苛刻条件下润滑脂成膜机理及润滑特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代工业领域,润滑脂被广泛应用于机械运动系统的润滑,特别适用于低速、重载及非稳态等苛刻条件。脂润滑的深入研究对于节省能源、减少磨损以及延长机械设备的使用寿命具有重要意义。
     本文为了揭示苛刻条件下的润滑行为,利用相对光强法测量膜厚技术,建立了适于模拟苛刻润滑条件的非稳态润滑综合测量仪。该测量仪可以模拟匀速、变速等多种运动形式,实现了低速(0.04 mm/s)及高接触压力(2 GPa)下接触区动态膜厚测量、润滑行为观测和摩擦力在线测量。
     选用蓝宝石盘和GCr15钢球为配副材料,研究了润滑脂在低速、重载润滑条件下成膜机理及润滑特性。发现当速度大于4 mm/s时,脂润滑膜厚度变化规律与弹流理论预测结果基本一致;而当速度小于4 mm/s时,润滑脂中的稠化剂纤维对润滑脂成膜起主要作用,润滑脂的成膜能力不受卷吸速度变化的影响,其成膜能力远高于理论预测结果。接触压力的变化对润滑脂的成膜能力及膜厚变化规律影响不明显。
     在往复摆动的零速瞬间,接触区中心润滑膜厚度比其周围的大,接触区最小润滑膜厚度大于静态润滑膜厚度,最大润滑膜厚度随速度变化率的增加而增大。在一个往复摆动周期中,接触区最小中心润滑膜厚度出现在反向加速运动的初始阶段。润滑脂在高接触压力作用下表现为“类固态”,在微摆纯滑动条件下,接触区受限脂润滑膜中出现无剪切流动层。该无剪切流动层中的各点具有相同的运动速度,只是在两摩擦副表面附近薄层内发生相对滑动。相对滑动对接触区润滑膜形成产生影响。
     润滑脂中加入MoS_2和TiO_2固体微小颗粒,其流变特性及摩擦学特性都发生了改变。含固体微小颗粒润滑脂的屈服剪切应力随着固体微小颗粒含量的增加而减小,表观粘度随固体微小颗粒含量的增加而增大。含固体微小颗粒润滑脂的减摩抗磨能力明显提高,分析结果表明:磨斑表面生成了与颗粒成份相关的保护层,同时与颗粒的组织结构和物化特性有关。
In modern industry, grease is widely employed in many mechanical motion systems, especially under harsh conditions, such as low speed, heavy load and non-steady state. It is of great significance to study the grease lubrication in depth under these conditions to save energy, reduce wear and extend the service life of machinery.
     In the present thesis, a tribological multi-functional apparatus has been developed by using the technique of relative optical interference intensity to study the lubrication behavior under harsh conditions. The apparatus can simulate the cases at constant speed and variable speed, etc. In addition an ultra-low-speed of 0.04mm/s and a high contact pressure of 2 GPa can be achieved. The dynamic film thickness of the contact area can be measured. The lubrication behavior can be observed and the friction force can be measured online.
     A sapphire disc and a steel ball (GCr15) are selected as the tribo-pair for studying the film-forming mechanism and the lubrication properties of the grease under the conditions of low speed and heavy load. When the speed is larger than 4mm/s, the variation of the grease film thickness is very close to the theoretical prediction. However, the soap fiber plays an important role in the lubrication process when the speed is lower than 4mm/s. The film forming capacity of the grease at low speeds is far higher than the theoretical prediction, and is not affected by the variation of the entrainment speed. The variation of the contact pressure has no obvious effect on the film forming capacity of grease.
     During oscillation, the central film is thicker than its peripheries at the moment of zero entrainment speed, and the minimum film thickness is larger than of the static central film thickness. The central film thickness at this moment increases with increasing the rate of the change of entrainment speed. In one oscillation cycle, the minimum central film thickness appears at the initial stage of acceleration. Under micro oscillation sliding condition, there are two thin layers near the interface of the entrapped grease and the two surfaces of the tribo-pairs. The shear flow has a certain effect on the film formation. The rest entrapped grease between the two shear layers shows a solid like state. No shear flow occurs in this layer and the grease in this layer has the same velocity.
     Micro/Nano MoS_2 and TiO_2 particles are used as additives for the lithium grease. The rheological properties and tribological properties of the modified lithium grease are changed correspondingly. For example, the yield shear stress decreases but the apparent viscosity of the lithium grease increases with the increasing content of the particles. The friction-reduction and anti-wear properties of the lithium grease are improved by adding the particles, and the underlying mechanisms are related to the formation of protective layers on the wear scar and the structure and physicochemical characteristics of the particles.
引文
[1]温诗铸,黄平.摩擦学原理(第3版).北京:清华大学出版社,2008.
    [2] Luo J B, Wen S Z, Huang P. Thin film lubrication, Part I: The transition between EHL and thin film lubrication. Wear, 1996, 194: 107-115.
    [3]孙权淑.润滑脂性能及应用.北京:烃加工出版社,1989.
    [4]徐桂云,张永忠.润滑脂流变和输送特性研究.中国矿业大学出版社, 2005.
    [5] Palacios J M, Cameron A, Arizmendi L. Film thickness of grease in rolling contacts. Tribol Trans, 1981, 24: 474-478.
    [6] Rhodes F H. Lubricating properties of lime-base freases. Ind Eng Chem, 1937, 29: 702-704.
    [7] Cohn G., Oren J W. Film pressure in grease-lubricated sleeve bearings. Trans ASME, 1949, 71: 555-560.
    [8] Chakrabarti R K, Harker R J. Frictional resistance of a radially loaded journal bearing with grease lubrication. Lubr Eng, 1960, 16: 274-280.
    [9] Wedeven L D, Evans D, Cameron A. Optical analysis of ball bearing starvation. Trans ASME J Lubr Tech, 1971, 93: 349-363.
    [10] Cann P M, Doner J P, Webster M N, Wikstrom V. Grease degradation in rolling element bearings. Tribol Trans, 2001, 44: 399-404.
    [11] Cann P M, Chevalier F, Lubrecht A A. Track depletion and replenishment in a grease lubricated point contact: a quantitative analysis. In Elastohydrodynamics'96, Proceedings of 23rd Leeds-Lyon Symposium, 1997, 405-413.
    [12] Kingsbury A. A new oil-testing machine and some of its results. Trans ASME, 1903, 24: 143-160.
    [13] Needs S J. Boundary film investigations. Trans ASME, 1940, 62: 331-339.
    [14] Smith A J, Cameron A. Rigid surface film. Pro Roy Soc Lond, 1972, 328: 541-560.
    [15] Israelachvili J N. Thin film studies using multiple-beam interferometry. J Colloid Interface Sci, 1973, 44: 259-267.
    [16] Binnig G, Quate C F, Gerber G. Atomic force microscope. Phys Rev Lett, 1986, 56: 930-933.
    [17] Johnston G J, Wayte R, Spikes H A. The measurement and study of very thin lubricant films in concentrated contact. Tribol Trans, 1991, 34: 187-194.
    [18]黄平,雒建斌,邹茜.相对光强原理测量纳米级润滑薄膜原理的研究.润滑与密封,1995, (1): 32-34.
    [19] Jacob K, Dvora P, Warburg S. Forces between polymer-bearing surfaces undergoing shear. Nature, 1991, 352: 143-145.
    [20] Jacob K, Eugenia K, Confinement-induced phase transitions in simple liquid, Science, 1995, 269: 816-819.
    [21] Ruan J, Bhushan B. Friction behavior of hoghly oriented pyrolytic grophite. J Appl Phys, 1994, 76: 8117-8120.
    [22] Qian L M, Luo J B, Zhang W. Design of Self-adaptive micro-tribology multiple-measuring test rig and experimental studies on nano lubrication. Journal of Tsinghua University, 1998, 38(4): 33-37.
    [23] Luo J B, Wen S Z. Study on the mechanism and characteristics of thin film lubrication at nanometer scale. Science in China (Series A ) , 1996, 35(12): 1312-1322.
    [24]雒建斌,史兵,钱林茂.超滑机理研究进展与机理分析.清华大学学报, 1997, 37(11): 104-109.
    [25]陈绍澧.润滑脂.北京:石油工业出版社,1957.
    [26] Magnin A, Piau J M. Application of freeze-fracture technique for analyzing the structure of lubricant greases. J Mater Res, 1989, 4: 309-334.
    [27] Hurley S, Cann, P M. Examination of grease structure by SEM and AFM techniques. NLGI spokesman, 2001, 65: 17-26.
    [28] Cho Y I, Choi E. The rheology and hydrodynamic analysis of grease flows in a circular pipe. Tribol Trans, 1993, 36: 545-554.
    [29]王晓力,朱廷彬,梁会芳.国产润滑脂流变参数的确定与研究.摩擦学学报, 1997, 17(3): 232-237
    [30] Meng Y G, Zheng J. A rheological model for lithium lubricating grease. Tribol Int, 1998, 33: 619-625.
    [31] Kieke M, Nae H I. Rheological properties of grease systerms: viscosity, viscoelastecity and the effect of temperature. NLGI Spolesman, 1994, 58: 2-21.
    [32] Sasaki T HMori, Okino N. Theory of grease lubrication of cylindrical roller bearings. Bull J AME, 1960, (3): 31-36.
    [33] Ering H. Relation of some properties of lubrications. NLGI Spokesman, 1956, 20: 10-15.
    [34] Kauzlarich J J, Greenwood J A. Elastohydrodynamic lubrication with Herschel-Bulkley model greases. Tribol Trans, 1972, 15: 267-277.
    [35]应自能.润滑脂流变特性及其弹流润滑机理的研究[硕士学位论文].北京:清华大学精密仪器与机械学系, 1985, 31-40.
    [36] Wen S Z, Ying T N. A Theoretical and experimental study of EHL lubricated with grease.J Tribol, 1988, 110: 38-43.
    [37]董大明,钱祥麋.润滑脂的流变特性及线接触脂润滑的弹流分析.华东化工学院学报, 1989, 15(1): 821-828.
    [38] Sanse W, Masafumi T. Elastohydrodynamic lubrication of squeeze films, Part 1: Two cylinders lubricated with grease. Bull JSME, 1978, 21: 1408-1415.
    [39] Sanse W, Masafumi T. Elastohydrodynamic lubrication of squeeze films, Part 2: Two spherical bodies lubricated with grease. Bull JSME, 1980, 23: 766-772.
    [40] Wang X L, Gui C L, Zhu T B, Liang H F. Study on rheological parameters of domestic lubricating grease. Tribol, 1997, 17: 232-237.
    [41] Dong D M, Qian X L. Theory of elastohydrodynamic grease lubricate line contact base on a refined rheological model. Tribol Int, 1988, 21: 261-267.
    [42] Booser E R, Wilcock D F. Minimum oil requirements of ball bearings. Lubr Eng, 1953, 9: 140-143.
    [43] Baker A E. Grease bleeding-a factor in ball bearing performance. NLGI Spokesman, 1958, 22: 271-279.
    [44] Scarlett N A. Use of grease in rolling bearings. Proc IMechE, 1967, 182: 167-171.
    [45] Cann, P M. The influence of temperature on the lubrication behavior of a lithium hydroxystearate grease. Eurogrease, 1995, 25-32.
    [46] Eriksson P, Wikstrom V, Larsson R. Grease passing through an elastohydrodynamic contact under pure rolling conditions. Proc Instn Mech Engrs, 2000, 214: 309-316.
    [47] Cann P M, Spikes H A. In lubro studies of lubricants in EHD contacts using FTIR absorption spectroscopy. STLE Trib Trans, 1991, 34: 248-256.
    [48] Halloran R O. Grease flow in shielded bearings. Lubr Eng, 1958, 14: 104-108
    [49] Jonkiss E, Krzeminski-Freda H. Pressure distribution and shape of an elastohydrodynamic grease film. Wear, 1979, 55: 81-89.
    [50] Cann P M. Starvation and reflow in grease lubricated elastohydrodynamic contacts. Tribol Trans, 1996, 39: 698-704.
    [51] Boner C J. Soap as lubricant. Petroleum Processing, 1948, 3: 1193-1196.
    [52] Godfrey D. Friction of greases and grease components during boundary lubrication. ASLE Trans, 1964, 7: 24-31.
    [53] Endo T. Recent development in diurea grease. NLGI Spokesman, 1993, 57: 533-541.
    [54] Cann P M. Grease lubrication of rolling element bearings-role of the grease thickener. Lubr Sci, 2007, 19: 183-196.
    [55] Cann P M, Spikes H A. The behaviour of greases in elastohydrodynamic contacts. J Phys D Appl Phys, 1992, 25: A124-A132
    [56] Astrbm H, Ostenson J O, Hoglund E. Lubrication grease replenishment in an elastohydrodynamic point contact. J Tribol, 1993, 115: 501-507.
    [57] Wedeven L D, Evans D, Cameron A. Optical analysis of ball bearing starvation. Trans ASME J Lubr Tech, 1971, 93: 349-363.
    [58] Cann P M, Lubrecht A A. An analysis of the mechanisms of grease lubrication in rolling element bearings. Lubr Sci, 1999, 11: 227-245.
    [59] Kageyama H, Machidori W, Moriuchi T. Grease lubrication in elastohydrodynamic contacts. NLGI Spokesman, 1984, 48: 72-81.
    [60] Moriuchi T, Machodori W, Kageyama H. Grease lubrication in elastohydrodynamic contacts-part II. NLGI Spokesman, 1985, 348-356.
    [61] Kageyama H, Monuchi T, Machidori W. Grease lubrication in elastohydrodynamic contacts-part III. NLGI Spokesman 1986, 261-273.
    [62] Williamson B P, Kendall D R, Cann P M. The Influence of grease composition on film thickness in EHD contacts. NLGI Spokesman, 1993, 57: 329-334.
    [63] Williamson B P. An optical study of grease rheology in an elastohydrodynamic point contact under fully flooded and starvation conditions. Proc Instn Mech Engrs, 1994, 209: 63-75.
    [64] Cann P M. Starved grease lubrication of rolling contacts. Tribol Trans, 1999, 42: 867-873.
    [65] Hurley S, Cann P M, Spikes H A. Lubrication and reflow properties of thermally aged greases. Tribol Trans, 2000, 43: 221-228.
    [66] Cann P M. Thin film grease lubrication. Proc Instn Mech Engrs, 1999, 213: 405-416.
    [67] Hurley S, Cann P M. Grease composition and film thickness on rolling contacts. NLGI Spokesman, 1999, 63: 12-22.
    [68] Larsson P O, Larsson R, Jolkin A. Pressure fluctuations as grease soaps pass through an EHL contact. Tribol Int, 2000, 33: 211-216.
    [69] Khonsari M M, Wang S H, Qi Y L. A theory of thermo-elastohydrodynamic lubrication of liquid-solid lubricated cylinders. J Tribol, 1990, 112: 259-265.
    [70] Dai F, Khonsari M M. Generalized reynolds equation for soled-liquid lubricated bearings. ASME J Appl Mech, 1994, 61: 460-466.
    [71] Abhay K, William R D. Particle behavior in two-phased lubrication. Wear, 1997, 206: 130-135.
    [72] Kang Y S, Farshid S. Debris effects on EHL contact. J Tribol, 2000, 122: 711-720.
    [73] Christian J, Schwartz. Studies on the tribological behavior and transfer film-counterface bond strength for polyphenylene sulfide filled with nanoscale alumina particles. Wear,2000, 237: 261-273.
    [74] Tatasov S, Study of friction by nanocopper additives to motor. Wear, 2002, 252: 63-69.
    [75]高永建,张治军,薛群基等.油酸修饰TiO2,纳米微粒水溶液润滑下GCr15钢摩擦磨损性能研究.摩擦学学报, 2000, 2: 22-25.
    [76] Zhang Z J, Zhang J, Xue Q J. Synthesis and characterization of a molybdenum disulfide nanocluster. J Phys Chem, 1994, 98: 12973-12977.
    [77] Dong J X. A study of anti-wear and friction-reducing properties of lubricant additive of nanometer zinc borate. Tribol Int, 1997, 31: 219-223.
    [78] Dumdum J M, Aldr H E, Bamum E C. Lubricant grade cerium fluoride-a new solid lubricant additive for grease, paste, and suspensions. NLGIS Spokesman, 1984, 47: 111-119.
    [79] Tomimoto M. Expermental verification of a particle induced friction model in journal bearings. Wear, 2003, 254: 749-762
    [80] Hosoe. The effect of super pine particles of oxide ceramics on the lubricity of lubricating grease. Mater Tech, 2000, 18: 71-78.
    [81]王德国,冯大鹏.几种金属纳米微粒做润滑脂添加剂的试验研究.机械工程材料, 2005 (4): 58-59.
    [82]王李波,刘维民.表面未修饰及修饰纳米SiO2对锂基脂摩擦学性能的影响.润滑与密封, 2006, (2): 46-48.
    [83]宋宝玉,张锋,刘艳玲.纳米二氧化硅对陶瓷球疲劳寿命影响的研究.润滑与密封, 2006, (7): 15-17.
    [84] Gupta B, Bhushan B. Fuiierrene particles as an additive to liquid lubricants and greases for low friction and wear. Lubr Eng, 1994, 50: 524-528.
    [85]沈明武,雒建斌,温诗铸.金刚石纳米颗粒对薄膜润滑性能的影响.机械工程学, 2001, 37(1) : 14-18.
    [86]刘维民,薛群基,周静芳.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究.中国表面工程, 2001, (3): 21-29
    [87]胡泽善,王立光,黄令.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能.摩擦学学报, 2000, 20(4): 292-295.
    [88]贾华东,柳刚,范荣焕.纳米材料作为润滑添加剂的研究回顾及目前的发展动向与展望.润滑与密封, 2006, (3): 181-186.
    [89]杨鹤,张正业,李生华,金元生.金属磨损自修复层的X光电子能谱研究.光谱学与光谱分析, 2005, 25(6): 945-948.
    [90]刘谦,徐滨士,许一,史佩京,于鹤龙.纳米铜自修复添加剂摩擦学特性研究.材料保护,2007,17(7): 147-149.
    [91] Spikes H A, Guangteng G. Properties of ultra-thin lubricating using wedged spacer layer optical interferometery. In: Proceedings of the 14th Leeds-Lyon Symposium on Tribology, 1987, 275-279.
    [92] Huang P, Luo J B, Zou Q. Investigation into measuring nanometer lubrication film thickness by relative light intensity principle. Lubr Eng, 1995, (1): 32-34.
    [93]雒建斌,温诗铸,纳米级润滑膜的测试研究.仪器仪表学报, 1995,16(1):148~152
    [94]雒建斌,薄膜润滑试验技术和特性研究[工学博士学位论文].北京:清华大学精密仪器与机械学系, 1994.
    [95]严瑛白,应用物理光学,北京:机械工业出版社,1990,67~164。
    [96]张秉智.润滑脂的流变性及其实用意义.润滑材料, 1989, 16(1): 38-42.
    [97] Luo J B, Qian L N, Wen S Z, et al. The failure of fluid film at nano-scale. Tribol Trans, 1999, 42: 912-916.
    [98] Zhu D. Elastohydrodynamic lubrication in extended parameter ranges. Part 1: Speed effect. Tribol Trans, 2002, 45: 540-548.
    [99] Glovnea R P, Olver A V, Spikes H A, Zhu D. Experimental investigation of the effect of speed and load on film thickness. Tribol Trans, 2005, 48: 328-335.
    [100] Kaneta M, Ogata T, Takubo Y, Naka M. Effects of a thickener structure on grease elastohydrodynamic lubrication films. Proc Instn Mech Engrs, 2000, 214: 327-336.
    [101] K?upka I, Hartl M. Influence of contact pressure on central and minimum film thickness within ultra-thin film lubricated contacts. J Tribol, 2005, 127, 890-892.
    [102] K?upka I, Hartl M, Liska M. Thin lubricating films behaviour at very high contact pressure. Tribol Int, 2006, 39: 1726-1731.
    [103] Smeeth M, Spikes H A. Central and minimum elastohydrodynamic film thickness at high contact pressure. J Tribol, 1997, 119: 291-296.
    [104] Dowson D, Higginson G R, Whitaker A V. Elastohydrodynamic lubrication: a survey of isothermal solutions. J Mech Eng Sci, 1962, 4: 121-62.
    [105] Glasstone S. Textbook of physical chemistry [M], 1946.
    [106] Chi?as-Castillo F, Spikes H A. Mechanism of action of colloidal solid dispersions. ASEM J Tribol, 2003, 125: 552-557.
    [107] Hamrock B J. Fundamentals of fluid film lubrication. McGraw-Hill N Y, 1994.
    [108] Tipei N. Boundary conditions of a viscous flow between surfaces with rolling and sliding motion. ASME J Lubr Technol, Series F, 1968, 90: 254-261.
    [109] Sugimura J, Okumura T, Yamamoto Y, Spikes, H A. Simple equation for elastohydrodynamic film thickness under acceleration. Tribol Int, 1999, 32: 117-123.
    [110] Glovnea R P, Spikes H A. The influence of lubricant upon EHD film behavior duringsudden halting of motion. Tribol Trans, 2000, 43: 731-739.
    [111] Glovnea R P, Spikes H A. The influence of Cam-Follower motion on elastohydrodynamic film thickness. Proc 27th Leeds-Lyon symposium on tribology, 2001, 39: 485-493.
    [112] Dowson D, Taylor C M, Zhu G. A transient elastohydrodynamic lubrication analysis of a cam and follower. J Appl Phys, 1992, 25: 313-320.
    [113] Ai X L, Yu H Q. A numerical analysis for the transient EHL process of a Cam-Tappet pair in I.C. engine. ASME J Tribol, 1989, 111: 413-417.
    [114] Glovnea R P, Spikes H A. Elastohydrodynamic film formation at the start-up of the motion. Proc Instn Mech Engrs Part J, 2001, 215: 125-138.
    [115] Glovnea R P, Spikes H A. The influence of lubricant upon EHD film behavior during sudden halting of motion. Tribol Trans, 2000, 43: 731-739.
    [116] Glovnea R P, Spikes H A. Elastohydrodynamic film collapse during rapid deceleration. Part I: experimental results. ASME J Tribol, 2000, 123: 254-261.
    [117] Glovnea R P, Spikes H A. Elastohydrodynamic film collapse during rapid deceleration. Part II: Theoretical analysis and comparison of theory and experiment. ASME J Tribol, 2000, 123: 262-267.
    [118] Sugimura J, Jones W R, Spikes H A. EHD film thickness in non-steady state contacts. ASME J Tribol, 1998, 120: 442-452.
    [119] Glovnea R P, Spikes H A. Behavior of EHD films during reversal of entrainment in cyclically accelerate/deceleration motion. Tribol Trans, 2002, 45: 177-184.
    [120] Ciulli E. Time and frequency domain analysis of experimental EHL transient conditions data. 11th Nordic Symp Tribol Proc Nordtrib, 2004, 575-584.
    [121] Bassani R, Ciulli E, Stadler K, Carli M. Lubricated non-conformal contacts under steady state and transient conditions. Proc AIMETA General Conference, Florence, Firenze University Press, 2005.
    [122] Dowson D, Higginson G R. A numerical solution to the elastohydrodynamic problem. J Mech Eng Sci, 1959, 1: 6-15.
    [123] Kaneta M. For the establishment of a new EHL theory. Proc 25th Leeds-Lyon Symposium on Tribology, 1999, 36: 25-36.
    [124] Dowson D, Jones D A. Lubricant entrapment between approaching elastic solids. Nature, 1967, 214: 947-948.
    [125] Vichard J P. Transient effects of the lubrication of Hertzian contacts. J Mech Eng Sci, 1971, 13: 173-189.
    [126] Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts. Part III: fully flooded results. ASME J Tribol, 1977, 99: 264-276.
    [127] Mansot J L, Terech P, Martin J M. Structural investigation of lubricating greases. Colloids Surf, 1989, 39: 321-333.
    [128] MesséS, Lubrecht A. Approximating EHL film thickness profiles under transient conditions. ASME J Tribol, 2002, 124: 443-447.
    [129] Li G, Zhang C H, Luo J B. Film-forming characteristics of grease in point contact under swaying motions. Tribol Lett, 2009, 35: 57-65.
    [130] Safa M M A, Gohar A. Pressure distribution under a ball impacting a thin lubricant layer. ASME J Tribol, 1986, 108: 372-376.
    [131] Dowson D, Wang D. An analysis of the normal bouncing of a solid elastic ball on an oily plate. Wear, 1994, 179: 29-37.
    [132] Feng I. M, Uhlig H H. Fretting corrosion of mild steel in air and nitrogen. J Appl Mech, 1954, 21: 395-400.
    [133] De Gee A W J, Commissaris C P L, Zaat J H. The wear of sintered aluminium powder (SAP) under conditions of vibrational contact. Wear, 1964, 7: 535-550.
    [134] Vingsbo, O., S?derberg, S. On fretting maps. Wear, 1988, 126:131-147.
    [135] Zhou Z R, Fayeulle S, Vincent L. Cracking behaviour of various aluminium alloys during fretting wear. Wear, 1992, 155: 317-330.
    [136] Zhou Z R, Kapsa Ph, Vincent L. Grease lubrication in fretting. ASME J Tribol, 1998, 120: 737-743.
    [137] McColl I R, Waterhouse R B, Harris S J, Tsujikawa M. Lubricated fretting wear of a high-strength eutectoid steel rope wire. Wear, 1996, 185: 203-212.
    [138] Ichimaru K, Optimization of Reynolds equation and application of CIP method for analysis of mixed elastohydrodynamic lubrication. Jpn J Tribol, 2006, 51: 461-474.
    [139] Ikeuchi K, Fujita S, Ohashi M. Analysis of fluid film formation between contacting compliant solids. Tribol Int, 1998, 31: 613-618.
    [140] Mitjan K, Joze V. The tribological performance of DLC coatings under oil-lubricated fretting conditions. Tribol Int, 2006, 39: 1060-1067.
    [141] Kaneta M, Takeshima T, Togami S, Nishikawa H. Stribeck curve in reciprocating seals. Proc. 18th Int. Conf. On Fluid Sealing, 2005, 333-347.
    [142] Taisuke M, Tsuyoshi S. Oil film behavior under minute vibrating conditions in EHL point contacts. Tribol int, 2009(in press).
    [143] Guo F, Wong P L, Geng M, Kaneta M. Occurrence of wall slip in elastohydrodynamic lubrication contacts. Tribol Lett, 2009, 34, 103-111.
    [144] Yang P R, Wen S Z. Pure squeeze action in an isothermal elastohydrodynamic lubricated spherical conjunction, part 1: theory and dynamic load results. Wear, 1991, 142: 1-16.
    [145] Yang P R, Wen S Z. Pure squeeze action in an isothermal elastohydrodynamic lubricated spherical conjunction, Part 2: constant speed and constant load results. Wear, 1991, 142: 17-30.
    [146] Wong P L, Lingard S, Cameron A. The high-pressure impact microviscometer. STLE Tribol Trans, 1992, 35: 500-508.
    [147] Kaneta M, Ozaki S, Nishikawa H, Guo F. Effects of impact loads on point contact elastohydrodynamic lubrication films. Proc IMechE J Eng Tribol, 2007, 221: 271-278.
    [148] Dowson D, Jones D A. Lubricant entrapment between approaching elastic solids. Nature, 1967, 214: 947-948.
    [149] Kaneta M, Nishikawa H, Kameishi K. Observation of wall slip in elastohydrodynamic lubrication. ASME J Tribol, 1990, 112: 447-452.
    [150] Chu L M, Hsu H C, Lin J R, Chang Y P. Inverse approach for calculating temperature in EHL of line contacts. Tribol Int, 2009, 42: 1154-1162.
    [151] Smith F W. Lubricant behaviour in concentrated contact systems-some rheological problems. ASLE Trans, 1960, 3: 18-25.
    [152] Jacobson B O. An experimental determination of the solidification velocity for mineral oils. ASLE Trans, 1974, 17: 290-294.
    [153] St?hl J, Jacobson B O. A lubricant model considering wall-slip in EHL line contacts. ASME J Tribol, 2003, 125: 523-532.
    [154] Ehret P, Dowson D, Taylor C M. Transient EHL solutions with interfacial slip. ASME J Tribol, 1999, 121: 703-710.
    [155] Ehret P, Dowson D, Taylor C M. On lubricant transport conditions in elastohydrodynamic conjunctions. Proc Roy Soc Lond, 1998, A454: 763-787.
    [156]张立德.纳米材料和纳米结构.北京:科学出版社, 2002.
    [157]温诗铸.纳米摩擦学.北京:清华大学出版社, 1998.
    [158] Lian Y F, Yu L G, Xue Q J. The antiwear and extreme pressure action mechanism of CeF3 in grease. Lubr Sci, 1996, 8: 379-388.
    [159] Zhou J F, Wu Z S, Zhang Z J. Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin. Wear, 2001, 249: 332-337.
    [160] