纤维素纳米纤丝/丙烯酸树脂复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素在制备成纳米尺度后具有高长径比、高纯度、高结晶度、高杨氏模量、高强度、可降解以及好的生物相容性等优点。由于这些特别的性能及其重要的应用价值,生物质纤维素纳米纤丝成为近年来纤维素研究领域的研究热点。本论文内容大概包括:(1)研究生物质纤维素纳米丝的制备方法;(2)比较不同纤维素原材料对制备生物质纤维素纳米纤丝的影响;(3)比较不同机械分离对制备生物质纤维素纳米纤丝的影响;(4)分析生物质纤维素纳米纤丝观特征、其薄膜的力学性能和热稳定性;(5)研究生物质纤维素纳米纤丝/丙烯酸树脂复合材料的力学性能、热稳定性和透光性;(6)比较不同含量生物质纤维素纳米纤丝对纳米复合材料的性能影响。试验后得出以下结论:
     1.以木粉为主要原料,利用化学预处理去除了木粉中的木质素与大部分半纤维素并用HCl进行了开纤处理,然后借助机械研磨处理制备出高长径比的、网状结构的木质纤维素纳米纤丝
     2.利用化学预处理结合机械研磨处理,分别从木材、瓦楞纸浆和棉花三种生物原材料中分离出纤维素纳米纤丝,三种生物质纤维素纳米纤丝均具有高长径比与网状结构的特点。原料中“低”纤维素含量的木质纤维素纳米纤丝和瓦楞纸浆纤维素纳米纤丝的纤丝化程度非常均匀,而高纤维素含量的棉花纤维素纳米纤丝中仍存在部分纤丝聚集体。比较三种原料制备出的纤维素纳米纤丝的力学性能与热稳定性,得出机械研磨处理的棉花纤维素纳米纤丝的拉伸强度和弹性模量较木质纤维素纳米纤丝和瓦楞纸浆纤维素纳米纤丝略高,分别达到87.38MPa和3463.23MPa;而CTE值较木质纤维素纳米纤丝和瓦楞纸浆纤维素纳米纤丝略低,达到14ppm·K-1;棉花纤维素纳米纤丝薄膜的拉伸断面效果不及木质纤维素纳米纤丝和瓦楞纸浆纤维素纳米纤丝
     3.不同机械处理所制备纤维素纳米纤丝均具有高长径比的网状结构,其中高强度超声/研磨/高压均质处理后的效果最好。比较四种机械处理得到的纳米纤丝薄膜的力学性能与热稳定性,高强度超声/研磨/高压均质处理的拉伸强度和弹性模量比其他机械处理都高,分别达到159.78MPa和6467.23MPa,CTE却最低,达到12ppm·K-1,其拉伸断面效果也最好。
     4.将制备的木质纤维素纳米纤丝薄膜浸渍在透明丙烯酸树脂ABPE10中,加压浸渍比未加压浸渍的薄膜透明。木质纤维素纳米纤丝的加入提高了丙烯酸树脂ABPE10的拉伸强度与弹性模量,分别达到了56.52MPa和2613.84MPa,同时降低了树脂的热膨胀系数(23ppm·K-1),但是也降低了纯丙烯酸树脂ABPE10的光的透过率。
     5.在丙烯酸树脂ABPE10中加入不同含量的木质纤维素纳米纤丝薄膜,得到了不同纳米复合薄膜的透明度肉眼很难区分,但其拉伸强度和弹性模量随着纤维含量的增加而增加,CTE值和光的透过率随之降低。
     6.基于本论文制备出的这种强度大、热稳定性好的生物质纤维素纳米纤丝透明复合薄膜有望应用在可弯曲性OLED的基底材料中。
Recently, cellulose nanofibers (CNFs) have attracted wide attention by researchers due totheir high aspect ratio, high purity, high crystallinity, high Young modulus, high strength,biodegradable and good biocompatibility. In this thesis, the main contents are:(1) Study inpreparation of biomass CNFs;(2) Comparison with different effects that raw materials have onproperties of biomass CNFs film;(3) Comparison with different effects that mechanicalseparations have on properties of biomass CNFs;(4) Analysis on the micromorphology ofbiomass CNFs and mechanical properties, thermostability of their films;(5)Study in mechanicalproperties, thermostability and regular transmittance of biomass CNFs/ABPE10composites;(6)Comparison with different effects that fiber contents have on properties of CNFs/ABPE10composites. The main conclusions are as follows:
     1. The use of chemical pretreatment removed lignin and most of the hemicellulose in woodraw material, and using HCl could help to open fibers. Then, with grinding treatment, the highaspect ratio, mesh tangle morphology of wood CNFs were prepared.
