非对称双电层对薄膜润滑性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双电层是在固/液界面处普遍存在的一种现象,它的影响范围大致是在几十纳米之间。一个润滑系统有两个固/液界面,因此通常就存在两个双电层。研究表明:当润滑膜厚度小于100nm时,润滑性能将会受到双电层的明显影响。
     双电层对纳米尺度润滑的影响通常来自于两大方面:一方面是润滑区中两个双电层间的相互吸引或排斥作用,这相当于给润滑系统额外增加或减小了载荷;另一方面是双电层引发的动电效应,在润滑区中产生所谓的电粘度和电粘滞力现象。相应地,本文的研究范畴也就涉及了双电层间相互作用力和动电效应这两大方面对纳米级薄膜润滑的影响。
     首先,针对早前已有的研究均是基于对称双电层结构的不足之处,本文建立了考虑非对称双电层效应的薄膜润滑数学模型。基于非对称双电层的相互作用理论,从新的角度出发推导得出摩擦副的两个非对称双电层在流体动压润滑区中所引发的流动电势的计算公式,进而建立了考虑非对称双电层影响的修正的Reynolds方程和得到相应的电粘度计算公式。本文所建立的数学模型揭示了双电层对薄膜润滑性能影响所表现出来的“合效应”现象,其成果使相关的研究范畴由早前的双电层对称结构延伸至非对称结构领域。
     接着,利用本文所建立的非对称双电层薄膜润滑数学模型进行的详细数值分析,揭示了双电层在流体动压润滑区中引发的电粘度和流动电势的分布规律,同时也进一步发现了在弹流润滑区中双电层的存在令较薄润滑膜的厚度显著增加,但对润滑膜压力分布的影响不大等现象。
     此外,本文的另一大研究成果是考察了双电层厚度和双电层引发的电粘度这两者分别随电解质浓度和温度的变化规律,并以陶瓷水润滑作为分析对象,结合双电层厚度与电粘度随浓度和温度变化的复合函数关系来分析各类陶瓷材料点、线接触热弹流润滑的膜厚和压力分布受双电层的影响情况。把热弹流润滑区中的热现象与热效应影响考虑进了双电层效应的研究当中,是本文对双电层薄膜润滑理论研究的重大深化。
     最后,本文根据原子力显微镜的曲线测量模式的基本原理,制定了利用原子力显微镜的“力-距离曲线”模式测量双电层间作用力和“振幅-距离曲线”测量双电层动电效应的实验方案,并通过由同种材料和不同种材料的探针和样品来构建对称与非对称双电层的方法来展开实验研究,在高精度和高分辨率的实验平台下观察到了双电层间相互作用在不同介质情况下的各种表现。本文所开展的实验工作是对双电层效应研究的一次新的尝试,是本文理论研究的重要补充,并为今后的相关研究提供了新的思路,所得的实验结果也会对受双电层效应影响下的纳米尺度润滑控制具有一定指导意义。
The electric double layer (EDL) about dozens of nanometres thick widely exists in thesolid/liquid interface. In general, there are two solid/lubricant interfaces in a lubricationsystem, i.e. two EDLs accordingly. Some previous studies showed that the influence of theEDLs on the lubrication properties is significant under the condition of lubricating film lessthan100nanometers.
     The influence of the EDLs on the nano-scale lubrication is usually caused by thefollowing two factors. One is the attractive or repulsive interaction between the two EDLs oflubrication regime which is equivalent to increase or decrease the load. The other is theelectrokinetic effect caused by the EDLs which lead to the phenomena of the electro-viscosityand electro-viscous force. Accordingly, the study of this paper focuses on the influences ofthe interaction between the two EDLs and the electrokinetic effect on the nano-scale thin filmlubrication (TFL).
     Firstly, a new mathematical model of TFL considering the asymmetrical EDLs effect isdeveloped in the light of the shortcomings of the previous related models, which were usuallybased on the hypothesis that the structures of the two EDLs are symmetrical. Based on therelated researches of the interaction of asymmertrical EDLs, a computational formula of thestreaming potential induced by the asymmetrical EDLs of the two friction surfaces is derivedfrom a new perspective. Then, a modified Reynolds equation with consideration of theasymmetrical EDLs effect containing the corresponding computational formula of theelectro-viscosity is developed. The mathematical model developed in this paper reveals thatthe effect of EDLs actually originates from the “combined action” of the two EDLs regardlessof the respective EDL structures of two friction surfaces. Therefore, the present theory isconcerned with an extension of the EDLs structures from the symmetrical to theasymmetrical.
