外加电场下纳米级润滑膜的成膜特性及微汽泡行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电场作用下薄膜润滑性能研究不仅是润滑理论发展的一个前沿领域,而且在带电机械润滑系统、微/纳机电器件等方面有重要的学术和工程价值。本论文主要以外加电场对纳米级润滑膜性能影响为主题,从成膜特性和润滑膜内部产生微汽泡现象两个方面进行讨论和分析。
     (1)探讨了油基、乳液和水基等润滑剂在外加电场作用下的成膜特性:提出了阳离子对电场的响应特性不同是决定具有不同侧链长度的离子液体在电场作用下成膜能力存在差异的直接原因;考察了水包油乳液在外加电场下的成膜能力与电场强度、乳化剂浓度以及油相浓度的关系,通过构造楔形入口区油滴失稳模型从理论上分析了电场作用下油滴的变形和破裂能力对成膜性能的影响;对比考察了带正、负电头基以及不同浓度的表面活性剂水溶液在电场下的成膜性能,详细分析了表面活性剂分子与带电固体表面的相互作用对成膜性能的影响。
     实验发现润滑接触区纳米级润滑膜的流动性在外加电场强度达到一个临界值后会出现减弱甚至消失的现象。提出了靠近固体壁面的润滑液体分子类固化转变在电场作用下的大幅度增强是导致接触区润滑膜流动性出现减弱的重要原因。
     (2)深入地考察了外加电场作用下不同润滑膜内部产生微汽泡的现象,发现在其它实验条件相同情况下,电极表面有介电层存在时润滑膜中微汽泡产生更为剧烈的现象;提出产生的微汽泡是局部热效应和电化学反应共同作用的结果,其中局部热效应占主导作用;建立了描述纳米级润滑膜中微汽泡生长和运动特性的理论模型,并用该模型验证了微汽泡生长、运动特性与液体基本物化性质之间关系的实验结果。搭建了电致轴承破坏试验台,考察了轴承润滑表面在较小回路电流下(~1 mA)的损伤特性,提出了微汽泡的产生及其溃灭是润滑表面形成凹坑的主要原因。
The study on thin film lubrication under an external electric field (EEF) is a frontier field of the lubrication research, and it is of considerable academic and engineering values to charged lubrication systems and micro/nano electromechanical devices, etc. This dissertation focuses on the properties of nanoscale lubricant films under an EEF in terms of the film forming properties and the microbubble emergence behavior in thin lubricant films. The following conclusions are drawn:
     Firstly, the film forming properties of oil based lubricants, emulsion and water based lubricants under EEFs are investigated. It is proposed that the difference in the response of cations to EEFs determines the discrepancy of the film forming properties among ionic liquids with various side chain lengths. The relationships between the film forming properties of oil-in-water emulsions and the EEF strength, the emulsifier concentration and the oil phase concentration are studied. Moreover, an oil destabilization model in the inlet region is constructed to analyze the effects of the deformation and breakup of oil droplets under EEFs on the film forming properties theoretically. Furthermore, the film forming properties of surfactant solutions with positive and negative charged head-groups and various surfactant concentrations are compared, and the effect of the interaction between surfactant molecules and charged solid surfaces on the film forming properties is also analyzed.
     Secondly, an interesting phenomenon is found that the fluidity of nanoconfined lubricants in the contact region becomes very weak and disappears eventually when an EEF of larger than the threshold intensity is applied. It is proposed that the solid-like transition of liquid molecules near charged confined solid surfaces is greatly intensified by the EEF, resulting in the reduction in the fluidity of lubricant films in the contact region.
     Thirdly, another interesting phenomenon that many microbubbles emerge in thin lubricant films under EEFs is studied. It is found that microbubbles emerge more intensively after a dielectric layer is coated onto the electrode while other experimental conditions remain unchanged. The relationships between the electric current, interfacial damage on the contact pairs and the emergence of microbubbles are discussed. It is proposed that overheating and electrochemical reactions contribute collectively to the occurrence of microbubbles in thin lubricant films under EEFs, and overheating plays a predominant role. A theoretical model describing the microbubble growth and motion characteristics in thin lubricant films is constructed, and the experimental relationships between the growth, motion characteristics of microbubbles and lubricant physicochemical properties can be well predicted with the proposed model.
     Finally, a bearing electrocorrosion tester is constructed to investigate the electrodamage behavior on the lubricated surfaces in bearings under the action of weak electrical currents as low as ~ 1 mA. It is demonstrated that the collapse of microbubbles contributes to the formation of craters on lubricated surfaces.
引文
[1] Dowson D. History of tribology. London: Longman Group Limited, 1979.
    [2]温诗铸,黄平.摩擦学原理(第三版).北京:清华大学出版社, 2008.
    [3] Reynolds O P. On the theory of lubrication and its application to Mr Beauchamp Tomer’s experiments, including an experimental determination of the viscosity of olive oil. Phil Trans Roy Soc, 1886, A177: 175-234.
    [4] Dowson D, Higginson G R. Elastohydrodynamic lubrication. London: Pergamon Press, 1977.
