聚苯胺微/纳米结构的构建与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺具有许多优良的物理化学性能,有广阔的应用前景。作为一种新型的多功能材料,微/纳米结构的聚苯胺在科学和技术上引起了人们广泛的兴趣,设计简单、有效、可控性强的合成技术构建聚苯胺微/纳米结构已成为该领域的研究热点。本论文围绕聚苯胺微/纳米结构制备方法中存在的问题展开,研究了一系列简单、有效构建多种形貌聚苯胺微/纳米结构的方法,表征了产物聚苯胺的结构,提出了其形成机理。主要的研究内容如下:
     1.采用非模板化学氧化法,首次在水溶液体系中成功控制合成了聚苯胺纳米片、纳米纤维、纳米颗粒。结果表明,苯胺单体与对甲基苯磺酸之间的摩尔浓度比对聚苯胺纳米形貌有明显影响,通过控制苯胺单体与对甲基苯磺酸之间的摩尔浓度比能够调控聚苯胺的纳米形貌。提出了不同纳米结构聚苯胺的形成机理,并对其化学结构进行了表征。
     2.以过氧化苯甲酰为氧化剂,首次在乙醇溶液中制备了高纯度的聚苯胺纳米片。结果表明,溶剂的分子结构对聚苯胺纳米形貌有显著影响,当使用乙醇为溶剂时得到高纯度、高疏水性(水测试接触角为145°)的聚苯胺纳米片;使用水为溶剂时所合成的聚苯胺为纳米片及纳米颗粒的混合结构,具有亲水性。苯胺单体与对甲基苯磺酸浓度比对聚苯胺纳米形貌影响显著。
     3.采用原位氧化聚合法,首次在含有聚乙烯醇的水溶液中将聚苯胺纳米片组装成聚苯胺纳米纤维。提出了聚苯胺纳米纤维的形成机理。结果表明,增加水溶液中苯胺中性分子的含量,降低反应物在溶液中的扩散速度有利于聚苯胺纳米纤维的形成。在聚乙烯醇存在的聚合体系中,聚苯胺的微观形貌受盐酸浓度及温度的影响显著。
     4.首次采用非模板化学法,通过控制溶剂组成,成功将聚苯胺纳米纤维组装成为海胆状聚苯胺微米球。得到的聚苯胺微米球直径在5-10μm之间,微球表面生长的纤维长度大约为1μm,直径大约30 nm,形如“海胆毛刺”。乙醇与水的体积比对聚苯胺微/纳米结构的形成具有明显的影响。分析了在苯胺聚合过程中产物微观形貌以及溶液pH值随时间的变化,提出了海胆状微米球的形成机理。
As an inherent conducting polymer, polyaniline (PANI) has attracted considerable attention because of its unique doping/dedoping process, good optical and electrical properties, as well as excellent environmental stability. The design and synthesis of PANI nanostructures have received great attention in nanoscience and nanotechnology based on their unique properties and potential applications. Therefore, developing a facile, efficient, and controlable process to construct PANI micro/nanostructures is desirable.The research of this dissertation is focused on the issues of new methods to synthesize PANI with various micro/nanostructures. The structures and formation mechanism of PANI micro/nanostructures are also investigated. The main contents are listed:
     1. Polyaniline nanostructures with sheet-, fiber- and particle-like morphologies are synthesized controllablely from p-toluene sulfonic acid (p-TSA) aqueous solution. The results demonstrate that the morphology of PANI nanostructures is significantly influenced by the molar ratio of aniline to p-TSA. The morphology of PANI can be controlled by adjusting the molar ratio of aniline to p-TSA. A rational mechanism based on the self-assembly of micelles is proposed for the formation of PANI nanostructures. Fourier transform infrared, UV-visible spectroscopy and X-ray diffraction are applied to characterize the products.
     2. Exclusive sheet-like PANI is successfully synthesized in ethanol solution by a template-free process using benzoyl peroxide as oxidant. Solvent plays an important role in the formation of exclusive PANI nanosheets. When the solvent is changed from water to ethanol, PANI nanosheets are obtained exclusively and the wettability of the surface constructed by PANI nanosheets changes obviously, which changes from hydrophilic to super-hydrophobic (with water contact angle of 145.0o).
     3. Polyaniline nanofibers accumulated by flake-like PANI are assembled in the presence of polyvinyl alcohol (PVA) in aqueous solution. Based on the experimental results, a formation mechanism of PANI nanofibers is proposed. The experimental results indicate that increasing the amount of aniline neutral molecules and decreasing the diffusion rate of reactive substances are benefit for the formation of PANI nanofibers. The morphology of PANI is significantly influenced by the concentration of HCl and the solution temperature.
