铜基体上原位合成碳纳米管(纤维)及其复合材料的性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以碳纳米管(CNTs)为首的碳纳米材料因其优异的力学、电学和热学等特性自发现以来就受到了科学界的广泛关注。CNTs和碳纳米纤维(CNFs)被认为是发展高性能金属基复合材料的理想增强体。要发挥CNFs的优异性能,关键是获得结构完好的CNFs在金属基体中均匀分散且与基体之间界面结合良好,而传统的金属基复合材料制备技术难以满足上述要求,因此,寻求新的制备技术以克服现有方法的不足,是发展高性能CNFs增强金属基复合材料的关键。
     本文首次采用原位合成和化学共沉积相结合的方法制备了CNFs(Ni/Y)/Cu复合材料。即首先在Cu基体上获得均匀分布的活性催化剂粒子,并采用化学气相沉积法(CVD)原位合成分布均匀、含量可控的CNFs,然后将此原位复合粉末与铜离子一起共沉积,得到CNFs分布均匀且大部分进入Cu颗粒内部的CNF-Cu复合粉末,最后利用粉末冶金法制备复合材料。
     采用沉积-沉淀工艺在Cu粉基体上成功研制了系列新型Ni/Y和Ni/Ce复合催化剂。研究了催化剂制备和CVD合成工艺参数对产物产量、结构和形貌的影响,探讨了催化剂的催化本质和不同结构碳产物的生长机制。研究表明,Y和Ce能够稳定催化剂结构,保持催化剂活性;Y含量越高,催化剂越稳定;当WNi:WY=2:1,Ni(NO3)2·6H2O浓度为0.05mol/L,NaOH浓度为0.23mol/L,煅烧温度为250℃和400℃各2h,还原温度为450℃时,制备的催化剂活性最高;随着反应温度的升高,掺杂进Ni中的Y开始偏聚析出,并导致不同结构碳产物的生成:在较低温度下,催化剂结构稳定,CNFs和CNTs以顶端生长机制合成,随着温度升高,碳原子开始在催化剂中以体扩散为主,掺杂进催化剂中的Y开始偏聚析出,催化剂失去稳定性,当Y偏聚析出前,催化剂中的碳达到过饱和,碳层析出,形成碳包覆Ni或空心碳洋葱,这种碳洋葱在一定条件下可形成金属填充CNTs。基于此,本研究提出了球-管生长机制,当Y偏聚析出时,催化剂中的碳未达到过饱和时,基体铜开始向催化剂中扩散形成合金,当催化剂中的碳达到过饱和后,碳层析出形成碳包覆Cu-Ni合金的碳洋葱。析出的Y2O3团聚于碳洋葱或CNFs的表面。
     采用化学共沉积将原位合成的CNFs和铜再次混合后,CNFs在基体中分布均匀,且大部分CNFs进入Cu颗粒内。将制得的复合粉末采用真空热压工艺制备了CNFs(Ni/Y)/Cu复合材料。研究了CNFs纯度和粉末冶金工艺对复合材料微观结构与性能的影响,获得了优化的工艺参数,同时研究了CNFs含量对复合材料性能和微观组织的影响,并探讨了复合材料的强化机理。结果表明,CNFs能显著提高复合材料的硬度和屈服强度,降低复合材料的热膨胀系数(CTE);当加入经800℃热处理纯化的3.4wt.% CNFs时,复合材料的硬度和屈服强度分别是纯铜的2倍和3.6倍,即使CNFs含量达到5.7wt.%时,复合材料中的CNFs未发现明显团聚,复合材料的屈服强为448MPa,是纯铜的2.8倍,CTE(30-200℃)为10.1*10-6/℃,是纯铜的57.7%。复合材料强度的提高主要是由于CNFs与基体之间强的界面结合强度使载荷在基体和增强体之间实现了有效的载荷传递。
Since their discoveries, carbon nanotubes (CNTs) and its relative nanomaterials has been attracted much attention due to their excellent mechanical, electrical, and thermal properties. CNTs and carbon nanofibers (CNFs) have been regarded as ideal reinforcements for composites. In order to tap into the advantage of these excellent properties of CNFs, there are two important processing issues in the fabrication of CNFs/metal composites: a homogeneous distribution of CNFs with perfect structure and a high interfacial bonding strength between CNFs and matrix. However, these issues are hard to be solved by current traditional methods. It is necessary and urgent to pursue new approaches to overcoming the limits of traditional methods for CNFs/metal composites.
     A combination of in situ synthesis and chemical co-deposition was introduced to fabricate CNFs/Cu composites for the first time. CNFs with a controllable content and homogeneous distribution on Cu powders were in situ synthesized by chemical vapor deposition (CVD) using a novel catalyst supported on Cu. The in situ CNF-Cu composite powders were mixed with Cu again by chemical co-deposition, which caused CNFs imbedded into Cu particles and produced a high dispersion. Finally, the composite was fabricated by powder metallography (PM) using the final CNF-Cu composite powders.