     Then, the detailed numerical analyses are carried out by taking the advantage of themathematical model concerning the asymmetrical EDLs effect. The analysis results reveal theregularities of both distributions of the electro-viscosity and the streaming potential which isinduced by the asymmetrical EDLs in the lubrication regime. The results also show that theexistence of the EDLs leads to a noticeable increase in the film thickness of EHL, but theEDLs effect on the EHL pressure is minimal.
     Besides, there are another achievement that the variations both of the EDL thickness andthe electro-viscosity induced by EDLs with the electrolyte concentration and the temperature were respectively investigated. Then, the EDLs effect on the film thickness and the pressuredistribution of the thermal EHL system consisting of all kinds of ceramic or metallic pointand line contacts with aqueous solution is evaluated by the numerical analysis. It is a greatinnovation in the study of EDLs effect on TFL that considers the thermal phenomenon andheat effect generated in the thermal EHL regime in this paper.
     Finally, according to the principle of the curve-measurement modes of AFM, theexperimental programs have been planned in order to measure the interaction between twoEDLs by using the force-vs-distance curve mode and the electrokinetic effect caused by EDLsusing the amplitude-vs-distance curve mode of AFM. In addtion, the experimental programsinvolving the symmetrical and the asymmetrical structures of EDLs are established by theprobes and samples which both are the same or the different materials respectively.Subsequently, taking advantage of the apparatus that possess the feature of high precision andhigh resolution, i.e. AFM, the experimental researchs have been carried out to observe thevarious performances of the interaction of EDLs and the electrokinetic effect under thedifferent aqueous solution conditions. The experimental work presented in this paper is aninnovation in the study of the EDLs effects and a significant supplement of the theoreticalresearch of this paper. Furthermore, it provides a new idea for the future related study, and theexperimental results may guide the nano-scale lubricating control under the influence ofEDLs effect.
引文
[1]Hsu S. M. Nano-lubrication:concept and design[J]. Tribology International,2004,37(7):537-545
    [2]Spikes H. Tribology research in the twenty-first century[J]. Tribology International,2001,34(12):789-799
    [3]腾新荣.表面电化学[M].北京:化学工业出版社,2009:109-136
    [4]李荻.电化学原理[M].第3版.北京:北京航空航天大学出版社,2008
    [5]Dukhin S.S., Zimmermann R., Werner C. A concept for the generalization of the standard electrokinetic model[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,195(1-3):103-112
    [6]Kjellander R., Mitchell D.J. Dressed ion theory for electric double layer structure and interactions; an exact analysis[J]. Molecular Physics,1997,91(2):173-188
    [7]Lopez-Garcia J.J., Horno J., Gonzalez-Caballero F., et al. Dynamics of the Electric Double Layer:Analysis in the Frequency and Time Domains[J]. Journal of Colloid and Interface Science,2000,228(1):95-104
    [8]Frusawa H., Hayakawa R. Generalizing the Debye-Huckel equation in terms of density functional integral[J]. Physical Review E,2000,61(6):R6079-R6082
    [9]Burak Y., Andelman D. Hydration interactions:Aqueous solvent effects in electric double layers[J]. Physical Review E,2000,62(4):5296-5312
    [10]Patra C.N., Ghosh S.K. Structure of electric double layers:A self-consistent weighted-density-functional approach[J]. The Journal of Chemical Physics,2002,117(19):8938-8943
    [11]Vainrub A., Pettitt B.M. Thermodynamics of association to a molecule immobilized in an electric double layer[J]. Chemical Physics Letters,2000,323(1-2):160-166