     2. After chemical pretreatment combining with grinding, we could extract CNFs fromwood, corrugated paper pulp and cotton. All of the nanofibers had high aspect ratio and meshtangle morphology. CNFs of the wood and corrugated paper which contain “low” cellulosewere fibrillated well while some of the aggregates existed in cotton CNFs. When CNFs fromdifferent raw materials were compared, tensile strength and elastic modulus of cotton CNFsfilm were obtained,87.38MPa and3464.23MPa, respectively, which were higher than CNFs ofwood and corrugated paper. However, the CTE of cotton CNFs film (14ppm·K-1) was lowerthan the other two kinds of CNFs. Besides, the fracture surface of cotton CNFs film was worsethan film of wood CNFs and corrugated paper CNFs.
     3. All of the CNFs extracted by different mechanical treatment had high aspect ratio andmesh tangle morphology. High intensity ultrasonication/grinding/high pressure homogeneitytreatment was the best method in them. Tensile strength and elastic modulus of it were thegreatest,159.78MPa and6467.23MPa, respectively. CTE of it was the lowest, which was only12ppm· K-1. Moreover, the fracture surface of CNFs treated by high intensityultrasonication/grinding/high pressure homogeneity was excellent.
     4. Wood CNFs film was impregnated in transparent acrylic resins ABPE10under pressureto prepare wood CNFs/ABPE10composites, which was more transparent than the nonpresssureone. When adding CNFs to acrylic resins, the tensile strength and elastic modulus ofnanocomposites were improved to56.52MPa and2613.84MPa, respectively, while CTE wasreduced to23ppm·K-1. The regular transmittance of composites was also decreased.
     5. Different CNFs contents were added to acrylic resins to prepare different nanocomposites which transparency could hardly be distinguished. However, with the CNFscontent increased, the tensile strength and elastic modulus of nanocomposites were improved,while the CTE and regular transmittance decreased.
     6. Based on the paper, the CNFs reinforced nanocomposites which were strong andthermostable have the potential to be used as base substrate for flexible organic light-emittingdiode displays (FOLEDs).