    [5] Grubin A N, Vinogradova I E. Central scientific research institute for technology and mechanical engineering. Moscow, Book No. 30, 1949.
    [6] Patir N, Cheng H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. ASME Trans, 1978, 100: 12-17.
    [7]温诗铸,杨沛然.弹性流体动力润滑.北京:清华大学出版社, 1992.
    [8]杨沛然.流体润滑数值分析.北京:国防工业出版社, 1998.
    [9] Hardy W B, Hardy J K. Note on static friction and on the lubricating properties of certain chemical substances. Phil Mag, 1919, 38: 33-48.
    [10] Needs S J. Boundary film investigations. Trans ASME, 1940, 62: 331-339.
    [11] Bowden F B, Tabor D. The friction and lubrication of solids. Oxford: Oxford University Press, 1954: 233-245.
    [12]亚当森A W (顾惕人译).表面物理化学(下).北京:科学出版社, 1985: 463-477.
    [13] Kingsbury E P. Some aspects of the thermal adsorption of a boundary lubricant. J Appl Phys, 1958, 29: 888-891.
    [14] Cameron A. The viscosity wedge. ASLE Trans, 1958, 1: 248-253.
    [15] Homola A M, Israelachvili J N. AMSE J Tribol, 1989, 111: 675-682.
    [16]雒建斌,严崇年.润滑理论中的模糊观.润滑与密封, 1989, 4: 1-4.
    [17] Spikes H A, Guangteng G. Properties of ultra-thin lubricating using wedged spacer layer optical interferometery. // Dowson D, ed. Proceedings of the 14th Leeds-Lyon Symposium on Tribology, Interface Dynamics. Leeds: University of Leeds, 1987, 275-279.
    [18] Johnston G J, Wayte R, Spikes H A. The measurement and study of very thin lubricant films in concentrated contacts. Tribol Trans, 1991, 34: 187-194.
    [19]温诗铸.从弹流润滑到薄膜润滑-润滑理论新领域.润滑与密封, 1993, 6:48-55.
    [20]雒建斌.薄膜润滑实验技术和特性研究[博士学位论文].北京:清华大学精密仪器与机械学系, 1994.
    [21] Luo J B, Shen M W, Wen S Z. Tribological properties of nanoliquid film under an external electric field. J Appl Phys, 2004, 96 (11): 6733-6738.
    [22]沈明武.纳米级油膜成膜机理及特性研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2000.
    [23] Prashad H. Diagnosis of rolling-element bearings failure by localized electrical current between track surfaces of races and rolling-elements. ASME J Tribol, 2002, 124: 468-473.
    [24] Luo J B, He Y, Zhong M, et al. Gas micro-bubble phenomenon in nanoscale liquid film under external electric field. Appl Phys Lett, 2006, 89: 013104.
    [25]何雨.外电场下纳米级液体膜中的微气泡现象研究[硕士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [26] Hurricksa P L. The effect of applied voltage on the frictional behaviour of carbon black filled elastomers. Wear, 1979, 52: 365-380.
    [27] Lavielle L. Electric field effect on the friction of a polyethylene-terpolymer film on a steel substrate. Wear, 1994, 176: 89-93.
    [28] Iwai K, Yamamoto Y, Takahashi S. Relationship between tribology characteristics and induced-voltage magnetic field in ring-rod-type dry wear test (S15C carbon steel and S45C carbon steel). Nippon Kikai Gakai Ronbunshu (Hen C), 1994, 60(569): 255-261 (in Japanese).
    [29] Goto K. The influence of surface induced voltage on the wear mode of stainless steel. Wear, 1995, 185: 75-81.
    [30]翟文杰,陈仁际,齐毓霖.用外加电压控制摩擦力的机理与技术I.摩擦自生电势与摩擦力的相关研究.摩擦学学报, 1996, 16: 1-5.
    [31]陈仁际,翟文杰,齐毓霖.用外加电压控制摩擦力的机理与技术II.外加电压对摩擦力影响的研究.摩擦学学报, 1996, 16(3): 235-238.
    [32] Csapo E, Zaidi H, Paulmier D. Friction behavior of a graphite-graphite dynamic electric contact in the presence of argon. Wear, 1996, 192: 151-156.
    [33] Paulmier D, El Mansori M, Zaidi H. Study of magnetized or electrical sliding contact of a steel XC48/graphite couple. Wear, 1997, 203-204:148-154.
    [34] Bouchoucha A, Zzidi H, Kadiri E K, et al. Influence of electric fields on the tribological behavior of electrodynamical copper/steel contacts. Wear, 1997, 203-204: 434-441.
    [35] Senouic A, Frene J, Zaidi H. Wear mechanism in graphite-copper electrical sliding contact. Wear, 1999, 225-229: 949-953.
    [36]风仪,王文芳,黄守国,等.电流强度对碳纤维-铜-石墨复合电刷材料电磨损性能的影响.润滑与密封, 2000, 3: 15-18.