    [12]Cuvillier N., Rondelez F. Breakdown of the Poisson-Boltzmann description for electrical double layers involving large multivalent ions[J]. Thin Solid Films,1998,327-329(0):19-23
    [13]Janusz W., Sworska A., Szczypa J. The structure of the electrical double layer at the titanium dioxide/ethanol solutions interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,152(3):223-233
    [14]Fainerman V. B., Lucassen-Reynders E. H. Adsorption of single and mixed ionic surfactants at fluid interfaces[J]. Advances in Colloid and Interface Science,2002,96(1-3):295-323
    [15]Paillat T., Moreau E., Touchard G. Space charge density at the wall in the case of heptane flowing through an insulating pipe[J]. Journal of Electrostatics,2001,53(2):171-182
    [16]Lust E., Janes A., Sammelselg V., et al. Influence of charge density and electrolyte concentration on the electrical double layer characteristics at rough cadmium electrodes[J]. Electrochimica Acta,2000,46(2-3):185-191
    [17]Gaedt L., Chilcott T.C., Chan M., et al. Electrical impedance spectroscopy characterisation of conducting membranes:II. Experimental[J]. Journal of Membrane Science,2002,195(2):169-180
    [18]Bowen W.R., Doneva T.A., Stoton J.A.G. The use of atomic force microscopy to quantify membrane surface electrical properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,201(1-3):73-83
    [19]Wang Z.W, Yi X.Z, Li G.Z., et al. A functional theoretical approach to the electrical double layer of a spherical colloid particle[J]. Chemical Physics,2001,274(1):57-69
    [20]Amalendu C. Dynamics of electrical double layer formation at a charged solid surface[J]. Journal of Molecular Structure:Theochem,1998,430(0):105-111
    [21]Philpott M.R., Glosli J.N. Molecular Dynamics Simulation of Interfacial Electrochemical Processes:Electric Double Layer Screening[M]. American Chemical Society,1997:2
    [22]Dimitrov D.I., Raev N.D. Molecular dynamics simulations of the electrical double layer at the1M KC1solution|Hg electrode interface[J]. Journal of Electroanalytical Chemistry,2000,486(1):1-8
    [23]Ito M., Shingaya Y. Simulation of the electric double layers on Pt(111)[J].Surface Science,1997,386(1):34-47
    [24]Kitahara A., Watanabe A界面电现象[M].邓彤,赵学范.北京:北京大学出版社,1992
    [25]Bai S.X, Huang P., Meng Y.G, et al. Modeling and analysis of interfacial electro-kinetic effects on thin film lubrication[J]. Tribology International,2006,39(11):1405-1412
    [26]Ren L., Qu W., Li D.. Interfacial electrokinetic effects on liquid flow in microchannels[J]. International Journal of Heat and Mass Transfer,2001,44(16):3125-3134
    [27]Li D. Electro-viscous effects on pressure-driven liquid flow in microchannels[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,195(l-3):35-57
    [28]Ren L., Li D., Qu W. Electro-Viscous Effects on Liquid Flow in Microchannels[J]. Journal of Colloid and Interface Science,2001,233(1):12-22
    [29]Mohiuddin M.G., Li D., Werner C., et al. Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects[J]. International Journal of Heat and Fluid Flow,1997,18(5):489-496
    [30]Yang C., Li D. Analysis of electrokinetic effects on the liquid flow in rectangular microchannels[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,143(2-3):339-353
    [31]Arulanandam S., Li D. Liquid transport in rectangular microchannels by electroosmotic pumping[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,161(1):89-102
    [32]曲庆文.薄膜润滑理论[M].北京:科学出版社,2006
    [33]温诗铸.纳米摩擦学的进展[M].北京:清华大学出版社,1996
    [34]Johnston G.J., Wayte R., Spikes H.A. The measurement and study of very thin lubricant films in concentrated contact[J]. Tribology Transactions,1991,34:187-194
    [35]Lee-Prudhoe I., Venner C.H., Cann P.M., et al. Experimental and Theoretical Approaches to Thin Film Lubrication Problems[M]. Springer Netherlands,2006
    [36]胡元中,王慧,郭炎.超薄油膜润滑的分子动力学模拟Ⅰ.刚性分子模型[J].摩擦学学报,1995,15(02):138-144