引文
[1]曹学军.美国国家纳米技术计划[J].国外科技动态,2000,6(371):18-19
    [2]M.A.Hubbe, O.J.Rojas, L.A.Lucia, M.Sain. Cellulosic nanocomposites: a review [J]. Bioresources,2008,3(3):929-980
    [3]范金石.国外纳米木质纤维素研发概述[J].国际造纸,2010,29(4):65-70
    [4]寺本博信.日本技术开发机构中的纳米纤维研发[J].合成纤维,2009,38(5):45-48
    [5]王德诚.纳米纤维及其制造方法[J].合成纤维工业,2004,27(1):29-31
    [6]叶代勇.生物质纳米纤维素的制备[J].化学进展,2007,19(10):1568-1575
    [7] N.Graupner, A.S.Herrmann, J.Müssig, Natural and man-made cellulose fibre-reinforced poly (lactic acid)(PLA) composites: An overview about mechanical characteristics and application areas[J]. Composites PartA: Applied Science and Manufacturing,2009,40(6-7):810-821
    [8]W.K.Czaja, D.J.Young, M.Kawecki. The Future Prospects of Microbial Cellulose in BiomedicalApplications [J]. Biomacromolecules,2006,8(1):1-12
    [9] Emil Heuser. The Chemistry of Cellulose [M]. Nature,1956:177
    [10]R.S.J. Manley. Crystals of Cellulose [J]. Nature,1961,189(4762):390-391
    [11]R.H. Atalla, D.L.Vanderhart. Native Cellulose: A Composite of Two Distinct Crystalline Forms [J].Science,1984,223(4633):283-285
    [12]R.S.J.Manley. Fine Structure of Native Cellulose Microfibrils [J]. Nature,1964,204(4964):1155-1157
    [13]D.T.Dennis, R.D.Preston, Constitution of Cellulose Microfibrils [J]. Nature,1961,191(4789):667-668
    [14]H.P.Zhao, X.Q.Feng, H. Gao. Ultrasonic technique for extracting nanofibers from nature materials [J].Appl Phys Lett,2007,90(7):3112-3112-2
    [15]K.Abe, S.Iwamoto, H.Yano. Obtaining cellulose nanofibers with a uniform width of15nm from wood[J]. Biomacromolecules,2007,8(10):3276-3278
    [16]K.Abe, H.Yano. Formation of hydrogels from cellulose nanofibers [J]. Carbohydrate Polymers.2011,86(1):733-737
    [17]A.Alemdar, M.Sain. Isolation and characterization of nanofibers from agricultural residues: wheat strawand soy hulls [J]. Bioresour Technol,2008,99(6):1664-1671
    [18]H.Yu, R.Liu, D.Shen. Arrangement of cellulose microfibrils in the wheat straw cell wall [J].Carbohydrate Polymers,2008,72(1):122-127
    [19]R.Zuluaga, J.L.Putaux, A.Restrepo, I.Mondragon, P.Ganan. Cellulose microfibrils from banana farmingresidues: isolation and characterization [J]. Cellulose,2007,14(6):585-592
    [20]S.Elanthikkal, U.Gopalakrishnapanicker, S.Varghese. Cellulose microfibres produced from banana plantwastes: Isolation and characterization [J]. Carbohydrate Polymers,2010,80(3):852-859
    [21]E.Dinand, H.Chanzy, M.R.Vignon. Suspensions of cellulose microfibrils from sugar beet pulp [J]. FoodHydrocolloids,1999,13(3):275-283
    [22]A.Dufresne, J.Y.Cavaille, M.R.Vignon. Mechanical behavior of sheets prepared from sugar beet cellulosemicrofibrils [J]. J Appl Polym Sci,1997,64(6):1185-1194
    [23]J.Leitner, B.Hinterstoisser, M.Wastyn. Sugar beet cellulose nanofibril reinforced composites [J].Cellulose,2007,14(5):419-425
    [24]A.Dufresne, M.R.Vignon. Improvement of starch film performances using cellulose microfibrils [J].Macromolecules,1998,31(8):2693-2696
    [25]K.Abe, H.Yano. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice strawand potato tuber [J]. Cellulose,2009,16(6):1017-1023
    [26]X.Huang, A.Netravali. Biodegradable green composites made using bamboo micro/nano-fibrils andchemically modified soy protein resin [J]. Composites Science and Technology,2009,69(7-8):1009-1015
    [27]Wenshuai Chen, Haipeng Yu, Yixing Liu. Preparation of millimeter-long cellulose I nanofibers withdiameters of30-80nm from bamboo fibers [J]. Carbohydrate Polymers,2011,86(2):453-461