     The novel Ni/Y and Ni/Ce catalysts supported on Cu were prepared by a deposition-precipitation method. The effect of the process parameters of the catalyst preparation and carbon nanostructure growth by CVD on the yield, structure and morphology of the products was investigated. The mechanisms of the novel catalyst and different carbon nanostructure growth were discussed. The results show that Y and Ce can stabilize the structure of the catalyst at high temperature and keep the activity of the catalyst. The higher Y content is, the stabler the catalyst is. The catalyst with WNi:WY=2:1 got the best catalytic activity when prepared with a proper solution concentration of Ni(NO3)2·6H2O (0.05mol/L) and NaOH (0.05mol/L), calcined at 250℃and 400℃for 2h respectively and reduced at 450℃for 3h. With the reaction temperature increasing, Y doped in Ni begins to aggregate, which causes different carbon nanostructure growth. At relative low temperature, the catalyst is stable and catalyzes the CNF and CNT growth by tip growth mechanism. With the temperature increasing, carbon atoms begin to diffuse through the catalyst body and Y doped in Ni aggregates. Before Y separated from the catalyst, carbon atoms in the catalyst were over saturated and carbon onions with a hollow core or Ni nanoparticle were formed. The carbon onions obtained have a trend to coalesce to form metal filled CNTs under a sphere-tube mechanism. If the catalyst was not over saturated with carbon after Y separated from the catalyst, Cu began to diffuse into Ni. Carbon onions with a Cu-Ni alloy particle were formed after the over-saturation of the catalyst. Y2O3 separated from the catalyst aggregated on the surface of carbon onions or CNTs.
     The in situ synthesized CNFs have been embedded in Cu particles with a high dispersion after mixing with Cu by chemical co-deposition. CNFs(Ni/Y)/Cu composites were fabricated by vacuum hot pressing using the final powders obtained. The effect of the purity of CNFs and PM parameters on the structure and property of the composites was investigated, and the optimized parameters of CNF purification and PM were obtained. Meanwhile, the effect of the CNF content on the structure and property of the composites was also investigated. The strength mechanism of the CNFs/Cu composite was discussed in detail. The results show that the introduction of CNFs can improve the hardness and yield strength of the composite significantly and reduce the coefficient of thermal expansion (CTE) of the composite. The hardness and yield strength of the composite with 3.4wt.% of the CNFs heat treated at 800℃are 2 times and 3.6 times higher than that of copper matrix, respectively. Even with 5.7wt.% of CNFs, the composite has a good dispersion of CNFs in the matrix, which exhibits a CTE of 10.1*10-6/℃( 57.7% of that of Cu) and a compressive yield strength of 448MPa, 2.8 times higher than that of Cu. Such excellent strength of the composite was mainly due to the effective load transfer between CNFs and matrix by high interfacial bonding.
引文
[1] Kroto H W, Heath J R, O’Brien S C, et al., C60: Buckminsterfullerene, Nature, 1985, 318: 162-163.
    [2] Iijima S. Helical microtubules of graphitic carbon, 1991, Nature. 354: 56-58.
    [3]张勇,唐元洪,裴立宅等,碳纳米纤维制备的研究进展,材料导报,2004,18:102-105
    [4]徐国财,张立德,纳米复合材料,北京:化学工业出版社, 2002.
    [5] Falvo M R, Clary G J, Taylor R M, et al., Bending and buckling of carbon nanotubes under large strain, Nature, 1997, 389: 582-584
    [6] Tjong S C, Structural and mechanical properties of polymer nanocomposites. Materials Science & Engineering R-Reports, 2006, 53 (3-4): 73-197.
    [7] Lafdi K, Fox W, Matzek M, et al., Effect of carbon nanofiber heat treatment on physical properties of polymeric nanocomposites-Part 1, J. nanomater., 2007, 2007: 52729(1-6pp)
    [8] Kuzumaki T, Miyazawa K, Ichinose H, et al., Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res., 1998,13 (9): 2445-2449.
    [9] Kuzumaki T, Ujiie O, Ichinose H, et al., Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite, Adv. Eng. Mater., 2000, 2: 416-418.
    [10]Ngo Q, Cruden B A, Cassell A M, et al., Thermal interface properties of Cu filled vertical aligned carbon nanofiber arrays, Nano Letters, 2004 4(12): 2403-2407
    [11]Jang Y, Kim S, Lee S, et al., Fabrication of carbon nano-sized fiber reinforced copper composite using liquid infiltration process, Compos. Sci. Technol., 2005, 65: 781-784
    [12]T. Laha, A. Agarwal, T. McKechnie and S. Seal, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A, 2004, 381 (1-2): 249–258
    [13]Quang P, Jeong Y G, Yoon S C, et al., Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing, J. Mater. Proc. Technol., 2007, 187-188: 318-320.
