalan S, et al. Theoretical analysis ofstresses in a lithium ion cell[J]. Journal of the Electrochemical Society,2010,157(2): A155-A163.
    [79] Ramadass P, Haran B, White R, et al. Mathematical modeling of the capacityfade of Li-ion cells[J]. Journal of Power Sources,2003,123(2):230-240.
    [80] Ramadass P, Haran B, Gomadam P M, et al. Development of first principlescapacity fade model for Li-ion cells[J]. Journal of the ElectrochemicalSociety,2004,151(2): A196-A203.
    [81] Schmidt A P, Bitzer M, Imnre A W, et al. Model-based distinction andquantification of capacity loss and rate capability fade in Li-ion batteries[J].Journal of Power Sources,2010,195(22):7634-7638.
    [82] Thomas E V, Case H L, Doughty D H, et al. Accelerated power degradationof Li-ion cells[J]. Journal of Power Sources,2003,124(1):254-260.
    [83] Thomas E V, Bloom I, Christophersen J P, et al. Statistical methodology forpredicting the life of lithium-ion cells via accelerated degradation testing[J].Journal of Power Sources,2008,184(1):312-317.
    [84] Nagpure S C, Bhushan B, Babu S, et al. Scanning spreading resistancecharacterization of aged Li-ion batteries using atomic force microscopy[J].Scripta Materialia,2009,60(11):933-936.
    [85] Bandhauer T M, Garimella S, Fuller T F. A critical review of thermal issuesin lithium-Ion batteries[J]. Journal of the Electrochemical Society,2011,158(3): R1-R25.
    [86] Rao Z, Wang S. A review of power battery thermal energy management[J].Renewable&Sustainable Energy Reviews,2011,15(9):4554-4571.
    [87] Chen S C, Wan C C, Wang Y Y. Thermal analysis of lithium-ion batteries[J].Journal of Power Sources,2005,140(1):111-124.
    [88] Campion C L, Li W T, Lucht B L. Thermal decomposition of LiPF6-basedelectrolytes for lithium-ion batteries[J]. Journal of the ElectrochemicalSociety,2005,152(12): A2327-A2334.
    [89] Maleki H, Al Hallaj S, Selman J R, et al. Thermal properties of lithium-ionbattery and components[J]. Journal of the Electrochemical Society,1999,146(3):947-954.
    [90] Offer G J, Yufit V, Howey D A, et al. Module design and fault diagnosis inelectric vehicle batteries[J]. Journal of Power Sources,2012,206:383-392.
    [91] Lamb J, Orendorff C J, Amine K, et al. Thermal and overcharge abuseanalysis of a redox shuttle for overcharge protection of LiFePO4[J]. Journalof Power Sources,2014,247:1011-1017.
    [92] Lamb J, Orendorff C J. Evaluation of mechanical abuse techniques in lithiumion batteries[J]. Journal of Power Sources,2014,247:189-196.
    [93] Chiu K-C, Lin C-H, Yeh S-F, et al. An electrochemical modeling oflithium-ion battery nail penetration[J]. Journal of Power Sources,2014,251:254-263.
    [94] Sun H, Wang X, Tossan B, et al. Three-dimensional thermal modeling of alithium-ion battery pack[J]. Journal of Power Sources,2012,206:349-356.
    [95] Kim U S, Yi J, Shin C B, et al. Modelling the thermal behaviour of alithium-ion battery during charge[J]. Journal of Power Sources,2011,196(11):5115-5121.
    [96] Jeon D H, Baek S M. Thermal modeling of cylindrical lithium ion batteryduring discharge cycle[J]. Energy Conversion and Management,2011,52(8-9):2973-2981.
    [97] Cai L, White R E. Mathematical modeling of a lithium ion battery withthermal effects in COMSOL Inc. Multiphysics (MP) software[J]. Journal ofPower Sources,2011,196(14):5985-5989.
    [98] Guo G, Long B, Cheng B, et al. Three-dimensional thermal finite elementmodeling of lithium-ion battery in thermal abuse application[J]. Journal ofPower Sources,2010,195(8):2393-2398.