     4. Urchin-like polyaniline microspheres with an average diameter of 5-10μm have been successfully prepared by a template-free method. The surface of the obtained microspheres consists of highly oriented nanofibers with about 30 nm in diameter and 1μm in length as characterized by scanning electron microscopy and transmission electron microscope techniques. The experimental results indicate that the solvent composition plays an important role in the formation process of urchin-like PANI microspheres. Based on the experimental results, the formation mechanism of PANI microspheres is proposed.
引文
[1] Shirakawa H, Louis E J, MacDiarmid A G, et al., Synthesis of electronically conducting polymers: Halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc, Chem. Commun., 1977, 39: 578~579
    [2] Chiang C K, Gau S C, Fincher C R, et al., Polyacetylene (CH) x: n-type and p-type doping and compensation, J. Phys. Rev. Lett., 1978, 33: 18~20
    [3] MacDiarmid A G, Polyaniline and polypyrrole: Where are we headed? Synth. Met., 1997, 84: 27~34
    [4] Huang J X, Virji S, Weiller B H, et al., Polyaniline nanofibers: Facile synthesis and chemical sensors, J. Am. Chem. Soc., 2003, 125: 314~315
    [5] Li Y X, Zhang H W, Liu Y L, et al., Synthesis and electro-magnetic properties of polyaniline-barium ferrite nanocomposite, Chin. J. Chem. Phys., 2007, 20: 739~742
    [6] Tseng R J, Huang J, Ouyang J, et al., Polyaniline nanofiber/gold nanoparticle nonvolatile memory, Nano Lett., 2005, 5: 1077~1080
    [7] Cheun H, Winokur M J, Electroluminescence and photoluminescence in poly(di-n-octylfluorene) light-emitting diodes operated at elevated temperatures, Synth. Met., 2005, 154: 137~140
    [8] Virji S, Weiller B H, Kaner R B, et al., Hydrazine detection by polyaniline using fluorinated alcohol additives, Chem. Mater., 2005, 17:1256~1260
    [9] Mi H Y, Zhang X G, Yang S D, et al., Polyaniline nanofibers as the electrode material for supercapacitors, Mater. Chem. Phys., 2008, 112: 127~131
    [10] Lee H M, Lee T W, Park O O, et al., Polymer light-emitting diode prepared with an ionomer and polyaniline, Adv. Mater. Opt. Electron., 2000, 10: 17~23
    [11] Kwang S R, Youngil L, Kyoo-Seung H, et al., The electrochemical performance of polythiophene synthesized by chemical method as the polymer battery electrode, Mater. Chem. Phys., 2004, 84: 380~384
    [12] Wei Y, Jang G W, Hsueh K F, et al., Thermal transitions and mechanical properties of films of chemically prepared polyaniline, Polymer, 1992, 33: 314~322
    [13] Karim M R, Lim K T, Lee C J, et al., A facile synthesis of polythiophene nanowires, Synth. Met., 2007, 157: 1008~1012
    [14] Ge D T, Wang J X, Wang Z, et al., Electrochemical synthesis of polypyrrole nanowires, J. Mater. Sci. Lett., 2003, 22: 839~840
    [15] Pringle J M, Forsyth M, MacFarlane D R, et al., The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene, Polymer, 2005, 46: 2047~2058
    [16] Bhadra S, Singha N K, Khastgir D, Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline, J. Appl. Polym. Sci., 2007, 104: 1900~1904
    [17] Ballarin B, Seeber R, Tassi L, et al., Electrochemical synthesis and characterization of polythiophene conducting polymers functionalised by metal-containing porphyrin residue, Synth. Met., 2000, 114: 279~285
    [18] Zotti G, Musiani M, Zecchin S, et al., Electrochemical synthesis of poly- pyrrole within poly(4-butanesulfonate-cyclopentadithiophene) films. A 1:1 polypyrrole-polythiophene composite, Chem. Mater., 1998, 10: 480~485
    [19] Omastova M, Simon F, Surface characterization of conductive poly(methyllm ethacrylate)/polypyrrole composites, J. Mater. Sci., 2000, 35: 1743~1749
    [20] Martins C R, De Paoli M A, Antistatic thermoplastic blend of polyaniline and polystyrene prepared in a double-screw extruder, Eur. Polym. J., 2005, 41: 2867~2873
    [21] Omastova M, Chodak I, Pionteck J, Electrical and mechanical properties of conducting polymer composites, Synth. Met., 1999, 102: 1251~1252
    [22] Wu K H, Chen P H, Yang C C, et al., Infrared stealth and anticorrosion performances of organically modified silicate-NiZn ferrite/polyaniline hybrid coatings, J. Polym. Sci., Part A: Polym. Chem., 2007, 46: 926~935