    [14]Cha S I, Kim K T, Arshad S N, et al., Extraordinary strengthening effect of carbon nanotubs in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mater., 2005, 17: 1377-1381
    [ 1 5]Cha S I, Kim K T, Arshad S N, et al., Field-emission behavior of a carbon-nanotube-implanted Co composites fabricated from pearl-necklace-structured carbon nanotube/Co powders, Adv. Mater. 2006, 18, 553.
    [16]He C, Zhao N, Shi C, et al., An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-Matrix composites, Adv. Mater., 2007, 19: 1128-1132
    [17]孙巍,李文珍,碳纳米管增强铜基复合材料的制备技术研究,铸造技术,2008,29:29-32
    [18]Lu L, Shen Y, Chen X, et al., Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304: 422-425
    [19]Wang J J, Yi X S, Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites, Compos. Sci. Technol., 2004, 64: 1623
    [20]Xie S H, Zhu B K, Li J B, et al., Preparation and properties of polyimide/aluminum nitride composites, Polym. Test., 2004, 23: 797
    [21]宣守蓉,范鲁海,弥散强化铜基复合材料的现状与发展,梅山科技,2009,1:56-60
    [22]沃丁柱主编.复合材料大全,北京:化学工业出版社, 2000: 378.
    [23]时新刚,冯柳,王英,等,纳米颗粒增强铜基复合材料的最新研究动态及发展趋势,冶金信息导刊,2007,1:26-29.
    [24]王庆平,姚明,陈刚.反应生成金属基复合材料制备方法的研究进展[J],江苏大学学报, 2003, 24(3): 57~61.
    [25]崔春翔,申玉田等. Cu-Al合金内氧化工艺的研究[J],天津冶金,2000, 8: 6~8.
    [26]Lee D W, Kim B K, Nanostructured Cu-Al2O3 composite produced by thermo chemieal process for electrode application[J], Mater Lett, 2004, 58: 378~383.
    [27]Wang Z, Wang X, Wang Q, et al., Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy, Nanotechnology, 2009, 20: 075605 (6pp).
    [28]王常春,朱世忠,孟令江,铜基电子封装材料研究进展,临沂师范学院学报,2008,30:43-47.
    [29]郭铁明,季根顺,马勤,等,弥散强化型导电铜基复合材料的研究进展,材料导报,2007,27-32.
    [30]Murata K, Miyawaki J, Yudasaka M, et. al, High-density of methane confined in internal nanospace of single-wall carbon nanohorns, Carbon, 2005, 43(13): 2826-2830
    [31]Gogotsi Y, Libera JA, Kalashnikov N, et. al, Graphite polyhedral crystals, Science, 2000, 290: 317-320.
    [32]McCaldin S, Bououdina M, Grant DM, et. al, The effect of processing conditions on carbon nanostructures formed on an iron-based catalyst, Carbon, 2006, 44: 2273-2280
    [33]Soon SH, Lim S, Hong S, et. al, Carbon nano-rod as a structural unit of carbon nanofibers, Carbon, 2004, 42:3087-3095.
    [34]Ebbesen TW, Lezec HJ, Hiura H, et al. Electrical conductivity of individual carbon nanotubes, Nature, 1996,382: 54-56.
    [35]Hamada N, Sawada S, Oshiyama A, New one-dimensional conductors:graphitic microtubules, Phys Rev Lett, 1992, 68(10): 1519-1522
    [36]朱宏伟,吴德海,徐才录,碳纳米管,北京:机械工业出版社,2003
    [37]Liu M, Cowley LM, Structure of carbon nanotubes studied by HRTEM, Ultramicroscopy, 1994, 53: 333-337
    [38]Osawa E, Yoshida M, Fujita M, shape and fantasy of fullerenes, MRS Bulletin, 1994,19(11): 33-36
    [39]Iijima S, Ichihashi T, Ando Y, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, 1992, 356:776-778
    [40]Ebbesen T W, Lezec H J, Hiura H, et al., Electrical conductivity of individual carbon nanotubes, Nature, 1996, 382:54-56.
    [41]Baughman R H, Zakhidov A A, De Heer W A, Carbon nanotubes-the route toward application, Science, 2002, 297, 787-792.