    [99] Al Hallaj S, Maleki H, Hong J S, et al. Thermal modeling and designconsiderations of lithium-ion batteries[J]. Journal of Power Sources,1999,83(1-2):1-8.
    [100] Sahraei E, Campbell J, Wierzbicki T. Modeling and short circuit detection of18650Li-ion cells under mechanical abuse conditions[J]. Journal of PowerSources,2012,220:360-372.
    [101] Gould C R, Bingham C M, Stone D A, et al. New battery model andstate-of-health determination through subspace parameter estimation andstate-observer techniques[J]. Ieee Transactions on Vehicular Technology,2009,58(8):3905-3916.
    [102] Albertus P, Christensen J, Newman J. Modeling side reactions andnonisothermal effects in nickel metal-hydride batteries[J]. Journal of theElectrochemical Society,2008,155(1): A48-A60.
    [103] Joho F, Novak P, Spahr M E. Safety aspects of graphite negative electrodematerials for lithium-ion batteries[J]. Journal of the Electrochemical Society,2002,149(8): A1020-A1024.
    [104] Verma P, Maire P, Novak P. A review of the features and analyses of the solidelectrolyte interphase in Li-ion batteries[J]. Electrochimica Acta,2010,55(22):6332-6341.
    [105] Park Y-S, Lee S-M. Effects of particle size on the thermal stability oflithiated graphite anode[J]. Electrochimica Acta,2009,54(12):3339-3343.
    [106] Park Y-S, Bang H J, Oh S-M, et al. Effect of carbon coating on thermalstability of natural graphite spheres used as anode materials in lithium-ionbatteries[J]. Journal of Power Sources,2009,190(2):553-557.
    [107] Wang Q S, Sun J H, Yao X L, et al. Thermal behavior of lithiated graphitewith electrolyte in lithium-ion batteries[J]. Journal of the ElectrochemicalSociety,2006,153(2): A329-A333.
    [108] Spahr M E, Buqa H, Wursig A, et al. Surface reactivity of graphite materialsand their surface passivation during the first electrochemical lithiuminsertion[J]. Journal of Power Sources,2006,153(2):300-311.
    [109] Park O, Lee J-I, Chun M-J, et al. High-performance Si anodes with a highlyconductive and thermally stable titanium silicide coating layer[J]. RSCAdvances,2013,3(8):2538-2542.
    [110] Ramesh S, Lu S-C. A simple P(VdF-HFP)-LiTf system yielding highly ionicconducting and thermally stable solid polymer electrolytes[J]. Journal ofMolecular Liquids,2013,177:73-77.
    [111] Nagasubramanian G, Fenton K. Reducing Li-ion safety hazards through useof non-flammable solvents and recent work at Sandia NationalLaboratories[J]. Electrochimica Acta,2012,101:3-10.
    [112] Lewandowski A, widerska-Mocek A. Ionic liquids as electrolytes for Li-ionbatteries--an overview of electrochemical studies[J]. Journal of PowerSources,2009,194(2):601-609.
    [113] Menne S, Kühnel R S, Balducci A. The influence of the electrochemical andthermal stability of mixtures of ionic liquid and organic carbonate on theperformance of high power lithium-ion batteries[J]. Electrochimica Acta,2013,90:641-648.
    [114] Balakrishnan P G, Ramesh R, Prem Kumar T. Safety mechanisms inlithium-ion batteries[J]. Journal of Power Sources,2006,155(2):401-414.
    [115] Liu G, Zheng H, Simens A S, et al. Optimization of acetylene blackconductive additive and PVDF composition for high-power rechargeablelithium-Ion cells[J]. Journal of the Electrochemical Society,2007,154(12):A1129-A1134.
    [116] Lee J H, Paik U, Hackley V A, et al. Effect of poly (acrylic acid) on adhesionstrength and electrochemical performance of natural graphite negativeelectrode for lithium-ion batteries[J]. Journal of Power Sources,2006,161(1):612-616.
