高水基乳化液成膜特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水基润滑液由于其良好的应用前景被广泛应用于制造业、生物润滑及微型机械等领域。与传统油润滑不同,水基润滑特性及机理均有待进一步研究和完善。以水包油(O/W)型乳化液为例,虽然已广泛应用于金属加工领域,但对其成膜机理的研究至今尚无定论,有待进一步深入研究。
     本文的主要工作之一是研制了适用于水基润滑研究的测试系统,并对测量方法(相对光强法)进行了分析、验证和改进。纳米级水基润滑膜厚摩擦综合测试系统实现了不同滑滚比下纳米级润滑膜的实时观测及膜厚的自动精确定位测量、加载及转动的自动控制和调节、操作系统的人性化和自动化等功能,该系统具有较高的分辨率和测量精度,为水基润滑特性及机理的研究奠定了基础。
     对含有微量油水的成膜特性的研究结果表明,即便水中含有极微量的油时(<1×10~(-3)vol%),其成膜能力仍远高于传统弹流润滑理论所预测的纯水成膜能力。本文通过对油水分子在固体界面上竞争行为的分析,利用竞争润湿的理论,对上述现象的机理进行了分析,并对不同固体表面及供液方式对微量油润滑的影响进行研究。设计了微量油润滑的作用方式,为微量油润滑的可行性提供了实验依据。
     在对O/W型乳化液成膜特性的研究中,针对具有不同参数的乳化液进行试验,结果表明,乳化液成膜特性与供液方式、运动速度、乳化剂浓度及油浓度密切相关。在对其成膜机理的研究中,以超低浓度乳化液为研究对象,发现乳化液的临界速度随乳化液浓度变化发生变化,结合对接触区附近乳化液液滴行为的观测,提出二次乳化机理,并建立理论模型进行验证。提出乳化液膜厚的下降并非单纯由传统理论提出的乏油作用引起,乳化液本体对固体表面油层的二次乳化效应在其成膜中起到了很大作用。对液滴在接触区附近行为的观测为乳化液成膜机理的研究提供了实验基础。通过大量实验和理论研究深入地分析了乳化液的成膜机理。此外,0.0005%浓度乳化液在一定条件下形成高达100nm润滑膜的结果也为微量油润滑的可行性提供了有力的依据。
Although the water-based lubricant has a wide application in many fields, such as metal processing, biological lubrication, micromachine, and so on, the film formation characteristics and mechanism are still dubious. As to the oil-in-water emulsion, which has been widely used in metal working, the film formation mechanism needs further discussion and research in spite of numerous previous studies.
     In this study, a testing set-up system has been developed for observation and film-thickness measurement of water-based lubrication, and the relative optical interference intensity technique has been validated and improved. By using this system, thickness and the state of the lubricant film at nanometer scale under point contact with different sliding ratios can be measured and real-time traced. The loading and rotating systems both can be automatically controlled. The locating measurement for the film thickness was also developed. Thus, measurement with high resolution and precision can be obtained. Therefore, the testing system lays the foundation of the study on water-based lubrication in point contacts.
     In the research for the lubrication of water with micro content of oil, different surfaces and liquid feeding modes were adopted. A relatively high film thickness was obtained in the experiment although the oil volume concentration was extremely low (<1×10~(-3)%), which does not agree with the traditional EHL (elastohydrodynamic lubrication) theory. The film forming ability attributes to the the micro content of oil contamination. The competitive wetting behavior of water and oil on the surface was investigated to explain the mechanism, which premises for the feasibility of micro-content-oil lubrication.
     The film formation of oil-in-water emuslion under point contact was found to be sensitive to the feeding mode, rolling speed, emulsifier and oil concentration. The critical speed of film thickness was detected to be effected significantly by the oil concentration by ultilizing emulsion with micro content of oil. The observation of the emulsion flow surrounding the contact area was carried out for direct explanation of the film formation mechanism. Reemulsification effects near the contact area were raised for the film formation mechanism based on the modeling validation. During the investigation, good film formation ability can be obtained when the oil concentration is lower than 0.5%. An emulsion film about 80nm can be obtained at 1m/s when the oil concentration is 0.0005%, which provides effective experiemental evidence for the micro-oil-content lubrication.
引文
[1]王家序,陈战,秦大同.以水为润滑介质的摩擦副关键问题研究.润滑与密封, 2001, 2:34-36.
    [2]美庆国.水基金属切削液.轴承, 1994, 12:35-38.
    [3]胡元洁,毛立江,孙瑞焕,等.亲水性高分子材料表面水润滑特性.生物医学工程学杂志, 1999, 16:138-139.
    [4] Varghese O K, Paulose M, LaTempa T J, Grimes C A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett, 2009, 9(2): 731-737.
    [5]杭州市环境保护局.水:生命的源泉.北京:中国环境科学出版社, 2005.
    [6] Scherge M, Gorb S N. Biological micro- and nao-tribology. Berlin: Springer, 2001.
    [7] Jay G D, Haberstroh K, Cha C J. Comparison of the boundary-lubricating ability of bovine synovial fluid, lubricin, and Healon. J Biomed Mat Res,1998, 40:414.
    [8] Dowson D. History of tribology. London: Longman, 1979.
    [9] Ratoi M, Spikes H A. Lubricating properties of aqueous surfactant solutions. Tribol Trans, 1999, 42(3):479-486.
    [10]徐滨士.纳米表面工程[M].北京:化学工业出版社, 2003.
    [11]温诗铸.摩擦学原理.北京:清华大学出版社, 1990.
    [12] Jost H P. Tribology: The first 25 years and beyond- achievements shortcomings and future tasks. 8th International Colloquium“Tribology 2000”, Bundesrepublik Deutschland, 1992, 1:14-16.
    [13]温诗铸.纳米摩擦学原理.北京:清华大学出版社,1998.
    [14] Chan D Y C, Horn R G. The drainage of thin liquid films between solid surfaces. J Chem Phys, 1985, 83(10):5311~5324.
    [15] Jacob Klein. Shear of liquid films confined to molecular dimensions. J Non-Crystalline Solids, 1998, 235:422~427.
    [16] Mugele F, Baldelli S, Somorjai G A, Salmeron M. Structure of confined films of chain alcohols. J. Phys.Chem.B, 2000, 104:3140-3144.
    [17] Franz V, Butt H J. Confined liquids: solvation forces in liquid alcohols between solid surfaces. J Phys Chem B, 2002, 106:1703-1708.
    [18] Uri Raviv, Pierre Laurat and Jacob Klein. Fluidity of water confined to subnanometre fillms. Nature, 2001, 413:51-54.
    [19] Becker T, Mugele F. Nanofluidies: viscous dissipation in layered liquid films. Phys RevLett, 2003, 91(16):166104/1-4.
    [20] Uri Raviv et al. Fluidity of Bound Hydration Layers. Nature, 2003, 425:163~165.
    [21] O’Shea S J, Welland M E. Atomic force microscopy at solid-liquid interfaces. Langmuir, 1998, 14:4186~4197.
    [22] Ruan J A, Bhushan B. Atomic-scale friction measurements using friction force microscopy: part I general principles and new measurement techniques. Trans ASME J of Tribology, 1993, 116:378-388.
    [23] Spikes H A, Guangteng G, Dowson D. Eed. Proc. of the Leeds-lyon sympoo on Trib., Interface dynamics, Netherlands: Elsevier science publisher B V, 1987.
    [24] Glovnea R P, Forrest A K, Olver A V, Spikes H A. Measurement of sub-nanometer lubricant films using ultra-thin film interferometry. Tribol Lett, 2003, 15(3):217~230.
    [25]雒建斌.薄膜润滑实验技术和特性研究[工学博士论文].北京:清华大学精密仪器与机械学系, 1994.
    [26] Luo J B, Wen S Z, Huang P. Thin film lubrication, partΙ: the transition between EHL and thin film lubrication. Wear, 1996, 194:107~115.
    [27] Granick S, Demirel A L, Cai L L, Peanasky J. Soft matter in a tight spot: nanorheology of confined liquids and block copolymers. Israel J Chem, 1995, 35:75-84.
    [28]邹鲲,胡元中,温试铸.表面力仪在纳米摩擦学中的应用. 95’纳米摩擦学研讨会论文集.北京:清华大学出版社, 1996:55-61.
    [29] Israelachvili J N. Thin film studies using multiple-beam interferometry. J Colloid Interface Sci, 1973, 44(2):259-271.
    [30]邹鲲,冷永胜等.表面力仪及其在表面接触中的应用.科学通报, 1999, 44(3):268-271.
    [31]李志军,冷永胜等.表面力仪及固体微观接触机理的实验研究.摩擦学学报, 2000, 20:336-339.
    [32] Boschkova K, Kronberg B, Rutland M, Imae T. Study of thin surfactant films under shear using the tribological surface force apparatus. Tribol Int, 2001, 34: 815–822.
    [33] http://www.chemengr.ucsb.edu/
    [34] Ruan J, Bhushan B. Frictional behavior of highly oriented pyrolytic-graphite. J Appl Phys, 1994, 76: 8117-8120.
    [35] Kancko R, Miyamoto T, Andoh Y, et al.. Micro wear. Thin Solid Films, 1996, 273:105-111.
    [36] Mate C M, McClelland G M, Erlansson R, et al. Atomic-scale friction of atungsten tip on a graphite surface. Phys Rev Lett, 1987, 59(17):1942-1946.
    [37] Marti O, Colchero J, Mlynek J. Combined scanning force and friction microscopy of mica. Nanotechnology, 1990, 1(1):141-144.
    [38] Grafstrom S, Ackermaon J, et al.. Analysis of lateral force effects on the topography in scanning force microscopy. J Vac Sci Technol, 1994, B12(3): 1559-1564.
    [39] http://www.instrument.com.cn/
    [40] Boschkova K, Kronberg B, Stalgren J J R, Persson K, Ratoi Salagean M. Lubrication in aqueous solutions using cationic surfactants - a study of static and synamic forces. Langmuir, 2002, 18:1680-1687.
    [41] Kaneko R. Microtribology. Tribol Int, 1995, 28(1):33-37.
    [42] Cameron A, Goha R. Theoretical and experimental studies of the oil film in lubricated point contact. Proc R Soc A, 1966, 291:520-536.
    [43] Foord C A, Hammann W C, Cameron A. Evaluation of lubricants using optical elastohydrodynamics. ASLE Trans, 1968, 11:31-43.
    [44] Westlake F, Cameron A. A study of ultra-thin lubricant films using an optical technique. Proc Instn Mech Engrs, 1967-8, 182: 75-78.
    [45] Westlake F J. An interferometric study of ultra-thin fluid films [Ph. D. Thesis]. Univ. of London, 1970.
    [46] Spikes H A, Guangteng G. Properties of ultra-thin lubricating film using wedged spacer layer optical interferometry. in D. Dowson (ed.), Proc 14th Leeds-Lyon Symp on Trib, 1988, 275-279.
    [47] Johnston G J, Wayte R, Spikes H A. The measurement and study of very thin lubricant films in concentrated contact. STLE Tribol Trans, 1991, 34(2):187-194.
    [48] Cann P M, Spikes H A, Hutchinson J. The development of a spacer layer imaging method (SLIM) for mapping elastohydrodynamic contacts. STLE Tribol. Trans, 1996, 39:915-921.
    [49] Spikes H A, Cann P M. The development and application of the spacer layer imaging method for measuring lubricant film thickness. Proc Instn Mech. Engrs, Part J: J. Engineering Tribology, 2001, 215(J3):261-277.
    [50] Glovnea R P, Forrest A K, Olver A V, Spikes H A. Measurement of sub-nanometer lubricant films using ultra-thin film interferometry. Tribol Lett, 2003, 15:217-230.
    [51] Spikes H, Granick S. Equation for slip of simple liquids at smooth solid surfaces. Langmuir, 2003, 19(12):5065–5071.
    [52] Luo J B, Shen M W, Wen S Z. Tribological properties of nanoliquid film under an external electric field, Journal of Applied Physics, 2004, 96 (11):6733-6738.
    [53] Luo J B, Wen S Z, Huang P. Thin film lubrication, Part I: The transtion between EHL and thin film lubrication. Wear, 1996, 194:107-115.
    [54] Luo J B, Wen S Z. Mechanism and characteristics of thin film lubrication at nanometer scale. Science in China (A), 1996, 39(12):1312-1322.
    [55] Luo J B, Huang P, et al. Characteristics of liquid lubricant films at the nano-scale. ASME Trans, J of Tribology, 1999, 121(4):872-878.
    [56] Roberts A D, Tabor D. The extrusion of liquids between highly elastic solids. Proc R Soc Lond A, 1971, 325:323-345.
    [57] Luo J B, Huang P, Wen S Z, Lawrence Li. Characteristics of liquid lubricant films at the nano-scale. ASME Trans, J of Tribology, 1999, 121(4):872-878.
    [58] Maeda N, Chen N, et al. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science, 2002, 297:379~382.
    [59]郭力.水润滑轴承研究的进展.精密制造与自动化, 2007, 1:6-9.
    [60] Krauter A I. Generation of Squeal Clatter in Water Lubricated Elastomeric Bearings. Trans, ASME J Lubri Technol, 1981, 103(3): 406-412.
    [61]王优强.水润滑橡胶轴承润滑机理的研究[学位论文].沈阳:东北大学, 1995.
    [62]余江波.水润滑复合橡胶轴承摩擦学性能研究[硕士学位论文].重庆大学, 2002.
    [63]余继红,江东亮.碳化硅陶瓷的发展与应用.陶瓷工程, 1998,13:32-36.
    [64]周泽华,王家序.陶瓷在水润滑轴承中的应用.陶瓷工程, 2000, 12:29-31.
    [65]刘广建.超高分子量聚乙烯.北京:化学工业出版社, 2001.
    [66] Ronkainen H, Varjus S, Holmberg K, Tribological performance of different DLC coatings in water lubricated conditions. Wear, 2001, 249:267-271.
    [67] Stallard J, Mercs D, Jarratt M, et al. A study of the tribological behavior of three carbon-based coatings, tested in air, water and oil environments at high loads. Surf Coat Technol, 2004, 177/178:545-551.
    [68] Suzuki M, Ohana T, Tanaka A. Tribological properties of DLC films with different hydrogen contents in water environment. Diamond and Related Materials, 2004, 13: 2216-2220.
    [69] Suzuki M, Tanaka A, Ohana T, et al. Frictional behavior of DLC films in a water environment. Diamond Relat Mater, 2004, 13:1464-1468.
    [70] Jiang S W, Yin G F, Zheng C Q, et al. An investigation of the bio-tribological performance of diamond-like carbon/ultra high molecular weight polyethylene couple. Space Medicine & Medical Engineering, 2001, 14(4):282-285.
    [71] Zhou F, Wang Y, Liu F, et al. Friction and wear properties of duplex MAO/CrN coatings sliding against Si3N4 ceramic balls in air, water and oil. Wear, 2009, 267:1581-1588.
    [72] Zhou F, Kato K, Adachi K. Effect of a-CNx coating on tribological behavior of SiC ceramics in water. Mater Sci Forum, 2005, 475/479:2899-2904.
    [73]周飞,戴振东,加藤康司.碳基薄膜水润滑性能的研究进展.润滑与密封, 2006, 7:185-190.
    [74]赵青,施召新.水基边界润滑剂的摩擦特性.润滑与密封, 1998, 2:21-26.
    [75]黄文轩.润滑剂添加剂应用指南.北京:国石化出版社, 2003.
    [76]巩发洋,勾连全,钱亚宁.水溶性润滑添加剂的现状和发展.合成润滑材料, 2005, 32(4):29-33.
    [77] Bhushan B, Israelschvili J N, Landman U. Nanotribology-friction,wear and lubrication at the atomic-scale. Nature, 1995, 374:607-616.
    [78]邹鲲.超薄膜摩擦流变特性的研究[工学博士学位论文].北京:清华大学精密仪器与机械学系, 1999.
    [79] Sakuma H, Otsuki K, Kurihara K. Viscosity and Lubricity of Aqueous NaCl Solution Confined between Mica Surfaces Studied by Shear Resonance Measurement. Phys Rev Lett, 2006, 96:046104-8.
    [80] Israelschvili J N. Measurement of the viscosity of liquids in very thin films. J Colloid Interface Sci, 1986, 110:263-271.
    [81] Zhu Y, Granick S. Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces. Phys Rev Lett, 2001, 87:096104-8.
    [82] Raviv U, Laurat P, Klein J. Fluidity of water confined to subnanometre films. Nature, 2001, 413:51-54.
    [83] Raviv U, Klein J. Fluidity of Bound Hydration Layers. Science, 2002, 297:1540-1543.
    [84] Hoglund E. Influence of lubricant properties on elastohydrodynamic lubrication. Wear, 1999, 232(1):176-184.
    [85] Zhu D, Biresaw G, Clark S J, Kasun T J. Elastodydrodynamic Lubrication with O/W Emulsions. ASME Jour of Trib, 1994, 116:310-320.
    [86] Ratoi M, Spikes H A. Lubricating properties of aqueous surfactant solutions. Trib Trans, 1999, 42(3):479-486.
    [87] Boschkova K, Elvesjo J, Kronberg B. Frictional properties of lyotropic liquid crystalline mesophases at surfaces. Colloid Surf A-Physicochem Eng Asp, 2000,166:67-77.
    [88] Boschkova K, Kronberg B, Rutland M, Imae T. Lubrication in aqueous solutions using cationic surfactants - a study of static and dynamic forces. Langmuir, 2002,18:1680-1687.
    [89]刘书海.高水基润滑成膜特性及机理研究. [工学博士论文].北京:清华大学精密仪器与机械学系, 2008.
    [90]汉斯.莫利特,阿诺德.顾本门.乳液、悬浊液、固体配合技术与应用.北京:化学工业出版社, 2004.
    [91]德鲁.迈尔斯.表面、界面和胶体原理及应用.北京:化学工业出版社, 2005.
    [92] Griffin W C. Classification of surface active agents by HLB. J Soc Cosmet Chem, 1949, 1: 311-326.
    [93] Belfit R W, Shirk N E. Brass rolling emulsions. Lubr Eng, 1961, 17:173-178.
    [94] Yang H X, Schemed S R, Reich R A, Direct observations of emulsion flow in elastohydrodynamically lubricated contacts. Journal of Tribology, 2006, 128 (3): 619-624.
    [95] J.C. Whetzel Jr., S. Rodman, Improved lubrication in cold strip rolling, Iron and Steel Engineer, 36 (1959) 123-132
    [96] Ratoi M, Spikes H A. Optimizing film formation by oil-in-water emulsions. Tribol Trans, 1997, 40:569-578.
    [97] Wan G T Y, Kenny P, Spikes H A. Elastohydrodynamic properties of water based rire-resistant hydraulic fluids. Tribol Int, 1984, 17:309-315.
    [98] Spikes H A, Macpherson P B. Proving candidate No.1 oil and other lubricant work, MOD Final Report to Contract, K/A12/1237, 1979.
    [99] Cambiella A, Benito J M, Pazos C, et al. The effect of emulsifier concentration on the lubricating properties of oil-in-water emulsions. Tribol Lett, 2006, 22:53-65.
    [100] Kimura Y, Okada K. Lubricating properties of oil in water emulsions. Tribol Trans, 1989, 32:524-532.
    [101] Kimura Y, Okada K. Elastohydrodynamic lubrication with Oil-in-Water emulsions. Proc JSLE Int’l Trib Conf, 1985, 3:937-942.
    [102] Kimura Y, Okada K. Film Thickness at Elastohydrodynamic Conjunctions Lubricated with Oil-in-Water Emulsions. Proc. IMechE, Tribology-Friction Lubrication and Wear Fifty Years On, C176/87, ImechE, London, 1989, 85-90.
    [103] Yokota H, Endo K, Ogura S. Effect of surfactants on lubricating properties of emulsion-type lubricants used in manufacturing aluminum DI cans. Lubr Eng, 1992, 48:348-353.
    [104] Nakahara T M, Makino T, Kyogoku K. Observations of liquid droplet behavior and oil film formation in O/W type emulsion lubrication, ASME Jour Of Trib, 1988, 110:348-353.
    [105] Baker D C, Johnston G J, Spikes H A, Bunemann T. EHD film formation and starvation of oil in water emulsions. Trib Trans, 1993, 36:565-572.
    [106] Zhu D, Biresaw G, Clark S J, Kasun T J. Elastodydrodynamic lubrication with O/W emulsions. ASME Jour of Trib, 1994,116:310-320.
    [107] Sakaguchi Y, Wilson W R D. EHD analysis of the behavior of emulsions at the inlet to roll bites. Proc. 5th Conf. on Plastic Working, October 19-21, 1984, Tokyo, Japan Society for Technology of Plasticity, Tokyo,1984.
    [108] Penny F R. Correlation of emulsion particle size and aluminum tandem hot mill rolling performance. J Am Soc Lubr Eng, 1971, 27:87-90.
    [109] Kihara J, Nagamori H, Matsuda H, Nakagawa Y. Effect of properties of lubricants andemulsion stability on lubricating behavior in cold rolling of low carbon steel. Intl Symp Metalworking Lub, 1980, 177-181.
    [110] Kimura Y, Okada K. Film thickness at elastohydrodynamic conjunctions lubticated with Oil-in-Water emulsions. Proc IMechE, 1987, C175:85-90.
    [111] Kurachi T, Yoshida T, Suzuki K. Influence of oil composition and emulsion properties on the rollcoating buildup during hot rolling of aluminum. Lubr Eng, 1987, 43(8):660-665.
    [112] Schmid S R, Wilson W R D. Lubrication mechanisms for Oil-in-water emulsions. Lubr Eng, 1996, 52:168-175.
    [113] Schey J A. Tribology in metalworking. American Society for Metals. Metals Park, OH, 1983,153.
    [114] Vucich M G, Vitellis M X. Emulsion control and oil recovery on the lubricating system of double-reduction mills. Iron and Steel Eng, 1976: 29-38.
    [115] Prunet-Foch B, Legay-Desquelles F, Vignes-Adler M. Dynamics of spreading of industrial oil-in-water emulsions on steel surfaces. Jour Mat Sci, 1991, 26:369-382.
    [116] Wedeven L D, Evans D, Cameron A. Optical analysis of ball bearing starvation. ASME Jour Lubr Tech., 1971, 93:349-363.
    [117] Chiu Y P. An analysis and prediction of lubricant film starvation in rolling contact systems. ASLE Trans, 1974, 17: 22-35.
    [118] Wilson W R D, Sakaguchi Y, Schmid S. A mixed flow model of lubrication with emulsions. Trib Trans, 1994, 37(3):543-551.
    [119] Einstein A. Eine neue Bestimmung der Molekul-Dimensionen. Ann Phys, 1906, 19: 289-306.
    [120] Eilers H. Die Viskostitat von emulsionen hochviskoser stoffeals function der konzentration, Kolloid Z, 1941, 97:313-321.
    [121] Reich R, Urbanski J. Experimental support for the dynamic concentration theory of forming an oil reservoir at the inlet of the roll bite by measuring the onset speed of starvation as a function of oil concentration and droplet size. Trib Trans, 2005, 47: 489-499.
    [122] Schmid S, Wilson W R D. Lubrication of aluminum rolling by Oil-in-Water emulsions. Trib Trans, 1995, 38(2):452-458.
    [123] Nakahara T, Makino T, Kyogoku K. Observations of liquid droplet behavior and oil film formation in O/W type emulsion lubrication. Transactions of the ASME, 1988, 110:348-353.
    [124] Yang H X, Schmid S R, et al. Direct observations of emulsion flow in elastohydrodynamically lubricated contacts. Journal of Tribology, 2006, 128:619-623.
    [125] Yan Y B. Applied physical optics. Beijing: China machine press, 1990.
    [126] Zhuang S L, Qian Z B. Optical transfer function. Beijing: China machine press, 1981.
    [127] Born M, Wolf E. Principles of optics, 5th edn. Pergamon Press, 1975.
    [128] Liu S H, Ma L R, Zhang C H, Lu X C. Effect of surface hydrophilicity on the confined water film. Appl Phys Lett, 2007, 91: 253110/1-3.
    [129]沈明武,雒建斌,温诗铸.摩擦副表面物化特性对纳米级油膜厚度的影响.清华大学学报(自然科学版), 2000,40(4):103-106.
    [130] Adamson A W. Physical chemistry of surface. New York: Wiley, 1997.
    [131] Owens D K, Wendt R G. Estimation of the surface free energy of polymers. J Appl Polym Sci, 1969,13:1741-1747.
    [132] Fowkes F M. Chemistry and physics of interfaces. Washington D.C.: ACS, 1965.
    [133]顾惕人,朱步瑶,李外郎等.表面化学.北京:科学出版社, 1994.
    [134]郑忠,胡纪华.表面活性剂的物理化学原理.广州:华南理工大学出版社, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700