    [42]Thess A, Lee R, Nilolaev P, et al. Crystalline ropes of metallic carbon nanotubes, Science, 1996,273:483-487
    [43]Dai H, Wong EW, Lieber CM, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 1996, 272:523-526
    [44]Bockrath M, Cobden DH, McEuen PL, et al. Single-electron transport in ropes of carbon nanotubes, Science, 1997, 275: 1922-1925
    [45]Berber S, Kwon YK, Tomanek D, Unusually high thermal conductivity of carbon nanotubes, Phys Rev Lett, 2000,84(20): 4613-4616
    [46]Hjortstam O, Isberg P, Soderholm S, et al. Can we achieve ultra-low resistivity in carbon nanotube-based metal composites?, Appl. Phys. A, 2004, 78: 1175-1179
    [47]Gamaly EG, Ebbesen TW. Mechanism of carbon nanotube formation in the arc discharge. Phys. Rev. B 1995;52(3):2083–9
    [48]Ugarte D, Onion-like graphitic particles, Carbon, 1995, 1995(7): 989-993
    [49]李天保,刘光焕,刘旭光,等,内包铁洋葱状富勒烯的合成和表征,热处理学报,2005,26(3):28-30.
    [50]He C, Zhao N, Shi C, et al. A practical method for the production of hollow carbon onion particles, J. alloy. compd., 2006, 425:329-333.
    [51]Xu BS, Tanaka SI, Multiple-nuclei onion-like fullerenes cultivated by electron beam irradiation, Proc Int Conf ICSE, Cambridge, 1997:355-360
    [52]Hou S M, Tao C G, Zhang G M, et al. Ultrahigh vacuum scanning probe microscopy studies of carbon onions, Physica E, 2001, 9(2): 300-304.
    [53]Henrard L, Malengreau F, Rudolf P, et al. Electron-energy-loss spectroscopy of plasma excitations in concentric-shell fullerenes [J]. Phys Rev B, 1999, 59(8): 5832-5836.
    [54]Pichler T, Knupfer M, Golden M S, et al. Cabioc’h T, Electronic structure and optical properties of concentric-shell fullerenes from electron-energy-loss spectroscopy in transmission, Phys Rev B, 2001, 63(1-5): 155415-155415.
    [55]Lee G H, Huh S H, Jeong J W, et al. Excellent magnetic properties of fullerenes encapsulated ferromagnetic nanoclusters, J. Magn. Magn. Mater., 2002, 246(3): 404-411
    [56]葛爱英,许并社,王晓敏,等,洋葱状富勒烯电磁特性的研究,物理化学学报,2006,22:203-208.
    [57]Yao Y L, Wang X M, Guo J J, et al. Tribological property of onion-like fullerenes as lubricant additive, Mater Lett, 2008, 62(16): 2524-2527.
    [58]Joly-Pottuz L, Vacher B, Le Mogne T, Martin JM, Mieno T, He CN, Zhao NQ, The role of nickel in Ni-containing nanotubes and onions as lubricant additives, Tribol. Lett., 2008, 29(3): 213-219
    [59]Xu B, Prospects and research progress in nano onion-like fullerenes, New carbon materials, 2008, 23(3): 289-301
    [60]Iijima S, Direct observation of the tetrahedral donding in graphitized carbon black by high resolution electron microscopy, J. Cryst. Growth., 1980,50:675-683
    [61]王琪琨,刘卫华,朱长纯,等.西安交通大学学报,2001,35(4):382
    [62]Pasqualini E, Adelfang P, Regueiro MN, Carbon nanoencapsulation of uranium dicarbide, J. Nucl. Mater., 1996, 231:173-177.
    [63]Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuous production of carbon nanotubes, Chem. Phys. Lett., 2000, 319: 457–459.
    [64]Sano N, Wang H, Chhowalla M, et al. Nanotechnology-synthesis of carbon‘onions’in water[J]. Nature, 2001, 414: 506–507.
    [65]Wang H, Chhowalla N, Sano N, et al. Large-scale synthesis of single-walled carbon nanohorns by submerged arc, Nanotechnology, 2004, 15: 546–550.
    [66]Xing G, Jia S, Shi Z, The production of carbon nano-materials by arc discharge under water or liquid nitrogen, New Carbon Materials, 2007, 22(4): 337-341.
    [67]Ying Z C, Hettich R L, Compton R N, et al. Synthesis of nitrogen doped fullerenes by laser ablation, J. Phys. B: At. Mol. Opt. Phys., 1996, 29: 4935-4942
    [68]Guo T, Nikolaev P, Rinzler A G, et al., Self-Assembly of Tubular Fullerenes, J. Phys. Chem., 1995, 99: 10694
    [69]Radhakrishnan G, Adams P M, Bernstein L S, Plasma characterization and room temperature growth of carbon nanotubes and nano-onions by excimer laser ablation, Appl. Surf. Sci., 2007, 253: 7651-7655
    [70]Thess A, Lee R, Nikolaev P, et al. crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483-487
    [71]Yudasaka M, Komatsu T, Ichihashi T, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal, Chem Phys Lett, 1997, 278: 102-106
    [72]Liu J, Dai H, Hafner J H, et al., Fullerene 'crop circles', Nature (1997) 385, 781
    [73]Wang Y, Wei F, Luo GH, et al. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chem Phys Lett, 2002,364:568-572.