    [117] Chen Z H, Christensen L, Dahn J R. Comparison of PVDF and PVDF-TFE-Pas binders for electrode materials showing large volume changes inlithium-ion batteries[J]. Journal of the Electrochemical Society,2003,150(8):A1073-A1078.
    [118] Chen Z H, Christensen L, Dahn J R. A study of the mechanical and electricalproperties of a polymer/carbon black binder system used in batteryelectrodes[J]. Journal of Applied Polymer Science,2003,90(7):1891-1899.
    [119] Guerfi A, Kaneko M, Petitclerc M, et al. LiFePO4water-soluble binderelectrode for Li-ion batteries[J]. Journal of Power Sources,2007,163(2):1047-1052.
    [120] Chen Z H, Christensen L, Dahn J R. Mechanical and electrical properties ofpoly(vinylidene fluoride-tetrafluoroethylene-propylene)/super-S carbonblack swelled in liquid solvent as an electrode binder for lithium-ionbatteries[J]. Journal of Applied Polymer Science,2004,91(5):2958-2965.
    [121] Park H-K, Kong B-S, Oh E-S. Effect of high adhesive polyvinyl alcoholbinder on the anodes of lithium ion batteries[J]. ElectrochemistryCommunications,2011,13(10):1051-1053.
    [122] Yoo M, Frank C W, Mori S, et al. Effect of poly (vinylidene fluoride) bindercrystallinity and graphite structure on the mechanical strength of thecomposite anode in a lithium ion battery[J]. Polymer,2003,44(15):4197-4204.
    [123] Burnett P J, Rickerby D S. The relationship between hardness and scratchadhession[J]. Thin Solid Films,1987,154(1-2):403-416.
    [124] Davanloo F, Collins C, Koivusaari K. Scratch adhesion testing of nanophasediamond coatings on steel and carbide substrates[J]. Journal of MaterialsResearch,1999,14(8):3474-3482.
    [125] Patel K K, Paulsen J M, Desilvestro J. Numerical simulation of porousnetworks in relation to battery electrodes and separators[J]. Journal of PowerSources,2003,122(2):144-152.
    [126] Sheidaei A, Xiao X R, Huang X S, et al. Mechanical behavior of a batteryseparator in electrolyte solutions[J]. Journal of Power Sources,2011,196(20):8728-8734.
    [127] Love C T. Thermomechanical analysis and durability of commercialmicro-porous polymer Li-ion battery separators[J]. Journal of Power Sources,2011,196(5):2905-2912.
    [128] Kim K J, Kim J-H, Park M-S, et al. Enhancement of electrochemical andthermal properties of polyethylene separators coated with polyvinylidenefluoride-hexafluoropropylene co-polymer for Li-ion batteries[J]. Journal ofPower Sources,2012,198:298-302.
    [129] Ryou M-H, Lee Y M, Park J-K, et al. Mussel-inspired polydopamine-treatedpolyethylene separators for high-power Li-ion batteries[J]. AdvancedMaterials,2011,23(27):3066-3070.
    [130] Joon-Yong S, Jong-Su I, Junhwa S, et al. PVDF-HFP/PMMA-coated PEseparator for lithium ion battery[J]. Journal of Solid State Electrochemistry,2012,16(2):551-556.
    [131] Wang H, Wu J, Cai C, et al. Mussel inspired modification of polypropyleneseparators by catechol/polyamine for Li-ion batteries[J]. ACS AppliedMaterials&Interfaces,2014,6(8):5602-5608.
    [132] Norin L, Kostecki R, McLarnon F. Study of membrane degradation inhigh-power lithium-ion cells[J]. Electrochemical and Solid-State Letters,2002,5(4): A67-A69.
    [133] Kostecki R, Norin L, Song X, et al. Diagnostic studies of polyolefinseparators in high-power Li-ion cells[J]. Journal of the ElectrochemicalSociety,2004,151(4): A522-A526.
    [134] Bhushan B, Li X. Nanomechanical characterisation of solid surfaces and thinfilms[J]. International Materials Reviews,2003,48(3):125-164.