    [23] Macinnes Jr D, Mark A, Nigrey D P J, Organic batteries: reversible n-and p-type electrochemical doping of polyacetylene, J. C. S. Chem. Comm., 1981, 317~322
    [24] Nobuyuki K, Horkazu E, Kazuyuki T, Polyaniline secondary cells with ambient temperature molten salt electrolytes, J. Electrochem Soc., 1993, 140: 602~605
    [25] Kim B C, Spinks Q, Too C O, et al., Preparation and characterization of processable conducting polymer-hydrogel composites, React. Funct. Polym., 2000, 44: 31~40
    [26] AI-Atar H A, AI-Kabbi A S, Faris F A, Ppy conductive polymer charac- teristics as an optical display device, Polym. Eng. Sci., 1999, 39: 2482~2486
    [27] Somani P, Mandale A B, Radhakrishnan S, Study and development of conducting polymer-based electrochromic display devices, Acta Mater., 2000, 48: 2859~2871
    [28] Menon V P, Lei J, Martin C R, Investigation of molecular and super molecular structure in template-synthesized polypyrrole tubules and fibrils, Chem. Mater., 1996, 8: 2382~2390
    [29] Kudoh Y, Akami K, Matsuya Y, Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode, Synth. Met., 1999, 102: 793~794
    [30] Wadhwa R, Lagenaur C F, Cui X Y, Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode, J. Controlled Release, 2006, 110: 531~541
    [31] Zhang D H, Preparation of core-shell structured alumina-polyaniline particles and their application for corrosion protection, J. Appl. Polym. Sci., 2006, 101: 4372~4377
    [32] Li X G, Huang M R, Duan W, et al., Novel multifunctional polymers from aromatic diamines by oxidative polymerizations, Chem. Rev., 2002, 102: 2925-3030
    [33] Liu H, Hu X, Wang J, et al., Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method, Macromolecules, 2002, 35: 9414~9419
    [34] Park J, Park S, Koukitu A, et al., Electrochemical and chemical interactions between polyaniline and palladium nanoparticles, Synth. Met., 2004, 141: 265~269
    [35] MacDiarmid A G, Chiang J C, Huang W S, et al., Polyaniline: protonic acid doping to the metallic regime, Mol. Cryst. Liq. Cryst., 1985, 125: 309~318
    [36] MacDiarmid A G, Chiang J C, Halpem M, et al., "Polyaniline": Intercon- version of metallic and insulated forms, Mol. Cryst. Liq. Cryst., 1985, 121: 173~180
    [37] MacDiramid A G, Chiang J C, Chemical, electrochemical and infrared studies of polyaniline, Synth. Met., 1987, 18: 285~290
    [38] Wan M X, Absorption spectra of thin film of polyaniline, J. Polym. Sci., Part A: Polym. Chem., 1992, 30: 543~549
    [39] Wang L X, Ling X B,Wang F S, On the iodine-doping of polyaniline and poly-ortho-methylaniline, Synth. Met., 1991, 41: 739~744
    [40] Wang L X, Ling X B, Wang F S, Light-assisted oxidative doping of poly- anilines, Synth. Met., 1991, 41: 685~690
    [41] Deore B A, Freund M S, Self-doped polyaniline nanoparticle dispersions based on boronic acid-phosphate complexation, Macromolecules, 42: 164~168
    [42] Rang T W, Ban J R, Wan H H, et al., Electrical characterization induced in pernigraniline by potassium ion implantation, Synth. Met., 1994, 63: 17~21
    [43] Yuan G, Zou F, Yin S, et al., Electrochemical polymerization of helical poly(2-methoxyaniline) doped with beta-cyclodextrin sulfate: pH driving the opposition of induced circular dichroism, Polym. Bull., 2008, 61: 705~711
    [44] Jing X B, Wang L X, Wang X H, et al., Synthesis, structure, properties and applications of conducting polyaniline, Acta Polym. Sin., 2005, 5: 655~663
    [45] Zeng X R, Ko T M, Structure-conductivity relationships of iodine-doped polyaniline, J. Polym. Sci., Part B: Polym. Phys., 1998, 35: 1991~2001
    [46] Angelopoulos M, Conducting polymers as lithographic material, Polym. Eng. Soc., 1992, 32: 1535~1538
    [47] Li S Z, Wan M X, Photo-induced doped polyaniline by the vinylidene chloride and methylacrylate copolymer as photo acid generator, Chin. J. Polym. Sci., 1997, 15: 108~113
    [48] MacDiarmid A G, Epstein A J, Secondary doping in polyaniline, Synth. Met., 1995, 69: 85~92
    [49] Menardo C, Nechtschein M, Rousseau A, et al., Investigation on the structure of polyaniline: 13C n.m.r. and titration studies, Synth. Met., 1988, 25: 311~322