    [74]Tanemura M, Iwata K, Takahashi K, et al. Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth papameters, J Appl Phys, 2001,90:1529-1533
    [75]Kaul AB, Megerian KG, Allmen P, et al. Single, Aligned carbon nanotubes in 3D nanoscale architectures enabled by top-down and bottom-up manufacturable processes, Nanotechnology, 2009, 20:075303 (10)
    [76]Dai H J, Rinzler A G, Nikolaev P, et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phy. Lett., 1996, 260: 471-475
    [77]Liu BC, Lyu SC, Jung SI, et al. Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst, Chem Phys Lett, 2004,383:104-108
    [78]Zhao N, Cui Q, He C, et al. Synthesis of carbon nanostructures with different morphologies by CVD of methane. Mater. Sci. Eng. A, 2007, 460: 255-260
    [79]Dong S R, Tu J P, Zhang X R, An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A, 2001,313(1-2): 83-87.
    [80]Dong S R, Mechanical properties of Cu-based composites reinforced by carbon nanotubes, Trans. Nonferrous Met. Soc. China, 1999, 9 (3) : 457-461
    [81]Bustamante R P, Esparza C D G, Guel I E, et al., Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling, Mater. Sci. Eng. A, 2009, 502: 159-163.
    [82]Goh, C S, Wei J, Lee L C, et al., Development of novel carbon nanotube reinforced magnesium nanocomposites using the poeder metallurgy technique, Nanotechnology, 2006, 17: 7-12.
    [83]Lim B, Kim C, Kim B, et al., The effect of interfacial bonding on mechanical properties of single-walled carbon nanotubes reinforced copper matrix nanocomposite. Nanotechnology 2006 17: 5759-5764
    [84]Kwon H, Estili M, Takagi K, et al., Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 2009, 47: 570-577.
    [85]Kim H N, Chang S N, Kim D K, Enhanced microhardness of nanocrystalline carbon nanotube-reinforced Cu composite using planar shock-wave compaction, Scripta Materialia, 2009, doi:10.1016/j.scriptamat.2009.07.017.
    [86]张继红,魏秉庆,梁吉等,激光熔覆巴基管/球磨铸铁的研究,金属学报,1996,32(9)980-984.
    [87]李圣海,李四年,张友寿,等,镁/碳纳米管(CNTs)复合材料的力学性能初探,铸造设备研究,2003,1:9-11.
    [88]袁秋红,增效舒,戚道华,CNTs/ZM5复合材料高温性能与微观组织研究,纳米科技,2007,4:51-55.
    [89]Li Q,Viereckl A, Rottmair C A, et al., Improved processing of carbon nanotube/magnesium alloy composites, Compos. Sci. Technol., 2009, 69: 1193-1199.
    [90]Honma T, Nagai K, Katou A, et al. Synthesis of high-strength magnesium alloy composites reinforced with Si-coated carbon nanaofibres, Scripta Mater., 2009, 60: 451-454
    [91]丁志鹏,张孝斌,许国良,等,碳纳米管/铝基复合材料的制备及摩擦性能研究,浙江大学学报(工学版), 2005,39(11):181-185.
    [92]Toru N, Akira M, Shigeru F, et al., Carbon nanotube/aluminium composites with uniform dispersion, Mater. Trans., 2004, 45(2): 602~604
    [93]Uozumi H, Kobayashi K, Nakanishi K, et al., Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting, Mater. Sci. Eng. A, 2008, 495: 282-287.
    [94]Jang Y, Kim S, Lee S, et al., Fabrication of carbon nano-sized fiber reinforced copper composite using liquid infiltration process, Compos. Sci. Technol., 2005, 65: 781-784
    [95]Laha L, Chen Y, Lahiri D, et al., Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Compos. Part A, 2009, 40(5): 589-594.
    [96]Bakshi S R, Singh V, Seal S, et al., Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders, Surf. Coat. Tech., 2009, 203: 1544-1554.
    [97]Goh C S, Wei J, Lee L C, et al. Ductility improvement and fatigue study in Mg-CNT nanocomposites, Compos. Sci. Technol., 2008, 68: 1432-1439.
    [98]Yang Y L,Wang Y D, Ren Y, et al., Single-walled carbon nanotube reinforced copper composite coatings prepared by electrodeposition under ultrasonic field, Mater. Lett., 2008, 62: 47-50.
    [99]Chai G, Sun Y, Sun J, et al., Mechanical properties of carbon nanotube-copper nanocomposites, J. Micromech. Microeng., 2008, 18, 035013(4pp).
    [100]Merzhanov A G, Borovinskaya I P, Surbrahmanyam J, et al., Self-propagating high-temperature synthesis, Mater. Sci., 1992, 27(23):6249-6273.
    [101]Goyal A, Wiegand D A, Owens F J, et al., Synthesis of carbon-free, high strength iron-carbon nanotube composite by in situ nanotube growth, Chem. Phys. Lett., 2007, 442: 365-371.
    [102]Li Y H, Housten W, Zhao Y M, et al., Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing, Nanotechnology, 2007, 18 (20):1-6.
    [103]Lim D K, Shibayanagi T, Gerlich A P, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater. Sci. Eng. A, 2009, 507 (1-2): 194-199.
    [104]Feng Y, Yuan H L, Zhang M, Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes, Mater. Charact., 2005, 55: 211-218
    [105]Lee S B, Matsunaga K, Ikuhara Y, et al., Effect of alloying elements on the interfacial bonding strength and electric conductivity of carbon nano-fiber reinforced Cu matrix composites, Mater. Sci. Eng. A, 2007, 449-451: 778-781
    [106]Kim K T, Cha S I, Gemming T, et al., The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites, Small, 2009, 4 (11): 1936-1940.
    [107]Arai S, Endo M, Kaneko N, Ni-deposited multi-walled carbon nanotubes by electrodeposition, Carbon, 2004, 42: 641-644.
    [108]Zhang Y, Franklin N W, Chen R J, et al., Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction, Chem. Phys. Lett., 2000, 331: 35-41.
    [109]Chen X H, Xia J T, Peng J C, et al., Carbon-nanotube metal-matrix composites prpared by electroless plating, Compos. Sci. Technol., 2000, 60: 301-306.
    [110]Xu C L, Wu G W, Liu Z, et al., Preparation of copper nanoparticles on carbon nanotubes by electroless plating method, Mater. Res. Bull., 2004, 39:1499-1505.
    [111]Dai P Q, Xu W C, Hang Q Y, Mechanical properties and microstructure of nanocrystalline nickel-carbon nanotube composites produced by electrodeposition, Mater. Sci. Eng. A, 2008, 483-484: 172-174.
    [112]Ci L J, Ryu Z Y, Jin-Phillipp N Y, et al., Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum, Acta Mater., 2006, 54 (20): 5367-5375.
    [113]Deng C F, Zhang XX, Wang D Z, Chemical stability of carbon nanotubes in the 2024Al matrix, Mater. Lett., 2007, 61 (3): 904-907.
    [114]Laha T, Kuchibhatla S, Seal S, et al., Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite, Acta Mater., 2007, 55: 1059-1066.
    [115]Kuzumaki T, Miyazawa K, Ichinose H, et al., Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res., 1998, 13 (9): 2445-2449.
    [116]Zhang Y, Franklin N W, Chen R J, et al., Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction, Chem. Phys. Lett., 2000, 331 (1): 35-41
    [117]马志仁,朱艳秋,铁-巴基管复合材料的研究,复合材料学报,1997,14(2):92-96
    [118]Lee K M, Han H J, Choi S, et al., Effects of metal buffer layers on the hot filament chemical vapor deposition of nanostructured carbon films, J. Vac. Sci. Technol. B, 2003, 21(1): 623~626
    [119]He C N, Zhao N Q, Han Y J, et al., Study of aluminum powder as transition metal catalyst carrier of CVD synthesis of carbon nanotubes, Mater. Sci. Eng. A, 2006, 441: 266-270
    [120]Dubosc M, Casimirius S, Besland M P, et al., Impact of Cu-based substrates and catalyst deposition techniques on carbon nanotube growth at low temperature by PECVD, Microelectron. Eng., 2007, 84: 2501-2505.
    [121]Gan B, Ahn J, Zhang Q, et al., Y-junction carbon nanotubes grown by in situ evaporated copper catalyst, Chem. Phys. Lett.s , 2001, 333: 23 -28.
    [122]Nasibulin A G, Moisala A, Brown D P, et al., Carbon nanotubes and onions from carbon monoxide using Ni(acac) and Cu(acac) as catalyst precursors, Carbon,2003, 41, 2711-2724.
    [123]Schaper A K, Phillipp F, Hou H, Melting behavior of copper nanocrystals encapsulated in onion-like carbon cages, J. Mater. Res., 2005, 20 (7), 1844-1850.
    [124]Florio D Z, Muccillo R, Sintering of zirconia–yttria ceramics studied by impedance spectroscopy, Solid State Ionics, 1999, 123: 301~305.
    [125]Tadokoro SK, Muccillo E N S. Physical characteristics and sintering behavior of ultrafine zirconia–ceria powders, J. Eur. Ceram. Soc., 2002, 22: 1723~1728.
    [126]刘长久,谷得龙,孙丹,吴华斌,纳米非晶态Ni(OH)2电极材料的稀土掺杂改性研究,微细加工技术,2008,2:19-22
    [127]El-Hendawy A, Andrews R, Alwxander A, Impact of Mo and Ce on growth of single-walled carbon nanotubes by chemical vapour deposition using MgO-supported Fe catalysts, Appl. Surf. Sci., 2009, 255: 7446-7450
    [128]Park C, Keane M A, Catalyst supported effects in the growth of structured carbon from the decomposition of ethylene over nickel, J. Catal., 2004, 221: 386-399.
    [129]Leea C J, Park J, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition, Appl. Phys. Lett.,2000, 77, 3397-3399.
    [130]He C N, Zhao N Q, Shi C S, et al., Synthesis of binary and triple carbon nanotubes over Ni/Cu/Al2O3 catalyst by chemical vapor depositon, Mater. Lett., 2007, 61: 4940-4943
    [131]Helveg S, Lopez-Cartes C, Sehested J, et al., Atomic-scale imaging of carbon nanofibre growth, Nature 2004, 427: 426-429.
    [132]Krishnankutty N, Rodriguez N M, Baker R T K, Effect of copper on the decomposition of ethylene over iron catalyst, J. Catal., 1996, 158: 217-227.
    [133]McCaldin S, Bououdina M, Grant D M, ea al., The effect of processing conditions on carbon nanostructures fromed on an iron-based catalyst, Carbon, 2006, 44:2273-2280 [ 1 34]Bououdina M, Grant D, Walker G, Effect of processing conditions on unsupported Ni-based catalyst for graphitic-nanofibre formation, Carbon, 2005, 43:1286-1292.
    [135]Parmon V N, Fluidization of the active component of catalysts in catalytic formation of carbon assisted by iron and nikel carbides, Catal. Lett., 1996, 42:195-199
    [136]Zheng G B, Kouda K, Sano H, et al., A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst, Carbon, 2004, 42: 635-640.
    [137]M¨uller C, Golberg D, Leonhardt A, et al., Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes, Phys. Stat. Sol. A, 2006, 203: 1064-1068.
    [138]Liu B, Wei L, Ding Q, et al., Synthesi and magnetic study for Fe-doped carbon nanotubes (CNTs), Cryst. Growth 2005, 277: 293-297.
    [139]Loiseau A, Willaime F, Filled and mixed nanotubes: from TEM studies to the growth mechanism within a phase-diagram approach, Appl. Surf. Sci. 2000, 164: 227-240.
    [140]Zhang Q, Qian W Z, Yu H, et al., Synthesis of carbon nanotubes with totally hollow channels and/or with totally copper filled nanowires, Appl. Phys. A, 2007, 86: 265-269
    [141]Amelinckx S, Zhang X, Bernaerts D, et al., Aformation mechanism for catalytically grown helix-shaped graphite nanotubes, Science, 1994, 265: 635-639.
    [142]Pan Z W, Xie S S, Chang B H, et al., Direct growth of aligned open carbon nanotubes by chemical vapor depositon, Chem. Phys. Lett. 1999, 299: 97-102
    [143]He C, Zhao N, Shi C, et al., TEM studies of the intial stage growth and morphologies of bamboo-shaped carbon nanotubes synthesized by CVD, J. Alloys Compd. 2007, 433: 79-83. [ 1 44]Huh Y, Green M L H, Lee C J, Cross-sectional transmission electron microscopic strudy on the initial stage growth of carbon nanotubes, Diam. Relat. Mater. 2006, 15: 239-243.
    [145]Pinault M, Hermite M M, Reynaud C, et al., Carbon, Growth of multiwalled carbon nanotubes during the initial stage of aerosol-assisted CCVD, Carbon, 2005, 43: 2968-2976
    [146]Yeretzian C, Hansen K, Diederich F, et al., Coalescence reactions of fullerenes, Nature, 1992, 359: 44-47.
    [147]Smith B W, Monthioux M, Luzzi D E, Encapsulated C60 in carbon nanotubes, Nature, 1998, 396: 323-324.
    [148]Smith B W, Luzzi D E, Formation mechanism of fullerence peapods and coaxial tubes: a path to large scale synthesis, Chem. Phys. Lett., 2000, 321: 169-174.
    [149]Hernandez E, Meunier V, Smith B W, et al., Fullerene coalescence in nanopeapods: A path to novel tubular carbon, Nano Lett., 2003, 3: 1037-1042.
    [150]Zhao Y F, Yakobson B I, Smalley R E, Dynamic topology of fullerene coalescence, Phys. Rev. Lett., 2002, 88: 185501(4pp)
    [151]Zhao Y F, Smalley R E, Yakobson B I, Coalescence of fullerene cages: Topology, energetics, and molecular dynamics simulation, Phys. Rev. B, 2003, 66: 195409(9pp).
    [152]Qiao Z, Li J, Zhao N, et al., Structural evolution and Raman study of nanocarbons from diamond nanoparticles, Chem. Phys. Lett., 2006, 429: 479-482.
    [153]Liu B, Jia D, Meng Q, et al., A novel method for preparation of hollow carbon spheres under a gas pressure atmosphere, Carbon, 2007, 45: 668-670.