    [37]胡元中,王慧,郭炎,等.薄膜润滑中固—液相变的模拟[J].润滑与密封,1995,(06):16-20
    [38]胡元中.润滑薄膜流变性质的分子动力学模拟,纳米摩擦学进展[M].北京:清华大学出版社,1996:62-80
    [39]胡元中,王慧,郭炎.纳米级液体薄膜流变特性的分子动力学模拟[J].仪器仪表学报,1995,16(S1):245-249
    [40]王慧,胡元中,郭炎.超薄润滑膜界面滑移现象的分子动力学研究[J].清华大学学报(自然科学版),2000,40(04):107-110
    [41]王慧,胡元中,邹鲲,等.纳米摩擦学的分子动力学模拟研究[J].中国科学a辑,2001,31(03):261-266
    [42]邹鲲,胡元中,温诗铸.超薄膜润滑的分子动力学模拟[J].清华大学学报(自然科 学版),1999,39(04):38-41
    [43]Hu Y.Z., Wang H, Guo Y, et al. Molecular dynamics simulation of ultra-thin lubricating films[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,1998,212(3):165-170
    [44]Grest G.S., Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath[J]. Physical Review A,1986,33(5):3628-3631
    [45]Mareschal M., Baus M., Lovett R. The local pressure in a cylindrical liquid--vapor interface:A simulation study[J]. The Journal of Chemical Physics,1997,106(2):645-654
    [46]Nicholson D, Parsonage N.G. Computer simulation and the statistical mechanics of adsorption[M]. London and New York:Academic Press,1982:
    [47]Gohar R., Cameron A. The Mapping of Elastohydrodynamic Contacts[J]. ASLE Transactions,1967,10(3):215-225
    [48]Israelachvili J.N. Thin film studies using multiple-beam interferometry[J]. Journal of Colloid and Interface Science,1973,44(2):259-272
    [49]雒建斌,温诗铸,黄平.弹流润滑与薄膜润滑转化关系的研究[J].摩擦学学报,1999,19(01):72-77
    [50]黄平.纳米薄膜润滑物理-数学模型及数值分析[J].摩擦学学报,2003,23(01):60-64
    [51]Luo J.B., Wen S.Z., Huang P. Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique[J]. Wear,1996,194(1-2):107-115
    [52]Luo J.B., Wen S.Z., Sheng Y., et al. Substrate surface energy effects on liquid lubricant film at nanometer scale[J]. Lubrication Science,1998,11(1):23-26
    [53]黄平,雒建斌,邹茜,等.NGY-2型纳米级润滑膜厚度测量仪[J].摩擦学学报,1994,14(02):175-179
    [54]黄平,雒建斌,邹茜,等.相对光强原理测量纳米级润滑薄膜原理的研究[J].润滑与密封,1995,1:32-34)
    [55]曲庆文,朱均.薄膜润滑状态下流体的流动特性分析[J].机械科学与技术,1998,17(02):203-205
    [56]曲庆文,朱均.薄膜润滑的等效粘度模拟计算[J].机械科学与技术,1996,15(06):883-886
    [57]温诗铸,黄平.摩擦学原理[M].第3版.北京:清华大学出版社,2008
    [58]袁龙蔚.流变力学[M].北京:科学出版社,1986
    [59]Gee M.L., McGuiggan P.M., Israelachvili J.N., et al. Liquid to solidlike transitions of molecularly thin films under shear[J]. Journal of Chemical Physics,1990,93(3):1895-1906
    [60]雒建斌,温诗铸,黄平.薄膜润滑机理研究[J].清华大学学报,1994,34(3s):9-14
    [61]Luo J.B., Huang P., Wen S.Z., et al. Characteristics of Liquid Lubricant Films at the Nano-Scale[J]. Journal of Tribology,1999,121(4):872-878
    [62]Smeeth M., Spikes H.A., Gunsel S. The Formation of Viscous Surface Films by Polymer Solutions:Boundary or Elastohydrodynamic Lubrication[J]. Tribology Transactions,1996,39(3):720-725
    [63]Homola A.M., Israelachvili J.N., Gee M.L., et al. Measurements of and Relation Between the Adhesion and Friction of Two Surfaces Separated by Molecularly Thin Liquid Films[J]. Journal of Tribology,1989,111(4):675-682
    [64]Tichy JA. Ultra thin film structured lubrication[A]. First international symposium on tribology[C].1993:48-57
    [65]Luo J.B., Qian L.M., Wen S., et al. The Failure of Fluid Film at Nano-Scale[J]. Tribology Transactions,1999,42(4):912-916
    [66]Tichy J.A. A Surface Layer Model for Thin Film Lubrication[J]. Tribology Transactions,1995,38(3):577-582
    [67]Tichy J.A. A Porous Media Model for Thin Film Lubrication[J]. Journal of Tribology,1995,117(1):16-21
    [68]Jang S., Tichy J. Rheological Models for Thin Film EHL Contacts[J]. Journal of Tribology,1995,117(1):22-28
    [69]Huang P., Li Z.H, Meng Y.G., et al. Study on Thin Film Lubrication With Second-Order Fluid[J]. Journal of Tribology,2002,124(3):547-552
    [70]Huang P., Li Z.H., Meng Y.G. Study on hydrodynamic lubrication with second-order fluid (I)-Basic equations[J]. Science in China(Series A),2001,44(S1):1-7
    [71]Li Z.H, Huang P., Meng Y.G, et al. Study on hydrodynamic lubrication with second-order fluid (Ⅱ)-Numerical Analysis[J]. Science in China(Series A),2001,44(S1):8-13