    [135] Li X, An Y H, Wu Y D, et al. Microindentation test for assessing themechanical properties of cartilaginous tissues[J]. Journal of BiomedicalMaterials Research Part B: Applied Biomaterials,2007,80(1):25-31.
    [136] Oyen M. Analytical techniques for indentation of viscoelastic materials[J].Philosophical Magazine,2006,86(33-35):5625-5641.
    [137] Zhi-Hui X, Rowcliffe D. Finite element analysis of substrate effects onindentation behaviour of thin films[J]. Thin Solid Films,2004,447-448:399-405.
    [138] Li X D, Xu W J, Sutton M A, et al. In situ nanoscale in-plane deformationstudies of ultrathin polymeric films during tensile deformation using atomicforce microscopy and digital image correlation techniques[J]. IeeeTransactions on Nanotechnology,2007,6(1):4-12.
    [139] Jin H, Sciammarella C, Yoshida S, et al. SEM-DIC based nanoscale thermaldeformation studies of heterogeneous material[M]. Advancement of OpticalMethods in Experimental Mechanics, Volume3. Springer InternationalPublishing,2014:145-150.
    [140] Sutton M A, Mingqi C, Peters W H, et al. Application of an optimized digitalcorrelation method to planar deformation analysis[J]. Image and visioncomputing,1986,4(3):143-150.
    [141] Chen J, Sun T, Wang J. Comparison of optical surface roughness measuredby stylus profiler, AFM, and white light interferometer using power spectraldensity[C]. Proceedings of the5th International Symposium on AdvancedOptical Manufacturing and Testing Technologies: Optical Test andMeasurement Technology and Equipment, Dalian, China,2010:76562D76561-76562D76569.
    [142] Toebben H H, Ringel G A, Kratz F, et al. Use of power spectral density (PSD)to specify optical surfaces[C]. Proceedings of the Specification, Production,and Testing of Optical Components and Systems, Glasgow, United Kingdom,1996:240-250.
    [143] Youngworth R N, Gallagher B B, Stamper B L. An overview of powerspectral density (PSD) calculations[C]. Proceedings of the OpticalManufacturing and Testing VI, San Diego, CA, USA,2005:58690U-58611.
    [144] Elson J M, Bennett J M. Calculation of the power spectral density fromsurface profile data[J]. Applied Optics,1995,34(1):201-208.
    [145] Chong J, Xun S, Zheng H, et al. A comparative study of polyacrylic acid andpoly (vinylidene difluoride) binders for spherical natural graphite/LiFePO4electrodes and cells[J]. Journal of Power Sources,2011,196(18):7707-7714.
    [146] Porcher W, Lestriez B, Jouanneau S, et al. Optimizing the surfactant for theaqueous processing of LiFePO4composite electrodes[J]. Journal of PowerSources,2010,195(9):2835-2843.
    [147] Briscoe B J, Evans P D, Pellilo E, et al. Scratching maps for polymers[J].Wear,1996,200(1-2):137-147.
    [148] Koyama Y, Chin T E, Rhyner U, et al. Harnessing the actuation potential ofsolid-state intercalation compounds[J]. Advanced Functional Materials,2006,16(4):492-498.
    [149] Gibson L. Mechanical behavior of metallic foams[J]. Annual Review ofMaterials Science,2000,30(1):191-227.
    [150] Zok F W, Levi C G. Mechanical properties of porous-matrix ceramiccomposites[J]. Advanced Engineering Materials,2001,3(1-2):15-23.
    [151] Brock S L, Duan N, Tian Z R, et al. A review of porous manganese oxidematerials[J]. Chemistry of Materials,1998,10(10):2619-2628.
    [152] Herrmann W. Constitutive equation for the dynamic compaction of ductileporous materials[J]. Journal of Applied Physics,1969,40(6):2490-2499.
    [153] Carroll M M, Holt A C. Static and dynamic pore-collapse relations forductile porous materials[J]. Journal of Applied Physics,1972,43(4):1626-1636.