    [154]田俐,陈稳纯,陈琳,梁恩湘,张馨,水热法合成氢氧化钇纳米管,无机材料学报,2009,24:335-339
    [155]Peigney A, Flahaut E, Laurent C, et al., Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion, Chem. Phys. Lett., 2002, 352: 20-25
    [156]Rul S, Lefevre-schlick F, Capria E, et al., Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Mater., 2004, 52:1061-1067
    [157]Balani K, Zhang T, Karakoti A, et al., In situ carbon nanotube reinforcements in a pasma-sprayed aluminum oxide nanocomposite coating, Acta Mater., 2008, 56: 571-579.
    [158]Fischebach DB. The kinetics and mechanism of graphitization. In: Walker PL, editor, Chemistry and physics of carbon, vol. 7, New York: Marcel Dekker; 1971, pp. 1–97.
    [159]易双萍,张海燕,裴磊等,氮气热处理对CNTs-LaNi5电极电化学性能的影响,物理化学学报,2006,22(4):436-440.
    [160]Endo M, Kim Y, Hayashi T, et al., Microstructural changes induced in“stacked cup”carbon nanofibers by heat treatment, Carbon, 2003, 41: 1941-1947
    [161]Andrews R, Jacques D, Qian D, et al., Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures, Carbon, 2001, 39(11):1681–7.
    [162]Endo M, Nishimura K, Kim YA, Hakamada K, Matushita T, Dresselhaus MS, Dresselhaus G. Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons. J Mater Res 1999;14(12):4474–7.
    [163]Zheng G, Sano H, Uchiyama Y, New structure of carbon nanofibers after high-teperature heat-treatment, Carbon, 2003, 41: 853-856
    [164]McCulloch D G, Prawer S, Hoffman A, Structural investigation of xenon-ion-beam-irradiated glassy carbon, Phys. Rev. B, 1994, 50(9): 5905~5917
    [165]Li W, Zhang H, Wang C, et al., Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl Phys Lett., 1997, 70: 2684-2686
    [166]吕德义,徐铸德,徐丽萍,等,碳纳米管的氧化稳定性及反应动力学,应用化学,2002,19(10):1005-1007
    [167]Gajewski S, Maneck H, Knoll U et al., Purification of single walled carbon nanotubes by thermal gas phase oxidation, Diam. Relat. Mater., 2003, 12: 816-820.
    [168]Lafdi K, Fox W, Matzek M et al., Effect of carbon nanofiber heat treatment on physical properties of polymeric nanocomposites-Part I, J. nanomater., 2007, 2007: 52729 (6pp).
    [169]Sasaki T, Mizoguchi T, Matsunaga K et al., HRTEM and EELS characterization of atomic and electronic structures in Cu/α-Al2O3 interfaces, Appl. Surf. Sci., 2005, 241:87-90
    [170]Davis L C, Andres C, Allison J E, Microstructure and strengthening of metal matrix composites, Mater. Sci. Eng. A,1998, 249:40~45.
    [171]Kang H K, Kang S B, Thermal decomposite of silicon carbode in a plasma-sprayed Cu/SiC composite deposit. Mater. Sci. Eng. A, 2006, 428 (1-2): 336-345
    [172]Wang Q K, Hu H F, Ran K, et al., Preparation and properties of 2D Cf/SiC-Cu composites produced by precursor infiltration and pyrolysis new carbon materials, New Carbon Mater., 2006, 21 (2): 151-155
    [173]Arsnault R J, Shi N, Dislocation due to differences between the coefficients of thermal expansion, Mater. Sci. Eng., 1986, 81: 175-187
    [174]Ibrahim A, Abdallah M, Mostafa SF, et al., An experimental investigation on the W-Cu composite, Mater. Design 30 (2009) 1398-1403
    [175]Luo X, Yang Y, Liu C, et al., The termal expansion behavior of unidirectional SiC fiber-reinforced Cu-matrix composites, Scripta Mater., 2008, 58:401-404
    [176]Schubert T, Trindade B, Wei?g¨arber T, et al., Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A, 2008, 475: 39-44
    [177]吴泓,王志法,郑秋波,铜基电子封装复合材料的回顾与发展,2006,30(3):30-32
    [178]Geffroy P M, Chartier T, Silvain J F, Preparation by tape casting and hot pressing of copper composites films, J. Eur. Ceram. Soc., 2007, 27: 291-299
    [179]Lee K M, Oh D K, Choi W S, ea al., Thermomechanical properties of AlN-Cu composite materials prepared by solid state processing, J. Alloy. Compd., 2007 434-435: 375-377
    [180]Dujardin E, Ebbesen T W, Hiura H, et al., Wetting and nanocapillarity of carbon nanotubes, Science, 1994, 265(5180): 1850~1852
    [181]严铄,纯铜表面张力的温度系数,金属学报,1965,8(2):251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700