    [37] Yoshikawa Y, Tokoroyama T, Umehara N. Effect of the applied electric field on the friction of the CNx coating against Si3N4 ball in air. 3rd Asia International Conference on Tribology (Yoshikawa, Japan), 2006, 1.
    [38] Park J Y, Ogletree, D F, Thiel P A, et al. Electronic control of friction in silicon pn junctions. Science, 2006, 313: 186.
    [39] Brandon N P, Bonanos N, Fogarty P O, et al. The effect of interracial potential on friction in a model aqueous lubricant. J Electrochem Soc, 1992, 139: 3489-3492.
    [40] Kelsall G H, Zhu Y Y, Spikes H A. Electrochemical effects on friction between metal oxide surfaces in aqueous solutions. J Chem Soc, Faraday Trans, 1993, 89: 267-272.
    [41]贺四清.离子型表面活性剂水溶液中的电控摩擦机理及响应研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2010.
    [42] Liu H W, Fujisawa S, Tanaka A, et al. Controlling and improving the microtribological properties of Langmuir-Blodgett monolayer films using an external electric field. Thin Solid Films, 2000, 368: 151-155.
    [43] Karuppiah K S K, Zhou Y B, Woo L K, et al. Nanoscale friction switches: Friction modulation of monomolecular assemblies using external electric fields. Langmuir, 2009, 25(20): 12114-12119.
    [44] Wistuba H. The effect of an external electric field on the operation of an aluminum oxide-cast iron sliding contact joint. Wear, 1997, 208: 113-117.
    [45]蒋洪军,孟永钢,温诗铸.外加电场对3种陶瓷/金属摩擦副摩擦行为的影响.中国机械工程, 1999, 10: 785-789.
    [46]孟永钢,蒋洪军,纪宏.电摩擦现象-电场对金属/陶瓷摩擦行为的影响.摩擦学学报, 1999, 19: 45-49.
    [47]蒋洪军,孟永钢,温诗铸.外加电压对三氧化二铝/黄铜摩擦副摩擦的主动控制试验研究.摩擦学学报, 1999, 19: 244-249.
    [48]常秋英,孟永钢,温诗铸.润滑液对电控摩擦的影响研究.机械工程学报, 2003, 39: 90-92.
    [49]胡波.电控摩擦现象的电化学机理和实验研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [50]翟文杰,田颖,王闯.硬脂酸铝液润滑下的GCr15/45副的电摩擦性能.润滑与密封, 2004, 163: 23-28.
    [51] Yamamoto Y, Hirano F. Scuffing resistance of phosphate esters II: Effect of applied voltage. Wear, 1981, 66: 77-86.
    [52] Tung S C, Wang S S. In-situ electro-charging for friction reduction and wear resistant film formation. Tribol Trans, 1991, 34 (4): 479-488.
    [53] Pearson B R, Brook P A, Waterhouse R B. Influence of electrochemical potential on thewear of metals, particularly nickel. Tribol Int, 1988, 21:191-197.
    [54]翟文杰.无极性油润滑下摩擦间边界膜的电特性.润滑与密封, 2002, 2: 50-52.
    [55]翟文杰,山本雄二.外加电压对边界润滑条件下钢-钢摩擦副摩擦磨损性能的影响.摩擦学学报, 2000, 20: 435-438.
    [56] Zhang B, Umehara N. Hydrodynamic Lubrication theory considering electric double layer for very thin water film lubrication of ceramics, JSME, International Journal, series C, 1998, 41(2): 285-290.
    [57]黄平,黄柏林,孟永钢,等.双电层对润滑薄膜厚度与压力的影响.机械工程学报, 2002, 38(8): 9-13.
    [58] Wong P L, Huang P, Meng Y G. The effect of the electric double layer on a very thin water lubricating film. Tribol Lett, 2003, 14(3): 197-203.
    [59]白少先,黄平.双电层电粘度对润滑性能的影响研究.摩擦学学报, 2004, 24(2): 168-171.
    [60]王新杰,白少先,黄平.薄膜润滑中双电层效应的理论分析与实验研究.摩擦学学报, 2005, 25(6): 555-558.
    [61]王家峻,林晓辉,杨决宽,等.双电层对纳米流体润滑与摩擦影响的MD模拟.传感技术学报, 2006, 19: 1655-1658.
    [62] Zhu Y Y, Kelsall G H, Spikes H A. The influence of electrochemical potentials on the friction and wear of iron and iron oxides in aqueous systems. Tribol Trans, 1994, 37: 811-819.
    [63] Winslow W M. Induced fibrilation of suspensions. J Appl Phys, 1949, 20: 1137-1140.
    [64]田煜.电流变机理及应用研究[博士学位论文].北京:清华大学精密仪器与机械学系,2001.
    [65] Zeng H B, Tian Y, Anderson T H, et al. New SFA techniques for studying surface forces and thin film patterns induced by electric fields. Langmuir, 2008, 24: 1173-1182.
    [66] Kimura Y, Nakano K, Kato T, et al. Control of friction coefficient by applying electric fields across liquid crystal boundary films. Wear, 1994, 175: 143-149.
