酶处理和化学法对麦秸纳纤丝制备工艺及特性影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以麦秸为研究对象,研究了化学法结合纤维素酶处理方法分离纤维素纳纤丝的优化工艺条件。论文对所制备的纳纤丝进行了TEM分析、红外分析、XRD分析和DSC分析,探索了纳纤丝改性脲醛树脂后制造胶合板的工艺。本研究的结论归纳如下:
     (1)蒸煮和氧化可以去除麦秸中大部分的半纤维素和木素,分离出较高纯度的麦秸纤维素,能够有效地作为纤维素酶的酶解底物。蒸煮优化工艺条件:用碱量12%,蒸煮温度150℃,蒸煮时间为4h。氧化优化工艺条件:温度为70℃,时间为6h,过氧化氢浓度为5%。经过蒸煮和氧化两个步骤后能够得到绝干含量为88.32%的纤维素,适合作为纤维素酶的酶解底物。
     (2)本论文所使用纤维素酶的固体酶活为148.45FPU/g。为了加快酶解反应和节省酶用量,选择加酶量为35FPU/g。当加酶量小于35FPU/g时,增大加酶量后,纤维素酶对所制纤维素的酶解效果显著增加;但是当加酶量大于35FPU/g时,增大加酶量后,纤维素酶的酶解效果增加不显著。在酶用量为35FPU/g条件下,酶解效率随着时间的延长而降低,试验结果表明:酶解的最佳时间为48h。通过对酶解后的产物进行分离及超声分散处理可以制得纳纤丝,该纳纤丝在水中团聚后的平均粒径为31.192μm。
     (3)通过纳纤丝的TEM分析表明:单根麦秸纳纤丝的长度在100-300nm之间,直径在10-20nm之间,达到了纳纤丝的要求。红外分析结果显示通过酶解制得的纳纤丝以纤维素为主。经过XRD分析可知,酶处理能够提高麦秸纳纤丝的结晶度;超声波处理时间过长,纳纤丝的结晶度会降低。DSC分析显示纤维素经过酶处理和超声波处理后,其热性能没有明显的变化,所制备的纳纤丝在300℃内热稳定性非常好。
     (4)添加3%的纳纤丝有助于脲醛树脂的固化,并能在一定程度上降低脲醛树脂的固化温度。在热压温度为105-135℃之间时,纳纤丝添加量对压制的杨木胶合板的胶合性能有显著影响。结果表明:在试验区间内,当纳纤丝的添加量为3%时,改性脲醛树脂的胶合性能最好。
In this thesis, wheat straw was selected as research object to study on the optimumtechnology conditions of cellulose micro/nano fibrils separated by the method of chemicalcombined with cellulase treatment. This thesis characterized the micro/nano fibrils which wasseparated in the experiment by TEM, FTIR, XRD and DSC analysis, and then explored thetechnology of produce three-ply plywood using UF resin modified by micro/nano fibrils.Conclusions based on this thesis were shown as follows:
     (1) Most hemicellulose and lignin in the wheat straw was wiped off by digesting andoxidation, and isolated high purity wheat straw cellulose would be a good substrate ofenzymolysis of cellulase.The optimum digesting technology conditions: alkali dosage was12%, digesting temperature was150℃and digesting time was4hours. The optimumoxidation technology conditions: oxidation temperature was70℃, oxidation time was6hoursand hydrogen peroxide concentration was5%. After digesting and oxidation, the cellulosewhose dry content was88.32%was obtained, and it was a good substrate of enzymolysis ofcellulase.
     (2) The solid enzyme activity of cellulase used in this thesis was148.45FPU/g. In orderto accelerae the enzymolysis and save the enzyme dosage, the added enzyme dosage wasselected as35FPU/g. When the added enzyme dosage was less than35FPU/g, enzymolysiseffect of cellulase would improve observably with the increase of dosage. But when the addedenzyme dosage was more than35FPU/g, enzymolysis effect of cellulase would not improveobservably with the increase of dosage. In the condition of35FPU/g enzyme dosage,enzymolysis efficiency would decrease with the enzymolysis time prolongation, the studyshowed that the optimum enzymolysis time was48hours. By separating the enzymolysisproduct and ultrasonic dispersing treatment, Micro/nano fibrils would be prepared. Themicro/nano fibrils would aggregate in the water, and the mean diameter of micro/nano fibrilsaggregate is31.192micrometer.
     (3) TEM analysis showed that the length of a single fibril is between100-300nm and thediameter of a single fibril is between10-20nm, met the requirement of micro/nano fibrils.FTIR analysis illustrated the dominated component of micro/nano fibrils generated byenzymolysis was cellulose. According to XRD analysis, enzyme treatment could improve thecrystallinity of wheat micro/nano fibrils, and the crystallinity would decrease if the ultrasonictime was excessive. DSC analysis showed that thermal property of cellulose had not changedobviously after enzyme treatment and ultrasonic treatment, its thermal stability was very good when the temperature under300degree centigrade.
     (4) Adding3%micro/nano fibrils was beneficial to UF curing in only one time and itcould decrease the curing temperature in some extend. When hot-press temperature was within105-135degree centigrade, the effect of added amount of micro/nano fibrils on the bondingproperty was significant. The result manifested that the bond strength of the modify UF resinwould be the best in the test interval when the added amount of micro/nano fibrils was3%.
引文
[1]国家林业局森林资源管理司.中国森林资源第七次清查结果及其分析[J].林业经济,2012(2):67-70.
    [2]刘志军,张晓燕,高璟.麦秸人造板生产的现状和发展前景[J].2006,21(1):47-49.
    [3]国家统计局.关于2010年年度国内生产总值(GDP)初步核实的公告[EB/OL].http://www.stats.gov.cn/tjdt/zygg/sjxdtzgg/t20110907_402752625.htm,2011-09-07.
    [4]石梓涵.我国木材供需平衡问题分析[J].财经界(学术版),2010(12):156.
    [5]刘艳萍.酶处理对麦秸纤维及其制板特性的影响机理研究[D].南京林业大学木材工业学院,2010.
    [6]联合国粮农组织及贸易司.全球综述[J].作物前景与粮食形势,2011(2):4-5.
    [7]于文吉,马红霞,王天佑,等.农作物秸秆人造板发展现状与应用前景[J].木材工业,2005,19(4):5-8.
    [8]任仲杰,顾梦迪.我国农作物秸秆综合利用与循环经济[J].安徽农业科学,2005,33(11):2105-2106.
    [9]曹稳根,高贵珍,方雪梅,等.我国农作物秸秆资源及其利用现状[J].宿州学院学报,2007,22(6):111-112.
    [10]姚穆.纺织材料学[M].第3版.北京:中国纺织出版社,2009.
    [11]亢树新,刘丰良.造纸黑液的综合利用技术[J].科技情报开发与经济,2004,14(11):206-208.
    [12]张盆,胡惠仁,石淑兰.半纤维素的应用[J].天津造纸,2006(2):16-18.
    [13]谢占玲,吴润.纤维素酶的研究进展[J].草业科学,2004,21(4):72-76.
    [14]张树政,伦世仪,朱庆斐,等.酶制剂工业(下册)[M].北京:科学出版社,1998.595-624.
    [15]余东游,冯杰.纤维素酶在动物营养上的研究进展[J].饲料研究,2000(5):20-22.
    [16]张洋,江华,周兆兵,等.酶制剂对麦秸的特性影响.西北农业学报,2003,12(1):146-149.
    [17]崔洪斌,金滨锋,徐伟,等.纤维素酶水解玉米芯的研究[J].食品与机械,2004,20(3):9-10.
    [18]张宇,许敬亮,王琼,等.纤维素酶水解棕榈壳制取乙醇研究[J].农业工程学报,2008,24(10):186-189.
    [19]刘艳萍,张洋,江华等.纤维素酶协同超声波处理制备杨木/纳纤丝[J].福建农林大学学报(自然科学版),2011,40(1):91-96.
    [20]詹小明,夏黎明.纤维素酶在玉米芯上的吸附及其水解作用[J].林产化学与工业,2005,(9):76-80.
    [21]吴永军.利用纤维素酶降解水溶性壳聚糖的研究[J].荆楚理工学院学报,2011,26(5):5-9.
    [22] Hamelinck C N, Hooijdonk G, Faai J P. Ethanol from lignocellulosic biomass: Techno-economicperformance in short-, middle-, and long-term[J]. Biomass and Bioenergy,2005,28:384-410.
    [23]许庆利,蓝平,隋淼等.木质纤维素水解制取燃料乙醇研究进展[J].化工进展,2009,28(11):1906-1912.
    [24] Tanahashi M, Tamabuchi T, Coto T, et al. Characterization of explosion wood[J]. WoodResearch,1983,69:36-51.
    [25]范子千,袁晔,沈青.纳米纤维素研究及应用进展Ⅱ[J],高分子通报,2010(3):40-58.
    [26]叶代勇.纳米纤维素的制备[J].化学进展,2007,19(10):1568-1575.
    [27] Bondeson D, Mathew A, Oksman K. Cellulose,2006,13(2):171-180.
    [28] Beck Candanedo S, Roman M, Gray D G. Biomacromolecules,2005,6(2):1048-1054.
    [29] Favier V, Canova G R, Cavaille J Y, et al. Polym. Adv Technol,1995,6(5):351-355.
    [30] Beck Candanedo S, Roman M, Gray D G. Biomacromolecules,2005,6(2):1048-1054.
    [31] Gray D G, Roman M. ACS Symposium Series-Cellulose Nanocomposites,2006,938:26-32.
    [32] Brumer H, Zhou Q, Baumann M J, Carlsson K, Teeri T T. J Am Chem Soc,2004,126:5715-5721.
    [33] Klemm D, Schumann D, Kramer F, et al. Adv Polym Sci,2006,205:49-96.
    [34]杨光(Yang G),近藤哲男(Tetsuo K).科学(上海)(Science(Shanghai)).2006,58(2):14-17.
    [35]马承铸(Ma C C),顾真荣(Gu Z R).上海农业学报(Acta AgriculturaeShanghai),2001,17(4):93-98.
    [36] Fink H P, Purz H J, Bohn A, et al. Macromol Symp,1997,120:207-217.
    [37] Asako H, Masaki T, Fumit aka H. Cellulose,1997,4(3):239-245.
    [38] Turbak A F, Snyder F W, Sandberg K R. EP51230,1982.
    [39] Nakagaito A N, Yano H. ACS Symposium Series Cellulose Nanocomposites,2006,938:151-168.
    [40] Andresen M, Johansson L S, Tanem B S, et al. Cellulose,2006,13(6):665-677.
    [41] Takahashi N, Okubo K, Fujii T. Bamboo J,2005,22:81-92.
    [42] Gindl W, Keckes J. Polymer,2005,46(23):10221-10225.
    [43] White L A, Delhom C. Proceedings of Beltwide Cotton Conferences. San Antonio: NationalCotton Council of America,2006,2373:1-5.
    [44] Noorani S, Simonsen J, Atre S. ACS Symposium Series CelluloseNanocomposites,2006,938:209-220.
    [45] Mathew A P, Chakraborty A, Oksman K, et al. ACS Symposium Series CelluloseNanocomposites,2006,938:114-131.
    [46] Kobayashi S. J Polym Sci Part A: Polym Chem,2005,43(4):693-710.
    [47] Kobayashi S, Ohmae M. Adv Polym Sci,2006,194:159-210.
    [48]宋桂经(Song G J).纤维素科学与技术(Journal of Cellulose Science andTechnology),1998,6(2):1-4.
    [49] Hashimoto T, Tanaka H, Koizumi S, et al. Biomacromolecules,2006,7(9):2479-2482.
    [50] Nakatsubo F, Kamitakahara H, Hori M J Am Chem Soc,1996,118(7):1677-1681.
    [51] Jaeger R, Bergshoef M M, Batlle C M I, et al. Macromol.Symposia,1998,127:141-150.
    [52] Frey M, Joo Y, Kim C W. Polym Prepr,2003,44(2):168-169.
    [53] Zhao S L, Wu X H, Wang L G, et al. Cellulose,2003,10(4):405-409.
    [54]赵胜利(Zhao S L),宣英男(Xuan Y N),黄勇(Huang Y).高分子材料科学与工程(PolymerMaterials Science&Engineering).2004,20(2):151-154.
    [55]吴燕,周定国,王思群等.稻秸/纳米纤丝增强聚丙烯纳米复合材料的研究[J].林产工业,2009(2):21-23.
    [56]刘聪,张洋,杨雨薇.纳纤丝改性豆胶制造染色杨木胶合板[J].木材工业,2011,25(4):44-46.
    [57]陆熙娴,李琦.麦秸的特性分析及其工业利用[J].林业科技通讯,2001(7):30-31.
    [58]张洋.麦秸人造板的研究[D]:[博士学位论文].南京:南京林业大学木材工业学院,2001.
    [59]邬义民.植物纤维化学[M].北京:中国轻工业出版社,1991:10-100.
    [60]连海兰,周定国,尤纪雪.麦秸成分分析及其胶合性能的研究[J].林产化学与工业,2005(1):69-72.
    [61]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T742—2008造纸原料、纸浆、纸和纸板灰分的测定[S].北京:中国标准出版社.
    [62] Ohgren K, Bura R, Saddler J, et al. Effect of hemicellulose and ligin removal on enzymatic hydrolysisof steam pretreated corn stover[J].Bioresource Technology,2006,1-8.
    [63]王忠厚主编.制浆造纸工艺[M]:第2版.北京:中国轻工业出版社,2006.26.
    [64] Dannacher J, Schlenker W. Mechanism of hydrogen peroxide bleaching[J]. Textile Chemist andColorist,1996,28(11):24-28.
    [65]徐千,张荣.通过纤维素酶处理对纤维素纤维的表面结构及孔结构改性[J].湖南造纸,2009(1):42-47.
    [66]张敬辉,蓝强,李公让等.纤维素酶降解影响因素研究[J].钻采工艺,2010,33(5):104-107.
    [67] Brumer H, Zhou Q, Baumann M J, Carlsson K, Teeri T T. J Am Chem Soc,2004,126:5715-5721.
    [68]谢占玲,吴润.纤维素酶的研究进展[J].草业科学,2004,21(4):72-76.
    [69]阎伯旭,孙迎庆,高培基.有限酶切拟康氏木霉纤维素酶分子研究其结构域的结构与功能[J].纤维素科学与技术,1998,6(30):1291.
    [70]曾凡梅,张恒,孔明航.超声波协同纤维素酶提取山药多糖的工艺及组分测定研究[J].江西食品工业,2010(2):32-34.
    [71]管映亭.酶处理纤维时需仔细选择溶液Ph[J].北京纺织,1999,20(4):40-41.
    [72]陈毓荃.生物化学试验方法和技术[M].北京:科学出版社,2002.
    [73]尹建雄,卢红,谢强.3,5-二硝基水杨酸比色法快速测定烟草水溶性总糖、还原糖及淀粉的探讨[J].云南农业大学学报,2007,22(6):829-834.
    [74]李坚等.木材波谱学[M].北京:科学出版社,2003.3-20.
    [75]蓉蓉,顾继友.脲醛树脂在复合材料中的研究进展[J].中国胶粘剂,2011,20(2):52-53.
    [76]顾继友.胶粘剂与涂料[M].北京:中国林业出版社,1999.
    [77]李兰亭.木材加工胶合材料学[M].哈尔滨:东北林业大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700