    [50] Cao Y, Qiu J, Smith P, Effect of solvents and co-solvents on the processibility of polyaniline: 1. solubility and conductivity studies, Synth. Met., 1995, 69: 187~190
    [51] Moon D K, Maruyama T, Osakada K, et al., Chemical oxidation of poly- aniline by radical generating reagents, O2, H2O2-FeCl3 catalyst, and dibenzoyl peroxide, Chem. Lett., 1991, 9: 1633~1636
    [52] Armes S P, Aldissi M, Potassium iodate oxidation route to polyaniline-an optimization study, Polymer, 1991, 32: 2043~2048
    [53] Liu W, Kumar J, Tripathy S, Enzymatic synthesis of conducting polyaniline in micelle solutions, Langmuir, 2002, 18: 9696~9704
    [54] Stejska J, Gilbert R G, Polyaniline: preparation of a conducting polymer, Pure Appl. Chem., 2002, 74: 857~867
    [55] Erdem E, Karakisla M, Sacak M, The chemical synthesis of conductive polyaniline doped with dicarboxylic acids, Eur. Polym. J., 2004, 40: 785~791
    [56] Bai X L, Li X T, Li N, et al., Synthesis of cluster polyaniline nanorod via a binary oxidant system, Mater. Sci. Eng. C, 2007, 27: 695~699
    [57] Nabid M R, Sedghi R, Jamaat P R, et al., Synthesis of conducting water- soluble polyaniline with iron (Ⅲ) porphyrin, J. Appl. Polym. Sci., 2006, 102: 2929~2934
    [58] Rao P S, Subrahmanya S, Sathyanarayana D N, Inverse emulsion poly- merization: a new route for the synthesis of conducting polyaniline, Synth. Met., 2002, 128: 311~316
    [59] Osterholm J E, Cao Y, Klavetter F, et al., Emulsion polymerization of aniline, Synth. Met., 1993, 55: 1034~1039
    [60] Palaniappan S, John A, Polyaniline materials by emulsion polymerization pathway, Prog. Polym. Sci., 2008, 33: 732~758
    [61] Jang J, Ha J, Kim S, Fabrication of polyaniline nanoparticles using micro- emulsion polymerization, Macromol. Res., 2007, 15: 154~159
    [62] Sdvan S T, Mani A, Athinarayana K, et al., Synthesis of crystalline polyaniline, Mater. Res. Bul1., 1995, 30: 699~705
    [63] Travain S A, de Souza N C, Balogh D T, et al., Study of the growth process of in situ polyaniline deposited films, J. Colloid Interface Sci., 2007, 316: 292~297
    [64] Diaz A F, Logan J A, Electroactive polyaniline films, J. Electroanal. Chem., 1980, 111: 111~114
    [65] Gospodinova N, Terlemezyan L, Conducting polymers prepared by oxidative polymerization: polyaniline, Prog. Polym. Sci., 1998, 23: 1443~1484
    [66] Hodes G, When small is different: Some recent advances in concepts and applications of nanoscale phenomena, Adv. Mater., 2007, 19: 639~655
    [67] Xia Y N, Yang P D, Sun Y G, et al., One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, 15: 353~389
    [68] Cao H, Xu J Y, Seelig E W, et al., Microlaser made of disordered media, Appl. Phys. Lett., 2000, 76: 2997~2999
    [69] Dulkeith E, Niedereichholz T, Klar T A, et al., Plasmon emission in photo- excited gold nanoparticles, Phys. Rev. B, 2004, 70: 205424
    [70] Nickels P, Dittmer W U, Beyer S, et al., Polyaniline nanowire synthesis templated by DNA, Nanotechnology, 2004, 15: 1524~1529
    [71] Yin Y, Alivisatos A P, Colloidal nanocrystal synthesis and the organic- inorganic interface, Nature, 2005, 437, 664~670
    [72] Burda C, Chen X, Narayanan R, et al., Chemistry and properties of nano- crystals of different shapes, Chem. Rev., 2005, 105: 1025~1102
    [73] Murphy C J, Sau T K, Gole A M, et al., Anisotropic metal nano- particles: Synthesis, assembly, and optical applications, J. Phys. Chem. B, 2005, 109: 13857~13870
    [74] Sanchís C, Salavagione H J, Morallón E, Ferrocenium strong adsorption on sulfonated polyaniline modified electrodes, J. Electroanal. Chem., 2008, 618: 67~73
    [75] Saheb A, Josowicz M, Janata J, Chemically sensitive field-effect transistor with polyaniline-ionic liquid composite gate, Anal. Chem., 2008, 80: 4214~4219
    [76] Peng X S, Jin J, Ichinose I, Mesoporous separation membranes of polymer-coated copper hydroxide nanostrands, Adv. Funct. Mater., 2007, 17: 1849~1855
    [77] Yang Y, Ouyang J Y, Ma L L, et al., Electrical switching and bistability in organic/polymeric thin films and memory devices, Adv. Funct. Mater., 2006, 16: 1001~1014
    [78] Baker C O, Shedd B, Innis P C, et al., Monolithic actuators from flash-welded polyaniline nanofibers, Adv. Mater., 2008, 20: 155~158
    [79] Sathiyanarayanan S, Syed-Azim S, Venkatachari G, Corrosion resistant properties of polyaniline-acrylic coating on magnesium alloy, Appl. Surf. Sci., 2006, 253: 2113~2117
    [80] Koul S, Chandra R, Dhawan S K, Conducting polyaniline composite for ESD and EMI at 101 GHz, Polymer, 2000, 41: 9305~9310
    [81] Han M G, Cho S K, Oh S G, et al., Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution, Synth. Met., 2002, 126: 53~60
    [82] Kim B J, Oh S G, Han M G, et al., Synthesis and characterization of poly- aniline nanoparticles in SDS micellar solutions, Synth. Met., 2001, 122: 297~304
    [83] Kim B J, Oh S G, Han M G, et al., Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium, Langmuir, 2000, 16: 5841~5845
    [84] Deokgeun K, Jinwoo C, Jin Y K, et al., Size control of polyaniline nano- particle by polymer surfactant, Macromolecules, 2002, 35: 5314~5316
    [85] Yan F, Xue G, Synthesis and characterization of electrically conducting polyaniline in water-oil microemulsion, J. Mater. Chem., 1999, 9: 3035~3039
    [86] Gan L M, Chew C H, Chan H S O, et al., Preparation of polyaniline particles in an inverse microemulsion, Polym. Bull., 1993, 31: 347~350
    [87] Han D X, Chu Y, Yang L K, et al., Reversed micelle polymerization: a new route for the synthesis of DBSA-polyaniline nanoparticles, Colloids Surf. A: Physicochem. Eng. Aspects, 2005, 259: 179~187
    [88] Selvan S T, Mani A, Athinarayanasamy K, et al., Synthesis of crystalline polyaniline, Mater. Res. Bull., 1995, 30: 699~705
    [89] Xia H S, Wang Q, Synthesis and characterization of conductive polyaniline nanoparticles through ultrasonic assisted inverse microemulsion polymerization, J. Nanopart. Res., 2001, 3: 401~411
    [90] Riede A, Helmstedt M, Riede V, et al., Polyaniline dispersions. 9. Dynamic light scattering study of particle formation using different stabilizers, Langmuir, 1998, 14: 6767~6771
    [91] Chattopadhyay D, Banerjee S, Chakravoay D, et al., Ethyl(hydroxyethyl) cellulose stabilized polyaniline dispersions and destabilized nanoparticles therefrom, Langmuir, l998, 14: 1544~1547
    [92] Dispenza C, Fiandaca G, Lo Presti C, et al., Electrical properties ofγ- crosslinked hydrogels incorporating organic conducting polymers, Radiat. Phys. Chem., 2007, 76: 1371~1375
    [93] Li X G, Lv Q F, Huang M R, Facile synthesis and optimization of conductive copolymer nanoparticles and nanocomposite films from aniline with sulfodiphenylamine, Chem. Eur. J., 2006, 12: 1349~1359
    [94] Tang Z Y, Liu S Q, Wang Z X, et al., Electrochemical synthesis of polyaniline nanoparticles, Electrochem. Commun., 2000, 2: 32~35
    [95] Dan L, Richard B K, Shape and aggregation control of nanoparticles: not shaken, not stirred, J. Am. Chem. Soc., 2006, 128: 968~975
    [96] Wu C G, Bein T, Conducting polyaniline filaments in a mesoporous channel host, Science, 1994, 264: 1757~1759
    [97] Yang S M, Chen K H, Yang Y F, Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane, Synth. Met., 2005, 152: 65~68
    [98] Martin C R, Nanomaterials: A membrane-based synthetic approach, Science, 1994, 266: 1961~1965
    [99] Wei Z, Wan M, Lin T, et al., Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process, Adv. Mater., 2003, 15: 136~139
    [100] Martin C R, Membrane-based synthesis of nanomaterials, Chem. Mater., 1996, 8: 1739~1746
    [101] Xu X C, Chen L D, Wang C F, Template synthesis of heterostructured polyaniline/Bi2Te3 nanowires, J. Solid State Chem., 2005, 178: 2163~2166
    [102] Wang W C, Wang Z, Li M K, Well-aligned polyaniline nano-fibril array membrane and its field emission property, Chem. Phys. Lett., 2001, 304: 431~434
    [103] Zhang X Y, Goux W J, Manohar S K, Synthesis of polyaniline nanofibers by“Nanofiber Seeding”, J. Am. Chem. Soc., 2004, 126: 4502~4503
    [104] Xing S X, Zhao C, Jing S Y, Morphology and conductivity of polyaniline nanofibers prepared by‘seeding’polymerization, Polymer, 2006, 47: 2305~2313
    [105] Zhang Z M, Wei Z X, Wan M X, Nanostructures of polyaniline doped with inorganic acids, Macromolecules, 2002, 35: 5937~5942
    [106] Wan M X, A template-free method towards conducting polymer nano- structures, Adv. Mater., 2008, 20: 2926~2932
    [107] Zhang L X, Zhang L J, Wan M X, et al., Polyaniline micro/nanofibers doped with saturation fatty acids, Synth. Met., 2006, 156: 454~458
    [108] Ma Y F, Zhang J M, Zhang G J, et al., Polyaniline nanowires on Si surfaces fabricated with DNA templates, J. Am. Chem. Soc., 2004, 126: 7097~7101
    [109] Yu Y J, Si Z H, Chen S J, Facile synthesis of polyaniline-sodium alginate nanofibers, Langmuir, 2006, 22: 3899~3905
    [110] Zhao W J, Ma L, Lu K, Facile Synthesis of polyaniline nanofibers in the presence of polyethylene glycol, J. Polym. Res., 2007, 14: 1~4
    [111] Qiu H J, Zhai J, Li S H, et al., Oriented growth of self-assembled polyaniline nanwire arrays using a novel method, Adv. Funct. Mater., 2006, 13: 925~928
    [112] Huang J X, Kaner R B, A general chemical route to polyaniline nanofibers, J. Am. Chem. Soc., 2004, 126: 851~855
    [113] Huang J X, Kaner R B, Nanofiber formation in the chemical polymerization of aniline: A mechanistic study, Angew. Chem. Int. Ed., 2004, 43: 5817~5821
    [114] Chiou N R, Epstein A J, Polyaniline nanofibers prepared by dilute polymerization, Adv. Mater., 2005, 73: 1679~1683
    [115] Chiou N R, Epstein A J, A simple approach to control the growth of polyaniline nanofibers, Synth. Met., 2005, 153: 69~72
    [116] Sazou D, Kourouzidou M, Pavlidou E, Potentiodynamic and potentiostatic deposition of polyaniline on stainless steel: Electrochemical and structural studies for a potential application to corrosion control, Electrochim. Acta, 2007, 52: 4385~4397
    [117] Gupta V, Miura N, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process, Electrochem. Commun., 2005, 7: 995~999
    [118] Zhou H H, Wen J B, Ning X H, et al., Comparison of the growth process and electrochemical properties of polyaniline films prepared by pulse potentiostatic and potentiostatic method on titanium electrode, J. Appl. Polym. Sci., 2007, 104: 458~463
    [119] Guo Y P, Zhou Y, Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study, Eur. Polym. J., 2007, 43: 2292~2297
    [120] MacDiarmid A J, Jones W E, Norris I D, et al., Electrostatically-generated nanofibers of electronic polymers, Synth. Met., 2001, 119: 27~30
    [121] He H X, Li C Z, Tao N J, Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method, Appl. Phys. Lett., 2001, 78: 811~813
    [122] Jing X L, Wang Y Y, Wu D, et al., Polyaniline nanofibers prepared with ultrasonic irradiation, J. Polym. Sci., Part A: Polym. Chem., 2006, 44: 1014~1019
    [123] X Q Cui, C M Li, H F Bao, et al., Hyaluronan-assisted photoreduction synthesis of silver nanostructures: From nanoparticle to nanoplate, J. Phys. Chem. C, 2008, 112: 10730~10734
    [124] Tiwari J P, Rao C R K, Template synthesized high conducting silver chloride nanoplates, Solid State Ionics, 2008, 179: 299~304
    [125] Sun Y, Mayers B, Xia Y, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett., 2003, 3: 675~679
    [126] Chen S, Carroll D L, Synthesis and characterization of truncated triangular silver nanoplates, Nano Lett., 2003, 2 1003~1007
    [127] Chen S, Carroll D L, Silver nanoplates: Size control in two dimensions and formation mechanisms, J. Phys. Chem. B, 2004, 108: 5500~5506
    [128] Maillard M, Giorgio S, Pileni M P, Silver nanodisks, Adv. Mater., 2002, 14: 1084~1086
    [129] Tan F B, Zhao L, Liu L, et al., Characteristics and electrical properties of flake-like silver powder and paste, Preci. Met., 1999, 20: 10~15
    [130] Mock J J, Barbic M, Smith D R, et al., Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys., 2002, 116: 6755~6759
    [131] do Nascimento G M, Constantino V R L, Landers R, et al., Aniline polymerization into montmorillonite clay: A spectroscopic investigation of the intercalated conducting polymer, Macromolecules, 2004, 37: 9373~9385
    [132] Pang S P, Li G C, Zhang Z K, Synthesis of polyaniline-vanadium oxide nanocomposite nanosheets, Macromol. Rapid Commun., 2005, 26: 1261~1265
    [133] Porter T L, Thompson D, Bradley M, The nanometer-scale structure of hectorite-aniline intercalates, J. Vac. Sci. Technol. A, 1997, 15: 500~504
    [134] Han J, Song G P, Guo R, Nanostructure-based leaf-like polyaniline in the presence of an amphiphilic triblock copolymer, Adv. Mater., 2007, 19: 2993~2999
    [135] Li G C, Zhang C Q, Peng H R, Facile synthesis of self-assembled polyaniline nanodisks, Macromol. Rapid Commun., 2008, 29: 63~67
    [136] Zhou C Q, Han J, Guo R, Controllable synthesis of polyaniline multidimensional architectures: From plate-like structures to flower-like superstructures, Macromolecules, 2008, 41: 6473~6479
    [137] Wang J X, Wang J S, Zhang X Y, et al., Assembly of polyaniline nanostructures, Macromol. Rapid Commun., 2007, 28: 84~87
    [138] Zhang J, Liu S, Lin J, et al., Self-assembly of flowerlike AlOOH (Boehmite) 3D nanoarchitectures, J. Phys. Chem. B, 2006, 110: 14249~14252
    [139] Ding S J, Zhang C L, Yang M, et al., Template synthesis of composite hollow spheres using sulfonated polystyrene hollow spheres, Polymer, 2006, 47: 8360~8366
    [140] Zhu C L, Chou S W, He S F, Synthesis of core/shell metal oxide/polyaniline nanocomposites and hollow polyaniline capsules, Nanotechnology, 2007, 18: 275604
    [141] Wei Z, Wan M, Hollow microspheres of polyaniline synthesized with an aniline emulsion template, Adv. Mater., 2002, 14: 1314~1317
    [142] Park S Y, Cho M S, Kim C A, et al., Polyaniline microsphere encapsulated by poly(methyl methacrylate) and investigation of its electrorheological properties, Colloid Polym. Sci., 2003, 282: 198~202
    [143] Ding H J, Zhu C J, Zhou Z M, et al., Hydrophobicity of polyaniline microspheres deposited on a glass substrate, Macromol. Rapid Commun., 2006, 27: 1029~1034
    [144] Lee S M, Yun Y, Cho S N, et al., Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks, J. Am .Chem. Soc., 2002, 124: 11244~11245
    [145] Yang M, Yao X X, Wang G, et al., A simple method to synthesize sea urchin-like polyaniline hollow spheres, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 324: 113~116
    [146] Zhu Y, Li J M, Wan M X, et al., Superhydrophobic 3D microstructures assembled from 1D nanofibers of polyaniline, Macromol. Rapid Commun., 2008, 29: 239~243
    [147] Zhu Y, Hu D, Wan M X, et al., Conducting and superhydrophobic rambutan-like hollow spheres of polyaniline, Adv. Mater., 2007, 19: 2092~2096
    [148] Zhu Y, Li J M, Wan M X, et al., 3D-boxlike polyaniline microstructures with super-hydrophobic and high-crystalline properties, Polymer, 2008, 49: 3419~3423
    [149] Park M C, Sun Q H, Deng Y L, Polyaniline microspheres consisting of highly crystallized nanorods, Macromol. Rapid Commun., 2007, 28: 1237~1242
    [150] Anilkumar P, Jayakannan M, Fluorescent tagged probing agent and structure directing amphiphilic molecular design for polyaniline nanomaterials via self-assembly process, J. Phys. Chem. C, 2007, 111: 3591~3600
    [151] He Y J, Lu J H, Synthesis of polyaniline nanostructures with controlled morphology by a two-phase strategy, React. Funct. Polym. 2007, 67: 476~480
    [152] Harada S, Fujita N, Sano T, Kinetic studies of the sphere-rod transition of micelles, J. Am. Chem. Soc., 1988, 110: 8710~8711
    [153] Carswell A D W, Grady B P, O’Rear E A, Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: From spheres to wires to flat films, J. Am. Chem. Soc., 2003, 125: 14793~14800
    [154] Huang K, Wan M X, Self-assembled polyaniline nanostructures with photoiso-merization function, Chem. Mater., 2002, 14: 3486~3492
    [155] Albuquerque J E, Mattoso L H C, Balogh D T, et al., A simple method to estimate the oxidation state of polyanilines, Synth. Met., 2000, 113: 19~22
    [156] Hua M Y, Su Y N, Chen S A, Water-soluble self-acid-doped conducting polyaniline: poly(aniline-co-N-propylbenzenesulfonic acid-aniline), Polymer, 2000, 41: 813~815
    [157] Pouget J P, Jozefowicz M E, Epstein A J, et al., X-ray structure of polyaniline, Macromolecules, 1991, 24: 779~789
    [158] Sioss J A, Stoermer R L, Sha M Y, et al., Silica-coated, Au/Ag striped nanowires for bioanalysis, Langmuir, 2007, 23: 11334~11341
    [159] Larsen T H, Sigman M, Ghezelbash A, et al., Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor, J. Am. Chem. Soc., 2003, 125: 5638~5639
    [160] Lucas M, Mai W J, Yang R S, et al., Aspect ratio dependence of the elastic properties of ZnO nanobelts, Nano Lett., 2007, 7: 1314~1317
    [161] Yang X M, Dai T Y, Zhu Z X, et al., Electrochemical synthesis of functional polypyrrole nanotubes via a self-assembly process, Polymer, 2007, 48: 4021~4027