    [67] Morishita S, Matsumura Y, Shiraishi T. Control of film thickness of a sliding bearing using liquid crystal as lubricant(in Japanese). J Japanese Society of Tribologists, 2002, 47(11): 846-851.
    [68] Nakano K. Scaling law on molecular orientation and effective viscosity of liquid-crystalline boundary films. Tribol Lett, 2003, 14: 17-24.
    [69]孙志文,谢二庆,韩卫华,等.电润湿的研究进展.液晶与显示, 2008, 23: 387-392.
    [70] Staicu A, Mugele F. Electrowetting-induced oil film entrapment and instability. Phys Rev Lett, 2006, 97, 167801.
    [71] Ratoi-Salagean M, Spikes H A, Hoogendoorn R. The design of lubricious oil-in-wateremulsions. Proc Instn Mech Engrs, 1997, 211(Part J): 195-208.
    [72] Ha J W, Yang S M. Effect of nonionic surfactant on the deformation and breakup of a drop in an electric field. J Colloid Inter Sci, 1998, 206: 195-204.
    [73] Ha J W, Yang S M. Breakup of a multiple emulsion drop in a uniform electric field. J Colloid Inter Sci, 1999, 213: 92-100.
    [74] Eow J S, Ghadiri M. The behaviour of a liquid/liquid interface and drop-interface coalescence under the influence of an electric field. Colloids Surf A: Physicochem Eng Aspects, 2003, 215: 101-123.
    [75] Mostowfi F, Khristov K, Czarnecki J, et al. Electric field mediated breakdown of thin liquid films separating microscopic emulsion droplets. Appl Phys Lett, 2007, 90(18): 184102.
    [76] Panchev N, Khristov K, Czarnecki J, et al. A new method for water-in-oil emulsion film studies. Colloids Surf A: Physicochem Eng Aspects, 2008, 315: 74-78
    [77] Thiam A R, Bremond N, Bibette J. Breaking of an emulsion under an ac electric field. Phys Rev Lett, 2009, 102: 188304.
    [78] Shen M W, Luo J B, Wen S Z, et al. Nano-tribological properties and mechanisms of the liquid crystal as an additive, Chinese Sci Bull, 2001, 46(14): 1227-1232.
    [79] Morgan A W, Wyllie D. A survey of rolling bearing failures. Proc Instn Mech Engrs, 1969-70, 184: 48-56.
    [80] Prashad H. Effects of operating parameters on the threshold voltages and impedance response of non-insulated rolling-element bearings under the action of electric current. Wear, 1987, 117: 223-240.
    [81] Busse D, Erdman J, Kerkman R J, et al. System electrical parameters and their effects on bearing currents. IEEE Trans Ind Appl, 1997, 33: 577-584.
    [82] Komatsuzaki S. Bearing damage by electrical wear and its effects on deterioration of lubricating grease. STLE Lubr Eng, 1987, 43: 25-30.
    [83] Prashad H. Diagnosis of failure of rolling-element bearings of alternators-a study. Wear, 1996, 198: 46-51.
    [84] Prashad H. Determination of magnetic flux density on the surfaces of rolling-element bearings as an indication of the current that has passed through them-an investigation, Tribol Int, 1999, 32: 455-467.
    [85] Zika T, Gebeshuber I C, Buschbeck F, et al. Surface analysis on rolling bearings after exposure to defined electric stress. Proc IMechE Part J: J Eng Tribol, 2009, 223: 787-797.
    [86] Chiou Y C, Lee R T, Lin C M. Formation criterion and mechanism of electrical pitting on the lubricated surface under A.C. electrical field. Wear, 1999, 236: 62-72.
    [87] Lin C M, Chiou Y C, Lee R T. Pitting mechanism on lubricated surface of babbitalloy/bearing steel pair under A.C. electric field. Wear, 2001, 249: 133-142.
    [88] Lin C M, Chiou Y C, Lee R T. Effect of MoS2 additive on electrical pitting mechanism of lubricated surface for Babbitt alloy/bearing steel pair under ac electric field. Wear, 2004, 257: 833-842.
    [89] Chiou Y C, Lee R T, Lin S M. Formation mechanism of electrical damage on sliding lubricated contacts for steel pair under DC electric field. Wear, 2009, 266: 110-118.
    [90] Luo J B, Wen S Z, Huang P. Thin film lubrication, Part I: The transition between EHL and thin film lubrication. Wear, 1996, 194: 107-115.
    [91]严瑛白.应用物理光学.北京:机械工业出版社, 1990: 67-164.
    [92]刘书海.高水基润滑剂成膜机理及特性研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2008.
    [93] Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev, 1999, 99: 2071-2083.
    [94] Misra R, McCarthy M, Hebarda A F. Electric field gating with ionic liquids. Appl Phys Lett, 2007, 90: 052905.
    [95] Millefiorini S, Tkaczyk A H, Sedev R, et al. Electrowetting of ionic liquids. J Am Chem Soc, 2006, 128: 3098-3101.