    [72]张会臣,严立.纳米尺度润滑理论及应用[M].北京:化学工业出版社,2005
    [73]Korzhenko A., Tabellout M., Emery J. Application of dielectric relaxation spectroscopy to study metal/polymer interfacial interaction[J]. Ferroelectrics, 1999,228(1):249-256
    [74]Bike S.G., Prieve D.C. Measurements of double-layer repulsion for slightly overlapping counterion clouds[J]. International Journal of Multiphase Flow,16(4):727-740
    [75]Bike S.G., Prieve D.C. Electrohydrodynamic lubrication with thin double layers[J]. Journal of Colloid and Interface Science,1990,136(1):95-112
    [76]Bike S.G., Prieve D.C. Electrokinetic Lift of a Sphere Moving in Slow Shear Flow Parallel to a Wall:Ⅱ. Theory[J]. Journal of Colloid and Interface Science,1995,175(2):422-434
    [77]Prieve D.C., Bike S.G. Electrokinetic repulsion between two charged bodies undergoing sliding motion[J]. Chemical Engineering Communications,1987,55(1):149-164
    [78]Zhu Y.Y., Kelsall G.H., Spikes H.A. The Influence of Electrochemical Potentials on the Friction and Wear of Iron and Iron Oxides in Aqueous Systems[J]. Tribology Transactions,1994,37(4):811-819
    [79]蒋洪军,孟永钢,温诗铸.电场对A1203/Cu摩擦磨损特性的影响及其机理研究[J].中国科学(E辑),1998,28(6):491-498
    [80]蒋洪军,孟永钢,温诗铸.外加电压对三氧化二铝/黄铜摩擦副摩擦的主动控制试验研究[J].摩擦学学报,1999,19(03):244-249
    [81]孟永钢,蒋洪军,纪宏.电摩擦现象——电场对金属/陶瓷摩擦行为的影响[J].摩擦学学报,1999,19(01):45-49
    [82]Jiang H., Meng Y.G, Wen S.Z, et al. Effects of external electric fields on frictional behaviors of three kinds of ceramic/metal rubbing couples[J]. Tribology International,1999,32(3):161-166
    [83]Jiang L., Chen S.B. Electroviscous effect on the rheology of a dilute solution of flexible polyelectrolytes in extensional flow[J]. Journal of Non-Newtonian Fluid Mechanics,2001,96(3):445-458
    [84]Meng Y.G, Jiang H.J, Wong P.L. An Experimental Study on Voltage-Controlled Friction of Alumina/Brass Couples in Zinc Stearate/Water Suspension[J]. Tribology Transactions,2001,44(4):567-574
    [85]常秋英.水溶液中金属/陶瓷摩擦副电控摩擦效应的机理研究[D].北京:清华大学,2003
    [86]Zhang B., Umehara N. Hydrodynamic lubrication theory considering electric double layer for very thin water film lubrication of ceramics[J]. JSME International Journal Series C,1998,41(2):285-290
    [87]Wong P.L., Huang P., Meng Y. The Effect of the Electric Double Layer on a Very Thin Water Lubricating Film[J]. Tribology Letters,2003,14(3):197-203
    [88]Wong P.L., Huang P., Wang W., et al. Effect of geometry change of rough point contact due to lubricated sliding wear on lubrication[J]. Tribology Letters,1998,5(4):265-274
    [89]黄平,黄柏林,孟永钢.双电层效应对流体动力润滑和弹流润滑影响的研究[A].广东省(广州市)机械设计学会2000年会论文集[C].2000:36-45
    [90]黄平,黄柏林,孟永钢.双电层效应对润滑薄膜厚度和压力的影响研究[J].机械工程学报,2002,38(8):9-13
    [91]白少先.双电层对薄膜润滑特性影响机理的理论与实验研究[D].广州:华南理工大学,2004
    [92]Bai S.X, Huang P, Meng Y.G, et al. Experimental study of influence on electric double layer on aqueous lubrication[J]. Journal of Engineering Design,2007,14(03):253-261
    [93]白少先黄平.薄膜润滑中双电层效应影响分析[J].润滑与密封,2005,(01):12-14
    [94]王新杰,白少先,黄平.薄膜油润滑中电粘度效应影响研究[J].中国机械工程,2007,(03):253-256
    [95]王新杰,白少先,黄平.薄膜润滑中双电层效应的理论分析与实验研究[J].摩擦学学报,2005,25(06):555-558
    [96]白少先,黄平.双电层电粘度对薄膜润滑影响的试验研究与数值分析[J].机械工程学报,2004,40(05):34-38
    [97]白少先,黄平.双电层电粘度对润滑性能的影响研究[J].摩擦学学报,2004,24(02):168-171
    [98]Wang X.J., Bai S.X., Huang P. Theoretical analysis and experimental study on the influence of electric double layer on thin film lubrication[J]. Frontiers of Mechanical Engineering in China,2006,1(3):370-373
    [99]Li W.L. An Average Flow Model for Couple Stress Fluids[J]. Tribology Letters,2003,15(3):279-292
    [100]Li W.L. Effects of Electrodouble Layer (EDL) and Surface Roughness on Lubrication Theory[J]. Tribology Letters,2005,20(1):53-61
    [101]Li W.L, Jin Z. Effects of electrokinetic slip flow on lubrication theory[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2008,222(2):109-120