    [28]E.de Morais Teixeira, A.Correa, A.Manzoli, F.de Lima Leite, C.de Oliveira, L.Mattoso. Cellulosenanofibers from white and naturally colored cotton fibers [J]. Cellulose,2010,17(3):595-606
    [29]M.G.Alriols, A.Tejado, M.Blanco, I.Mondragon, J.Labidi. Agricultural palm oil tree residues as rawmaterial for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process [J].Chemical Engineering Journal,2009,148(1):106-114
    [30]M.Ek, G.Gellerstedt, G.Henriksson. Pulp and paper chemistry and technology: pulping chemistry andtechnology [M]. Berlin: Walter de Gruyter GmbH&Co.2009:471
    [31]T.Saito, Y.Nishiyama, J.L.Putaux, M.Vignon, A.Isogai. Homogeneous suspensions of individualizedmicrofibrils from TEMPO-catalyzed oxidation of native cellulose [J]. Biomacromolecules,2006,7(6):1687-1691
    [32]T.Saito, A.Isogai. Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by theTEMPO-mediated system [J]. Carbohydr Polym,2005,61(2):183-190
    [33]T.Saito, A.Isogai. Introduction of aldehyde groups on surfaces of native cellulose fibers byTEMPO-mediated oxidation [J]. Colloids Surf A-Physicochem Eng Asp,2006,289(1-3):219-225
    [34]T.Saito, A.Isogai. Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationicpolymers [J]. Ind Eng Chem Res,2007,46(3):773-780
    [35]T.Saito, M.Yanagisawa, A.Isogai. TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysisof water-soluble and-insoluble fractions in the oxidized products [J]. Cellulose,2005,12(3):305-315
    [36]T.Saito, S.Kimura, Y.Nishiyama, A.Isogai. Cellulose nanofibers prepared by TEMPO-mediated oxidationof native cellulose [J]. Biomacromolecules,2007,8(8):2485-2491
    [37]T.Saito, M.Hirota, N.Tamura, S.Kimura, H.Fukuzumi, L.Heux, A.Isogai. Individualization of nano-sizedplant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions [J].Biomacromolecules,2009,10(7):1992-1996
    [38]M.Pa¨a¨kko¨, M.Ankerfors, H.Kosonen, A.Nykanen, S.Ahola, M.Osterberg, J.Ruokolainen, J.Laine,P.T.Larsson, O.Ikkala, T.Lindstro¨m. Enzymatic hydrolysis combined with mechanical shearing andhigh-pressure homogenization for nanoscale cellulose fibrils and strong gels [J]. Biomacromolecules,2007,8(6):1934-1941
    [39]G.Henriksson, A.Nutt, H.Henriksson, B.Pettersson, J.Stahlberg, G.Johansson, G.Pettersson.Endoglucanase28(cel12A), a new Phanerochaete chrysosporium cellulose [J]. Eur J Biochem,1999,259(1-2):88-95
    [40]M.Henriksson, G.Henriksson, L.A.Berglund, T.Lindstro¨m. An environmentally friendly method forenzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers [J]. Eur Polym J,2007,43(8):3434-3441
    [41]A.J.Svagan, M.A.S.A.Samir, L.A.Berglund. Biomimetic polysaccharide nanocomposites of highcellulose content and high toughness [J]. Biomacromolecules,2007,8(8):2556-2563
    [42]陈洪章,李佐虎.无污染秸秆汽爆新技术及其应用[J].纤维素科学与技术,2002(3):47-52
    [43]K.L.Mackie, H.H.Brownell, K.I.West. Effect of sulphur dioxide and sulphurie acid on steam explosion ofaspenwood [J]. Journal of Wood Chemical Technology,1985,5(3):405-425.
    [44]T.Taniguchi, K.Okamura. New films produced from microfibrillated natural fibres [J].Polymer International,1998,47(3):291-294
    [45]K.Abe, F.Nakatsubo, H.Yano. High-strength nanocomposite based on fibrillatedchemi-thermomechanical pulp [J]. Composites Science and Technology,2009,69(14):2434-2437
    [46]L.Wagberg. Wood material science [C]. Finnish–Swedish research programme, year book,2005
    [47]F.W.Herrick, R.L.Casebier, J.K.Hamilton, K.R.Sandberg. Microfibrillated cellulose: morphology andaccessibility [J]. J. Appl,1983,37:797-813.
    [48]A.F.Turbak, F.W.Snyder, K.R.Sandberg. Microfibrillated cellulose, a new cellulose product: properties,uses, and commercial potential [J]. J. Appl. Polym. Sci,1983,37:815-827.
    [49]T.Zimmermann, E.Pohler, T.Geiger. Cellulose fibrils for polymer reinforcement [J]. Adv Eng Mater,2004,6(9):754-761
    [50]A.Lo′pez-Rubio, J.M.Lagaron, M.Ankerfors, T.Lindstro¨m, D.Nordqvist, A.Mattozzi, M.S.Hedenqvist.Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose [J]. CarbohydrPolym,2007,68(4):718-727
    [51]J.Leitner, B.Hinterstoisser, M.Wastyn, J.Keckes, W.Gindl. Sugar beet cellulose nanofibril-reinforcedcomposites [J]. Cellulose,2007,14(5):419-425
    [52]T.Lindstro¨m, M.Ankerfors, G.Henriksson. Method for treating chemical pulp for manufacturingmicrofibrillated cellulose [P]. United States Patent Application20090221812,2007
    [53]A.Chakraborty, M.Sain, M.Kortschot. Cellulose microfibrils: A novel method of preparation using highshear refining and cryocrushing [J]. Holzforschung,2005,59(1),102-107
    [54]B.Wang, M.Sain. Dispersion of soybean stock-based nanofiber in a plastic matrix [J]. Polym Int,2007,56(4):538-546
    [55]S.Janardhnan, M.Sain. Isolation of cellulose microfibrils—An enzymathic approach [J]. Bioresources,2006,1(2):176-188
    [56]A.Bhatnagar, M.Sain. Processing of cellulose nanofiberreinforced composites [J]. J Reinf Plast Compos,2005,24(12):1259-1268
    [57]Q.Cheng, S.Wang, Q.Han. Novel process for isolating fibrils from cellulose fibers by high-intensityultrasonication. II. Fibril characterization [J]. Journal of Applied Polymer Science,2010,115(5):2756-2762
    [58]Q.Cheng, S.Wang, T.Rials, S.Lee. Physical and mechanical properties of polyvinyl alcohol andpolypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulosefibers[J]. Cellulose,2007,14(6):593-602
    [59]Q.Cheng, S.Wang, T.G.Rials. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrilsisolated by high intensity ultrasonication [J]. Composites Part A: Applied Science and Manufacturing,2009,40(2):218-224
    [60]Wenshuai Chen, Haipeng Yu, Yixing Liu, Peng Chen, Mingxin Zhang, Yunfei Hai. Individualization ofcellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers,2011,83(4):1804-1811
    [61]K.Oksman, A.P.Mathew, D.Bondeson, I.Kvien. Manufacturing process of cellulose whiskers/polylacticacid nanocomposites [J]. Composite Science and Technology,2006,66(15):2776-2784
    [62]A.Sorrentino, G.G.V.Vittoria. Potential perspectives of bionanocomposites for food packagingapplications [J]. Trends in Food Science&Technology,2007,18(2):84-95
    [63]A.N.Nakagaito, S.Iwamoto, H.Yano. Bacterial cellulose: the ultimate nano-scalar cellulose morphologyfor the production of high-strength composites [J]. Appl. Phys. A,2005,80(1):93-97
    [64]A.N.Nakagaito, H.Yano. Novel high-strength biocomposites based on microfibrillated cellulose havingnano-order-unit web-like network structure [J]. Appl. Phys. A,2005,80(1):155-159
    [65]M.d.I.Shams, M.Nogi, L.A.Berglund, H.Yano. The transparent crab: preparation and nanostructuralimplications for bioinspired optically transparent nanocomposites [J]. Soft Matter,2012,8(5):1369-1373
    [66]E.Trovatti, L.Oliveira, C.S.R. Freire, A.J.D.Silvestre, C.P.Neto, J.J.C.C.Pinto, A.Gandini. Novel bacterialcellulose–acrylic resin nanocomposites [J]. Composites Science and Technology,2010,70(7):1148-1153
    [67]Y.Okahisa, A.Yoshida, S.Miyaguchi, H.Yano. Optically transparent wood-cellulose nanocomposite as abase substrate for fexible organic light-emitting diode displays [J]. Composites Science and Technology,2009,69(11-12):1958-1961
    [68]G.Gustafsson, Y.Cao, G.M.Treacy. Flexible light emitting diodes made from soluble conductingpolymers [J]. Nature,1992,357(6378):477-479
    [69]J.S.Lewis, M.S.Weaver. Thin-film permeation-barrier technology for flexible organic light-emittingdevices [J]. IEEE J Sel Top Quantum Electron,2004,10(1):45-57
    [70]Y.Y.Yuan, S.Han, D.Grozea. Fullerence-organic nanocomposite: A flexible material platform for organiclight-emitting diodes [J]. Appl Phys Lett,2006,88(9):93-100
    [71]A.B.Chwang, M.A.Rothman, S.Y.Mao. Thin film encapsulated flexible organic electroluminescentdisplays [J]. Appl Phys Lett,2003,83(3):413-415
    [72]C.W.Tang, S.A.Vanslyke. Organic electroluminescent diodes [J]. Appl Phys Lett,1987,51(12):913-915
    [73]H.Yano, J.Sugiyama, A.N.Nakagaito, M.Nogi, T.Matsuura, M.Hikita. Optically transparent compositesreinforced with networks of bacterial nanofibers [J]. Adv Mater (Weinheim, Ger.),2005,17(2):153-155
    [74]M.Nogi, K.Handa, A.N.Nakagaito, H.Yano. Optically transparent bionanofiber composites with lowsensitivity to refractive index of the polymer matrix [J]. Appl Phys Lett,2005,87(24):3110
    [75]M.Nogi, H.Yano. Transparent nanocomposites based on cellulose produced by bacteria offer potentialinnovation in the electronics device industry [J]. Adv Mater,2008,20(10):1849-1852
    [76]T.Nishino, I.Matsuda, K.Hirao. All-cellulose composite [J]. Macromolecules,2004,37(20):7683-7687
    [77]I.Sakurada, Y.Nukushina, T.Ito. Experimental determination of the elastic modulus of crystalline regionsin oriented polymers [J]. Journal of Polymer Science,1962,57(165):651-660
    [78]M.Nogi, S.Iwamoto, A.N.Nakagaito. Optically Transparent Nanofiber Paper[J]. Advanced Materials,2009,21(16):1595-1598
    [79]A.N.Nakagaito, H.Yano. The effect of morphological changes from pulp fiber towards nano-scalefibrillated cellulose on the mechanical properties of high-strength plant fiber based composites [J]. AppliedPhysics A: Materials Science&Processing,2004,78(4):547-552
    [80]B.G.Ranby. The cellulose micelles [J]. TAPPI,1952,35(2):53-58
    [81]S.R.Levis, P.B.Deasy. Production and evaluation of size reduced grades of microcrystalline cellulose [J].Int J Pharm,2001,213(1-2):13-24
    [82]R.Zuluaga, J.L.Putaux, J.Cruz. Cellulose microfibrils from banana rachis: Effect of alkaline treatments onstructural and morphological features [J]. Carbohydrate Polymers,2009,76(1):51-59
    [83]A.Mandal, D.Chakrabarty. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and itscharacterization [J]. Carbohydrate Polymers,2011,86(3):1291-1299
    [84]K.M.Z.Hossain, I.Ahmed, A.J.Parsons, C.A.Scotchford, G.S.Walker, W.Thielemans, C.D.Rudd.Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers andpoly(lactic acid)[J]. J Mater Sci,2012,47(6):2675-2686
    [85]劳嘉葆.木质素和半纤维素在制浆造纸中的作用及工业利用[J].四川造纸.1993,4:230-233
    [86]L.Fan, W.J.Shi, W.R.Hu. Molecular and biochemical evidence for phenylpropanoid synthesis andpresence of wall-linked phenolics in cotton fibers [J]. J Integr Plant Biol,2009,51(7):626-637
    [87]X.M.Dong, J.F.Revol, D.G.Gray. Effect of microcrystallite preparation conditions on the formation ofcolloid crystals of cellulose.Cellulose.1998,5(1):19-32
    [88]S.Iwamoto, A.N.Nakagaito, H.Yano, M.Nogi. Optically transparent composites reinforced with plantfiber-based nanofibers [J].Appl.Phys.A,2005,81(6):1109-1112
    [89]张力平,唐焕威,曲萍,李帅,秦竹,孙素琴,一维棒状纳米纤维素及光谱性质[J],光谱学与光谱分析,2011,31(4):1097-1100
    [90]A.K.Bledzki, J.Gassan. Composites reinforced with cellulose based fibres [J]. Prog Polym Sci,1999,24(2):221-274
    [91]D.N.Saheb, J.P.Jog. Natural fiber polymer composites: a review [J]. Adv Polym Technol,1999,18(4):351-363
    [92]S.J.Eichhorn, C.A.Baillie, N.Zafeiropoulos, L.Y.Mwaikambo, M.P.Ansell, A.Dufresne, K.M.Entwistle,P.J.Herrera-Franco, G.C.Escamilla, L.Groom, M.Hughes, C.Hill, T.G.Rials, P.M.Wild. Review: currentinternational research into cellulosic fibres and composites [J]. J MaterSci,2001,36(9):2107-2131
    [93]P.Wambua, J.Ivens, I.Verpoest. Natural fibres: can they replace glass in fibre reinforced plastics?[J]Compos Sci Technol,2003,63(9):1259-1264
    [94]M.J.John, R.D.Anandjiwala. Recent developments in chemical modification and characterization ofnatural fiber-reinforced composites [J]. Polym Compos,2008,29(2):187-207
    [95]A.N.Nakagaito, H.Yano. Toughness enhancement of cellulose nanocomposites by alkali treatment of thereinforcing cellulose nanofibers [J]. Cellulose,2008,15(2):323-331
    [96]M.Nogi, H.Yano. Optically transparent nanofiber sheets by deposition of transparent materials: a conceptfor roll to roll processing [J]. Appl Phys Lett,2009,94(23):1-3
    [97]M.Nogi, S.Ifuku, K.Abe. Fiber-content dependency of the optical transparency and thermal expansion ofbacterial nanofiber reinforced composites [J]. Applied physics letters,2006,88(13):133124-1-3
    [98]H.T.Vo, M.Todd, F.G.Shi, A.A.Shapiro, M.Edwards. Towards model-based engineering of underfillmaterials: CTE modeling [J]. Microelectron J,2001,32(4):331-338
    [99]R.Bhardwaj, A.K.Mohanty, L.T.Drzal, F.Pourboghrast, M.Misra. Renewable resource-based greencomposites from recycled cellulose fiber and poly(3–hydroxybutyrate-co-3-hydroxyvalerate) bioplastic [J].Biomacromolecules,2006,7(6):2044-2051
    [100]A.N.Nakagaito, H.Yano. The effect of fiber content on the mechanical and thermal expansion propertiesof biocomposites based on microfibrillated cellulose [J]. Cellulose,2008,15(4):555-559

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700