    [96] Ricks-Laskoski H L, Snow A W. Synthesis and electric field actuation of an ionic liquid polymer. J Am Chem Soc, 2006, 128: 12402-12403.
    [97] Ito N, Richert R. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition. J Phys Chem B, 2007, 111: 5016-5022.
    [98] Wang Y, Voth G A. Unique spatial heterogeneity in ionic liquids. J Am Chem Soc, 2005, 127: 12192-12193.
    [99] Wang Y. Disordering and reordering of ionic liquids under an external electric field. J Phys Chem B, 2009, 113: 11058-11060.
    [100] Gratzel M. Photoelectrochemical cells. Nature, 2001, 414: 338-344.
    [101] Ye C, Liu W, Chen Y, et al. Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun, 2001, 21: 2244-2245.
    [102] Liu X, Zhou F, Liang Y, et al. Tribological performance of phosphonium based ionic liquids for an aluminum-on-steel system and opinions on lubrication mechanism. Wear, 2006, 261: 1174-1179.
    [103]张晓昊,张向军,刘永和,等.微间隙受限液体行为与昆虫爪垫在光滑壁面的粘着机理.物理学报, 2007, 56: 4722-4727.
    [104] Pinilla C, Popolo M G D, Lynden-Bell R M, et al. Structure and dynamics of a confinedionic liquid. Topics of relevance to dye-sensitized solar cells. J Phys Chem B, 2005, 109: 17922-17927.
    [105] Chen S, Wu G, Sha M, et al. Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J Am Chem Soc, 2007, 129: 2416-2417.
    [106] Dong K, Zhou G, Liu X, et al. Structural evidence for the ordered crystallites of ionic liquid in confined carbon nanotubes. J Phys Chem C, 2009, 113: 10013-10020.
    [107] Pensado AS, Comu?as MJP, Fernández J. The pressure-viscosity coefficient of several ionic liquids. Tribol Lett, 2008, 31: 107-118.
    [108] Hamrock B J, Dowson D. Proceedings of the 5th leeds-lyon symposium on Tribology. Suffolk: Mechanical Engineering Publication, 1979.
    [109] Granick S. Motions and relaxations of confined liquids. Science, 1991, 253: 1374-1379.
    [110] Wang Y, Voth G A. Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B, 2006, 110: 18601-18608.
    [111] Lopes J N A C, Padua A A H. Nanostructural organization in ionic liquids. J Phys Chem B, 2006, 110: 3330-3335.
    [112] Lissant K J. Emulsion and emulsion technology. New York: Marcel Dekker, 1974.
    [113] Masliyah J, Zhou Z, Xu Z, et al. Understanding water-based bitumen extraction from Athabasca oil sands. J Chem Eng, 2004, 82: 628-654.
    [114] Pathak JA, Davis M C, Hudson S D, et al. Layered droplet microstructures in sheared emulsions: finite-Size effects. J Colloid Interface Sci, 2002, 255: 391-402.
    [115] Vananroye A, Puyvelde P V, Moldenaers P. Effect of confinement on droplet breakup in sheared emulsions. Langmuir, 2006, 22: 3972-3976.
    [116] Puyvelde P V, Vananroye A, Cardinaels R, et al. Review on morphology development of immiscible blends in confined shear flow. Polymer, 2008, 49: 5363-5372.
    [117] Tieu A K, Kosasih P B. Experimental and numerical study of O/W emulsion lubricated strip rolling in mixed film regime. Tribol Lett, 2007, 25: 23-32.
    [118] Yang H X, Schmid S R, Reich R A, et al. Direct observations of emulsion flow in elastohydrodynamically lubricated contacts. AMSE J Tribol, 2006, 128: 619-623.
    [119] Cambiella A, Benito J M, Pazos C, et al. The effect of emulsifier concentration on the lubricating properties of oil-in-water emulsions. Tribol Lett, 2006, 22: 53-65.
    [120] Ratoi-Salagean M, Spikes H A, Hoogendoorn R. The design of lubricious oil-in-water emulsions. Proc Instn Mech Engrs, 1997, 211(Part J): 195-208.
    [121] Bibette J, Morse D C, Witten T A, et al. Stability criteria for emulsions. Phys Rev Lett, 1992, 69: 2439-2442.
    [122] Mostowfi F, Czarnecki J, Masliyah J, et al. A microfluidic electrochemical detection technique for assessing stability of thin films and emulsions. J Colloid Interface Sci, 2008, 317: 593-603.
    [123] Bremond N, Thiam A R, Bibette J. Decompressing emulsion droplets favors coalescence. Phys Rev Lett, 2008, 100: 024501.
    [124] Sato M, Hatori T, Saito M. Emulsification and size control of insulating and/or viscous liquids in liquid-liquid systems by electrostatic dispersion. J Colloid Interface Sci, 1993, 156: 504-507.
    [125] Barrero A, Lopez-Herrera J M, Boucard A, et al. Steady cone-jet electrosprays in liquid insulator baths. J Colloid Interface Sci, 2004, 272: 104-108.
    [126] Kim H, Luo D, Link D. Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl Phys Lett, 2007, 91: 133106.
    [127] Ha J W, Yang S M. Effect of nonionic surfactant on the deformation and breakup of a drop in an electric field. J Colloid Interface Sci, 1998, 206:195-204.
    [128] Ha J W, Yang S M. Breakup of a multiple emulsion drop in a uniform electric field. J Colloid Interface Sci, 1999, 213: 92-100.
    [129] Mostowfi F, Khristov K, Czarnecki J. Electric field mediated breakdown of thin liquid films separating microscopic emulsion droplets. Appl Phys Lett, 2007, 90: 184102.
    [130] Thiam A R, Bremond N, Bibette J. Breaking of an emulsion under an ac electric field. Phys Rev Lett, 2009, 102: 188304.
    [131] Santini E, Liggieri L, Sacca L, et al. Interfacial rheology of Span 80 adsorbed layers at paraffin oil-water interface and correlation with the corresponding emulsion properties. Colloids Surf A, 2007, 309: 270-292.
    [132] Tcholakova S, Denkov N D, Danner T. Role of surfactant type and concentration for the mean drop size during emulsification in turbulent flow. Langmuir, 2004, 20: 7444-7458.
    [133] Zhu D, Biresaw G, Clark S J, et al. Elastohydrodynamic lubrication with O/W emulsions. ASME J Tribol 1994, 116, 310-319.
    [134] Ratoi-Salagean M, Spikes H, Rieffe H L. Optimizing film formation by oil-in-water emulsions. Tribol Trans, 1997, 40: 569-578.
    [135] Yang H X, Schmid S R, Kasun T J, et al. Elastohydrodynamic film thickness and tractions for oil-in-water emulsions. Tribol Trans, 2004, 47: 123-129.
    [136] Favelukisa M, Lavrentevab O M, Nir A. Deformation and breakup of a non-Newtonian slender drop in an extensional flow. J Non-Newtonian Fluid Mech, 2005, 125: 49-59.
    [137] Ha J W, Yang S M. Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field. J Fluid Mech, 2000, 405: 131-156.
    [138] Ha J W, Leal L G. An experimental study of drop deformation and breakup in extensional
    low at high capillary number. Phys Fluids, 2001, 13: 1568-1576. [139] Raviv U, Laurat P, Klein J. Fluidity of water confined to subnanometre films. Nature, 2001, 413: 51-54. [140] Raviv U, Perkin S, Laurat P, et al. Fluidity of water confined down to subnanometer films. Langmuir, 2004, 20: 5322-5332. [141] Zhu Y, Granick S. Viscosity of interfacial water. Phys Rev Lett, 2001, 87: 096104. [142] Raviv U, Klein J. Fluidity of bound hydration layers. Science, 2002, 297: 1540-1543. [143] Sakuma H, Otsuki K, Kurihara K. Viscosity and lubricity of aqueous NaCl solution confined between mica surfaces studied by shear resonance measurement. Phys Rev Lett, 2006, 96: 46104. [144] Leng Y S, Cummings P T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys Rev Lett, 2005, 94: 026101. [145] Leng Y S, Cummings P T. Hydration structure of water confined between mica surfaces. J. Chem Phys, 2006, 124: 074711. [146] Kusalik P G, Svishchev L M. The spatial structure in liquid water. Science, 1994, 265: 1119-1221. [147] Kusalik P G, Svishchev I M. Three-dimensional structure in water-methanol mixtures. J Phys Chem A, 1997, 101: 5910-5918. [148] Zangi R, Mark A E. Electrofreezing of confined water, J Chem Phys, 2004, 120: 7123-7130. [149] Choi E M, Yoon Y H, Lee S, et al. Freezing Transition of interfacial water at room temperature under electric fields. Phys Rev Lett, 2005, 95:085701. [150] Bratko D, Daub C D, Luzar A. Field-exposed water in a nanopore: liquid or vapour? Phys Chem Chem Phys. 2008, 10(45): 6807-6813. [151] Bogdan C D, Vakarelski I U, Higashitani K. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir, 2005, 21: 1834-1839. [152]吴大诚,朱谱新,王罗新,等.表面、界面和胶体-原理及应用.北京:化学工业出版社, 2005. [153] Ma L R, Luo J B, Zhang C H, et al. Effect of microcontent of oil in water under confined condition. Appl Phys Lett, 2009, 295: 091908. [154] Hamrock B J, Dowson D. Ball bearing lubrication - the elastohydrodynamics of elliptical contacts. New York: Wiley, 1981. [155]雒建斌,钱林茂,刘姗,等.纳米级润滑膜失效实验研究.自然科学进展, 2000, 10(1): 89-94. [156] Kampf N, Ben-Yaakov D, Andelman D, et al. Direct measurement of sub-Debye-length attraction between oppositely charged surfaces. Phys Rev Lett, 2009, 103: 118304. [157] Cross J. Electrostatics: Principles, problems and applications. Bristol: Adam Hilger, 1987,
    69.
    [158] Kimura Y, Nakano K, Kato T. Control of friction coefficient by applying electric fields across liquid crystal boundary films. Wear. 1994, 175: 143-149.
    [159] Atkin R, Craig V S J, Wanless E J, et al. Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Advances in Colloid Inter Sci, 2003, 103: 219-304.
    [160] Granick S. Motions and relaxations of confined liquids. Science, 1991, 253: 1374-1379.
    [161] Zhu Y, Granick S. Reassessment of solidification in fluids confined between mica sheets. Langmuir, 2003, 19 (20): 8148-8151
    [162] Klein J, Kumacheva E. Confinement-induced phase transitions in simple liquids. Science, 1995, 269: 816-819.
    [163] Drummond C, Israelachvili, J. Dynamic phase transitions in confined lubricant fluids under shear. Phys Rev E, 2001, 63: 041506.
    [164] Drummond C, Alcantar N, Israelachvili J. Shear alignment of confined hydrocarbon liquid films. Phys Rev E, 2002, 66: 011705.
    [165] Lang XY, Zhu Y F, Jiang Q. Nature of solidification of nanoconfined organic liquid layers. Langmuir, 2007, 23 (3): 1000-1003.
    [166] Patil S, Matei G, Oral A, et al. Solid or liquid? Solidification of a nanoconfined liquid under nonequilibrium conditions. Langmuir, 2006, 22: 6485-6488.
    [167] Sun G, Bonaccurso E, Franz V, et al. Confined liquid: Simultaneous observation of a molecularly layered structure and hydrodynamic slip. J Chem Phys, 2002, 117: 10311.
    [168] Schoch R B, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys, 2008, 80: 839-883.
    [169] Baldessari F, Santiago J G. Electrophoresis in nanochannels: brief review and speculation. J Nanobiotechnology, 2006, 4: 12.
    [170] Xie G X, Luo J B, Liu S H, et al. Effect of external electric field on liquid film confined within nanogap. J Appl Phys, 2008, 103: 094306.
    [171] Gong X J, Li J Y, Lu H J, et al. A charge-driven molecular pump. Nat Nanotechnol, 2007, 2: 709-712.
    [172] Zhang Y, Gamble T C, Neumann A, et al. Electric field control and analyte transport in Si/SiO2 fluidic nanochannels. Lab Chip, 2008, 8: 1671-1675.
    [173] Henrickson S E, Misakian M, Robertson B, et al. Driven DNA transport into an asymmetric nanometer-scale pore. Phys Rev Lett, 2000, 85: 3057-3060.
    [174] Salieb-Beugelaar G B, Teapal J, Nieuwkasteele J, et al. Field-dependent DNA mobility in 20 nm high nanoslits. Nano Lett, 2008, 8: 1785-1790.
    [175]杜红世.荧光技术在弹流润滑中的应用研究[博士学位论文].北京:清华大学精密仪器与机械学系, 1999.
    [176] Choo J W, Glovnea R P, Olver A V, et al. The effects of three-dimensional model surface roughness features on lubricant film thickness in EHL contacts. ASME J Tribol, 2003, 125: 533-542.
    [177] Choo J W, Olver A V, Spikes H A. The influence of transverse roughness in thin film, mixed elastohydrodynamic lubrication. Tribol Int, 2007, 40: 220-232.
    [178] Tareev B. Physics of dielectric materials (translated from Russian by Troitsky A). Moscow: Mir Publishers, 1975.
    [179] Singh G, Saraf R F, Martin Y. Solid-like dynamics in ultrathin films of polymeric liquids. Appl Phys Lett, 2003, 83: 5410.
    [180] http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_3/backbone/r3_2_2.html.
    [181] Cui S T, Cummings P T, Cochran H D. Effect of branches on the structure of narrowly confined alkane fluids: n-hexadecane and 2, 6, 11, 15-tetramethylhexadecane. J Chem Phys, 2001, 114: 6464-6471.
    [182] Matsuoka H, Kato T. Experimental study of ultrathin liquid lubrication film thickness at the molecular scale. Proc Instn Mech Engrs, Part J, 1997, 211: 139-150.
    [183] Dall'Agnol F, Mammana V. Solution for the electric potential distribution produced by sphere-plane electrodes using the method of images. Revista Brasileira de Ensino de Fisica, 2009, 31: 3503.
    [184] Wysocki J J, Adams J, Haas W. Electric-field-induced phase change in cholesteric liquid crystals. Phys Rev Lett, 1968, 20:1024-1025.
    [185]刘福春.分子在外场中转动态选择和准直、取向研究[博士学位论文].长春:吉林大学物理学院, 2006.
    [186] Rasaiah J C, Isbister D J, Eggebrecht J. Polarization density profiles for dipoles against an electrified wall in the MS and RLHNC approximations. J Chem Phys, 1981, 75: 5497-5502.
    [187] Herminghaus S. Dynamical instability of thin liquid films between conducting media. Phys Rev Lett 1999, 83: 2359-2361.