    [162] Bunker C E, Novak K C, Guliants E A, et al., Formation of protein?metal oxide nanostructures by the sonochemical method: Observation of nanofibers and nanoneedles, Langmuir, 2007, 23: 10342~10347
    [163] Palle S R, Subrahmanya S, Sathyanarayana D N, Water-soluble conductive blends of polyaniline and poly(vinyl alcohol) synthesized by two emulsion pathways, J. Appl. Polym. Sci., 2005, 98: 583~590
    [164] Ram M S, Palaniappan S, A process for the preparation of polyaniline salt doped with acid and surfactant groups using benzoyl peroxide, J. Mater. Sci., 2004, 39: 3069~3077
    [165] Palle S R, Sathyanarayana D N, Palaniappan S, Polymerization of aniline in an organic peroxide system by the inverted emulsion process, Macromolecules, 2002, 35: 4988~4996
    [166] Palaniappan S, Amarnath C A, A novel polyaniline-maleicacid-dodecyl- hydrogensulfate salt: Soluble polyaniline powder, React. Funct. Polym., 2006, 66: 1741~1748
    [167] Stejskal J, Sapurina I, TrchováM, et al., Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres, Macromolecules, 2008, 41: 3530~3536
    [168] Zhang L, Wan M, Polyaniline/TiO2 composite nanotubes, J. Phys. Chem. B, 2003, 107: 6748~6753
    [169] Wang C C, Song J F, Bao H M, et al., Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities, Adv. Funct. Mater., 2008, 18: 1299~1306
    [170] Niu Z W, Liu J, Lee L A, et al., Biological templated synthesis of water-soluble conductive polymeric nanowires, Nano Lett., 2007, 7: 3729~3733
    [171] Falc?o E H L, de Azevêdo W M, Polyaniline-poly(vinyl alcohol) composite as an optical recording material, Synth. Met., 2002, 128: 149~154
    [172] John A, Palaniappan S, Djurado D, et al., One-step preparation of solution processable conducting polyaniline by inverted emulsion polymerization using didecyl ester of 4-sulfophthalic acid as multifunctional dopant, J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 1051~1057
    [173] Yuan G L, Kummoto N, Su S J, Template synthesis of polyaniline in the presence of phosphomannan, Synth. Met., 2002, 129: 173~178
    [174] Hua F J, Ruckenstein E, Copolymers of aniline and 3-aminophenol derivatives with oligo(oxyethylene) side chains as novel water-soluble conducting polymers, Macromolecules, 2004, 37: 6104~6112
    [175] Vicentini D S, Barra G M O, Bertolino J R, et al., Polyaniline/thermoplastic polyurethane blends: Preparation and evaluation of electrical conductivity, Eur. Polym. J., 2007, 43: 4565~4572
    [176] Hino T, Namiki T, Kuramoto N, Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers, Synth. Met., 2006, 156: 1327~1332
    [177] Amarnath C A, Palaniappan S, Rannou P, et al., Acacia stabilized polyaniline dispersions: preparation, properties and blending with poly(vinyl alcohol), Thin Solid Films, 2008, 516: 2928~2933
    [178] Stejskal J, Kratochvil P, Helmstedt M, Polyaniline dispersions. 5. Poly(vinyl alcohol) and poly(N-vinylpyrrolidone) as steric stabilizers, Langmuir, 1996, 12: 3389~3392
    [179] Gangopadhyay R, De A, Ghosh G, Polyaniline-poly(vinylalcohol) conducting composite: material with easy processability and novel application potential, Synth. Met., 2001, 123: 21~31
    [180] Zwick M M, Poly(vinyl alcohol)-iodine complexes, J. Appl. Polym. Sci., 1965, 9: 2393~2424
    [181] Takamiya H, Tanahashi Y, Matsuyama T, et al., On the poly(vinylalcohol)- iodine complexes, J. Appl. Polym. Sci., 1993, 50: 1807~1813
    [182] Yang H, Cheng R S, Formation of poly(vinyl alcoho1)-iodine complexes in solution, Chin. Polym. Bull., 2008, 1: 7~15
    [183] Yokoyama T, Kaneyuki K, Sato H, et al., Structure, composition, and vibrational property of iodine-doped polyvinyl alcohol studied by temperature-dependent I K-Edge extended X-ray-absorption fine structure, Bull. Chem. Soc. Jpn., 1995, 68: 469~475
    [184] Noguchi H, Jyodai H, Matsuzawa S, Formation of poly(vinyl alcohol)-iodine complexes in solution, J. Polym. Sci., Part B: Polym. Phys., 1997, 35: 1701~1709
    [185] Yang H, Horii F, Investigation of the structure of poly(vinyl alcohol)-iodine complex hydrogels prepared from the concentrated polymer solutions, Polymer, 2008, 49: 785~791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700