    [154] Ramadass P, Haran B, White R, et al. Capacity fade of Sony18650cellscycled at elevated temperatures: Part I. Cycling performance[J]. Journal ofPower Sources,2002,112(2):606-613.
    [155] Amine K, Liu J, Belharouak I. High-temperature storage and cycling ofC-LiFePO4/graphite Li-ion cells[J]. Electrochemistry Communications,2005,7(7):669-673.
    [156] Liu P, Wang J, Hicks-Garner J, et al. Aging mechanisms of LiFePO4batteriesdeduced by electrochemical and structural analyses[J]. Journal of theElectrochemical Society,2010,157(4): A499-A507.
    [157] Yabuuchi N, Ohzuku T. Electrochemical behaviors of LiCo1/3Ni1/3Mn1/3O2inlithium batteries at elevated temperatures[J]. Journal of Power Sources,2005,146(1-2):636-639.
    [158] Ma S, Noguchi H. High temperature electrochemical behaviors oframsdellite Li2Ti3O7and its Fe-doped derivatives for lithium ion batteries[J].Journal of Power Sources,2006,161(2):1297-1301.
    [159] Bodenes L, Naturel R, Martinez H, et al. Lithium secondary batteriesworking at very high temperature: Capacity fade and understanding of agingmechanisms[J]. Journal of Power Sources,2013,236:265-275.
    [160] Ehrlich G M. Lithium-ion batteries[M]//Linden D, Reddy T B. Handbook ofBatteries. New York: McGraw-Hill,2002:35.71–35.94.
    [161] Markevich E, Pollak E, Salitra G, et al. On the performance of graphitizedmeso carbon microbeads (MCMB)-meso carbon fibers (MCF) and syntheticgraphite electrodes at elevated temperatures[J]. Journal of Power Sources,2007,174(2):1263-1269.
    [162] Andersson A M, Edstr m K. Chemical composition and morphology of theelevated temperature SEI on graphite[J]. Journal of the ElectrochemicalSociety,2001,148(10): A1100-A1109.
    [163] Egerton R F, Li P, Malac M. Radiation damage in the TEM and SEM[J].Micron,2004,35(6):399-409.
    [164] Arnoult C, Di Martino J, Ruch D. Prediction and limitation of polymerdegradation in environmental SEM[J]. Ultramicroscopy,2012,122:32-36.
    [165] Qi Y, a in T, Johnson W L, et al. Melting and crystallization in Ninanoclusters: The mesoscale regime[J]. Journal of Chemical Physics,2001,115(1):385-394.
    [166] Ihm D, Noh J, Kim J. Effect of polymer blending and drawing conditions onproperties of polyethylene separator prepared for Li-ion secondary battery[J].Journal of Power Sources,2002,109(2):388-393.
    [167] Sergueeva A V, Zhou J, Meacham B E, et al. Gage length and sample sizeeffect on measured properties during tensile testing[J]. Materials Science andEngineering: A,2009,526(1-2):79-83.
    [168] Arora P, Zhang Z. Battery separators[J]. Chemical Reviews,2004,104(10):4419-4462.
    [169] Broberg K B. Critical review of some theories in fracture mechanics[J].International Journal of Fracture Mechanics,1968,4(1):11-19.
    [170] Mai Y-W, Cotterell B. On the essential work of ductile fracture inpolymers[J]. International Journal of Fracture,1986,32(2):105-125.
    [171] Bárány T, Czigány T, Karger-Kocsis J. Application of the essential work offracture (EWF) concept for polymers, related blends and composites: Areview[J]. Progress in Polymer Science,2010,35(10):1257-1287.
    [172] American Society for Testing and Materials. Standard test method for slowrate penetration resistance of flexible barrier films and laminates [S]. WestConshohocken, PA, United States.1994.
    [173] Schell W J, Zhang Z. CelgardR separators for lithium batteries[C].Proceedings of the fourteenth annual battery conference on applications andadvances, Long Beach, CA,1999:161-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700