    [188] Zhu T, Yang L, Jia Z, et al. Characteristics of streamer discharge development between the dielectric-coated sphere-plane electrodes in water. J Appl Phys, 2008, 104: 113302.
    [189] Pohl H A. Some effects of nonuniform fields on dielectrics. J Appl Phys, 1958, 29: 1182-1188.
    [190] Lakshminarayana K, Dasaradhudu Y, Narasimha Rao V V R. Charging and discharging currents in poly(vinyl pyrrolidone) polymer thin films. Mater Chem Phys, 1995, 42: 206-209.
    [191] Krause H. The decrease of the electric current due to formation of electrode coverage in theliquid aromatics benzene and anthracene. J Phys D: Appl Phys, 1976, 9: 2597-2603.
    [192] Gidon S, Lemonnier O, Rolland B, et al. Electrical probe storage using Joule heating in phase change media. Appl Phys Lett, 2004, 85: 6392.
    [193] Mustafa M M, Wright C D. An analytical model for nanoscale electrothermal probe recording on phase-change media. J Appl Phys, 2006, 99: 034301.
    [194] Landau L, Lifshitz E. Statistical Physics. Oxford: Pergamon Press, 1969.
    [195] Mori Y, Hijikata K, Nagatani T. Effect of dissolved gas on bubble nucleation. Int J Mass Transfer, 1976, 19: 1153-1159.
    [196] Qian J, Joshi R P, Schamiloglu E, et al. Analysis of polarity effects in the electrical breakdown of liquids. J Phys D: Appl Phys, 2006, 39: 359-369.
    [197] Li Y P, Li D Y. Experimental studies on relationships between the electron work function, adhesion, and friction for 3d transition metals. J Appl Phys, 2004, 95: 7961-7965.
    [198] Brennen C E. Cavitation and bubble dynamics. Oxford: Oxford University Press, 1995.
    [199] Toegel R, Luther S, Lohse D. Viscosity destabilizes sonoluminescing bubbles. Phys Rev Lett, 2006, 96: 114301.
    [200] Jomni F, Denat A. Viscosity effect on the dynamics of small bubbles generated by electrical current pulse in viscous insulating liquids. IEEE Annual Report - Conference on Electrical Insulation and Dielectric Phenomena. Minneapolis: IEEE Society, 1997: 652.
    [201] Kuvshinov G I. Reduction of cavitation action on a surface being treated by diminishing the gap. J Eng Phys, 1990, 58: 771-774.
    [202] Iwai Y, Li S C. Cavitation erosion in waters having different surface tensions. Wear, 2003, 254: 1-9.
    [203] Sarrot V, Guiraud P, Legendre D. Determination of the collision frequency between bubbles and particles in flotation. Chem Eng Sci, 2005, 60: 6107-6117.
    [204] Ranger A P, Ettles C M M, Cameron A. The solution of the point contact elasto-hydrodynamic problem. Proc R Soc London, Ser A, 1975, 346: 227-244.
    [205] Benguigui L, Lin I J. The dielectrophoresis force. Am J Phys, 1986, 54: 447-450.
    [206]罗宏昌,毕载俊,伍学正.静电实用技术手册.上海:上海科学普及出版社, 1990.
    [207] Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985.
    [208] Yeoh G H, Tu J Y. A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow. Nucl Eng Des, 2005, 59: 3125-3139.
    [209] Snabre P, Magnifotcham F. Formation and rise of a bubble stream in a viscous liquid. Eur Phys J B, 1998, 4: 369-377.
    [210] Duhar G, Riboux G, Colin C. Vapour bubble growth and detachment at the wall of shear flow. Heat Mass Transfer, 2007, (special issue).
    [211] Joseph D D, Wang J. The dissipation approximation and viscous potential flow. J Fluid Mech, 2004, 505: 365-377.
    [212] Joseph D D. Potential flow of viscous fluids: Historical notes. Int J Multiphas Flow, 2006, 32: 285-310.
    [213] Hilgenfeldt S, Brenner M P, Grossmann S, et al. Analysis of Rayleigh--Plesset dynamics for sonoluminescing bubbles. J Fluid Mech, 1998, 365: 171-204.
    [214] Prashad H. Investigation of damaged rolling-element bearings and deterioration of lubricants under the influence of electric fields. Wear, 1994, 176: 151-161.
    [215] Chen H S, Li J. A ring area formed around the erosion pit on 1Cr18Ni9Ti stainless steel surface in incipient cavitation erosion. Wear, 2009, 266: 884-887.
    [216] http://baike.baidu.com/view/1593163.htm.
    [217]吴广宁.电气设备状态监测的理论与实践.北京:清华大学出版社, 2005.
    [218] http://www.stle.org/resources/lubelearn/wear/default.aspx.
    [219]曹凤国.电火花加工技术.北京:化学工业出版社, 2005.
    [220]赵万生.先进电火花加工技术.北京:国防工业出版社, 2003.
    [221] Knapp R T, Daily J W, Hammitt F G. Cavitation. New York: McGraw-Hill, 1970.
    [222]刘诗汉.空化微射流冲击作用下材料表面破坏机理研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700