    [102]Israelachvili J.N. Intermolecular and Surface Forces (Third Edition)[M]. New York:Academic Press,2011:14
    [103]Bell G.M., Peterson G.C. Calculation of the electric double-layer force between unlike spheres[J]. Journal of Colloid and Interface Science,1972,41(3):542-566
    [104]Carnie Steven L., Chan Derek Y.C., Gunning James S. Electrical Double Layer Interaction between Dissimilar Spherical Colloidal Particles and between a Sphere and a Plate:The Linearized Poisson-Boltzmann Theory[J]. Langmuir,1994,10(9):2993-3009
    [105]Stankovich J., Carnie S.L. Electrical Double Layer Interaction between Dissimilar Spherical Colloidal Particles and between a Sphere and a Plate:Nonlinear Poisson-Boltzmann Theory[J]. Langmuir,1996,12(6):1453-1461
    [106]Prieve D.C., Ruckenstein E. The surface potential of and double-layer interaction force between surfaces characterized by multiple ionizable groups[J]. Journal of Theoretical Biology,1976,56(1):205-228
    [107]Guldbrand L., Jonsson B., Wennerstrom H., et al. Electrical double layer forces. A Monte Carlo study[J]. The Journal of Chemical Physics,1984,80(5):2221-2228
    [108]McCormack D., Carnie S.L., Chan Derek Y.C. Calculations of Electric Double-Layer Force and Interaction Free Energy between Dissimilar Surfaces[J]. Journal of Colloid and Interface Science,1995,169(1):177-196
    [109]Behrens S.H., Borkovec M. Electric double layer interaction of ionizable surfaces: Charge regulation for arbitrary potentials [J]. The Journal of Chemical Physics,1999,111(1):382-385
    [110]Senden T.J., Drummond C.J., Kekicheff P. Atomic Force Microscopy:Imaging with Electrical Double Layer Interactions [J]. Langmuir,1994,10(2):358-362
    [111]Zuo Q.Y., Lai T.M, Huang P. The Effect of the Electric Double Layer on Very Thin Thermal Elastohydrodynamic Lubricating Film[J]. Tribology Letters,2012,45(3):455-463
    [112]温诗铸,黄平.界面科学与技术[M].北京:清华大学出版社,2011:
    [113]Zuo Q.Y., Huang P., Gyimah G.K. The effect of asymmetrical electric double layer on pressure of hydrodynamic lubricating film[A].2011International Conference on Biotechnology, Chemical and Materials Engineering[C]. Trans Tech Publications,2012:1536-1540
    [114]Zuo Q.Y., Huang P., Su F.H. Theory analysis of asymmetrical electric double layer effects on thin film lubrication[J]. Tribology International,2012,49(0):67-74
    [115]Derjaguin B.V. A theory of the heterocoagulation, interaction and adhesion of dissimilar particles in solutions of electrolytes[J]. Discussions of the Faraday Society,1954,18:85-98
    [116]Devereux O.F., Bruyn P.L.D. Interaction of Plane-Parallel Double Layers[M]. Cambridge:MIT Press,1963
    [117]Hogg R., Healy T.W., Fuerstenau D.W. Mutual coagulation of colloidal dispersions[J]. Transactions of the Faraday Society,1966,62:1638-1651
    [118]Wen S.Z, Huang P. Principles of Tribology[M]. Beijing:Tsinghua University Press,2012
    [119]Terzaghi C. The Static Rigidity of Plastic Clays[J]. J Rheol,1931,2(3):253
    [120]Macauley J.M. Range of Action of Surface Forces[J]. Nature,1936,138:587-593
    [121]Churaev N.V., Sergeeva I.P., Sobolev V.D., et al. Examination of the surface of quartz capillaries by electrokinetic methods[J]. Journal of Colloid and Interface Science,1981,84(2):451-460
    [122]Hough D., Ottewill R. Direct measurement of the pressure of electrical double layer interaction between charged surfaces[J]. Progress in Colloid and Polymer Science,1983,68:101-112
    [123]Elton G.A.H. Electroviscosity. I. The Flow of Liquids between Surfaces in Close Proximity[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1948,194(1037):259-274
    [124]Dowson D. History of tribology[M]. London:Longman Group Limited,1979
    [125]Tomizawa H., Fischer T.E. Friction and wear of silicon nitride and silicon carbide in water-hydrodynamic lubrication at low sliding speed obtained by tribochemical wear[J]. ASLE Trans,1987,30:41-46
    [126]Shinya S. The effects of the surrounding atmosphere on the friction and wear of alumina, zirconia, silicon carbide and silicon nitride[J]. Wear,1989,134(1):185-200
    [127]Dowson D., Higginson G.R. Elastohydrodynamic Lubrication[M]. Oxford:1977
    [128]Francisco A., Frene J., Blouin A. Multilevel Solution of the Elastohydrodynamic Contact for the Water Lubricated Silicon Carbide3D Line Contact[J]. Tribology Transactions,2002,45(1):110-116
    [129]Myers D. Electrostatic Forces and the Electrical Double Layer[M]. John Wiley&Sons, Inc.,2002
    [130]Winer W.O. Temperature effects in elastohydrodynamically lubricated contacts[A]. Tribology in the80's, Proceedings of an International Conference[C]. NASA, Scientific&Technical Information Branch,1984:533-554
    [131]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992
    [132]Binnig G., Rohrer H., Gerber C., et al. Surface Studies by Scanning Tunneling Microscopy[J]. Physical Review Letters,1982,49(l):57-61
    [133]Binnig G., Quate C.F., Gerber C. Atomic Force Microscope[J]. Physical Review Letters,1986,56(9):930-933
    [134]Mate C.M., McClelland G.M., Erlandsson Ragnar, et al. Atomic-scale friction of a tungsten tip on a graphite surface[J]. Physical Review Letters,1987,59(17):1942-1945
    [135]Meyer G., Amer N.M. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope[J]. Applied Physics Letters,1990,57(20):2089-2091
    [136]彭昌盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007
    [137]Hobbs P.C.D., Abraham D.W., Wickramasinghe H. K. Magnetic force microscopy with25nm resolution[J]. Applied Physics Letters,1989,55(22):2357-2359
    [138]Schonenberger C., Alvarado S. Understanding magnetic force microscopy[J]. Zeitschrift fur Physik B Condensed Matter,1990,80(3):373-383
    [139]Rugar D., Mamin H.J., Guethner P., et al. Magnetic force microscopy:General principles and application to longitudinal recording media[J]. Journal of Applied Physics,1990,68(3):1169-1183
    [140]Drummond C.J., Senden T.J. Examination of the geometry of long-range tip—sample interaction in atomic force microscopy[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,87(3):217-234
    [141]Ducker W.A., Senden T.J., Pashley Richard M. Direct measurement of colloidal forces using an atomic force microscope[J]. Nature,1991,353(6341):239-241
    [142]Schaefer D.M., Carpenter M., Reifenberger R., et al. Surface force interactions between micrometer-size polystyrene spheres and silicon substrates using atomic force techniques[J]. Journal of Adhesion Science and Technology,1994,8(3):197-210
    [143]Martin Y., Abraham D.W., Wickramasinghe H.K. High-resolution capacitance measurement and potentiometry by force microscopy [J]. Applied Physics Letters,1988,52(13):1103-1105
    [144]Martin Y., Wickramasinghe H.K. Magnetic imaging by "force microscopy" with1000A resolution[J]. Applied Physics Letters,1987,50(20):1455-1457
    [145]Hartmann U. Magnetic force microscopy[J]. Annual Review of Materials Science,1999,29(1):53-87
    [146]Beach E.R., Tormoen G.W., Drelich J., et al. Pull-off Force Measurements between Rough Surfaces by Atomic Force Microscopy[J]. Journal of Colloid and Interface Science,2002,247(1):84-99
    [147]Lord D.L., Buckley J.S. An AFM study of the morphological features that affect wetting at crude oil-water-mica interfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,206(1-3):531-546
    [148]Woodward J.T., Zasadzinski J.A. Height Amplifications of Scanning Tunneling Microscopy Images in Air[J]. Langmuir,1994,10(5):1340-1344
    [149]Eppell S.J., Zypman F.R., Marchant Roger E. Probing the resolution limits and tip interactions of atomic force microscopy in the study of globular proteins[J]. Langmuir,1993,9(9):2281-2288
    [150]沈钟,赵振国,王果庭.胶体与表面化学(第三版)[M].北京:化学工业出版社,2004
    [151]Hsu J.P., Liu B.T. Electrical interaction between two spherical particles covered by an ion-penetrable charged membrane[J]. Chemical Physics,1998,236(1-3):63-76
    [152]Butt H.J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope[J]. Biophysical Journal,1991,60(6):1438-1444
    [153]Butt H.J. Electrostatic interaction in atomic force microscopy[J]. Biophysical Journal,1991,60(4):777-785
    [154]Butt H.J., Cappella B., Kappl M. Force measurements with the atomic force microscope:Technique, interpretation and applications [J]. Surface Science Reports,2005,59(1-6):1-152
    [155]Butt H.J., Jaschke M., Ducker W. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope [J]. Bioelectrochemistry and Bioenergetics,1995,38(1):191-201
    [156]Weisenhorn A.L., Maivald P., Butt H.J., et al. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope[J]. Physical Review B,1992,45(19):11226
    [157]Butt H.J. Measuring local surface charge densities in electrolyte solutions with a scanning force microscope[J]. Biophysical Journal,1992,63(2):578-582
    [158]Parsegian V.A., Gingell D. On the Electrostatic Interaction across a Salt Solution between Two Bodies Bearing Unequal Charges[J]. Biophysical Journal,1972,12(9):1192-1204
    [159]Weisenhorn A.L., Maivald P., Butt H.J., et al. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope[J]. Physical Review B,1992,45(19):11226-11232
    [160]Miyatani T., Horii M., Rosa A., et al. Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy[J]. Applied Physics Letters,1997,71(18):2632-2634
    [161]Miyatani T., Okamoto S., Rosa A., et al. Surface charge mapping of solid surfaces in water by pulsed-force-mode atomic force microscopy[J]. Applied Physics A:Materials Science&Processing,1998,66(0):S349-S352
    [162]Manne S., Cleveland J.P., Gaub H.E., et al. Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double Layer[J]. Langmuir,1994,10(12):4409-4413
    [163]Sokolov I.Y., Henderson G.S., Wicks F.J., et al. Improved atomic force microscopy resolution using an electric double layer[J]. Applied Physics Letters,1997,70(7):844-846
    [164]Mani A., Zangle T.A., Santiago J.G. On the Propagation of Concentration Polarization from Microchannel-Nanochannel Interfaces Part I:Analytical Model and Characteristic Analysis[J]. Langmuir,2009,25(6):3898-3908
    [165]Misao H., Makoto Y. Effect of Electric Double Layer on Viscoelastic Behavior of Highly Concentrated Suspension[J]. Journal of the Society of Rheology,2000,28(3):113-117
    [166]Bor C.S. Electroviscous effect of rodlike polyelectrolytes in strong flow[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,159(2-3):381-393
    [167]Guriyanova S., Mairanovsky V.G., Bonaccurso E. Superviscosity and electroviscous effects at an electrode/aqueous electrolyte interface:An atomic force microscope study[J]. Journal of Colloid and Interface Science,2011,360(2):800-804
    [168]Bonaccurso E., Kappl M., Butt H.J., et al. Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects[J]. Physical Review Letters,2002,88(7):076103
    [169]Weisenhorn A.L., Hansma P.K., Albrecht T.R., et al. Forces in atomic force microscopy in air and water[J]. Applied Physics Letters,1989,54(26):2651-2653
    [170]Arai T., Aoki D., Okabe Y., et al. Analysis of surface forces on oxides in aqueous solutions using AFM[J]. Thin Solid Films,1996,273(1-2):322-326
    [171]Garcia R., Perez R. Dynamic atomic force microscopy methods[J]. Surface Science Reports,2002,47(6-8):197-301
    [172]Garcia R., San P.A. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy[J]. Physical Review B,1999,60(7):4961-4967
    [173]Garcia R., San P.A. Amplitude curves and operating regimes in dynamic atomic force microscopy[J]. Ultramicroscopy,2000,82(1-4):79-83
    [174]Paulo A.S., Garcia R. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy[J]. Physical Review B,2001,64(19):193411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700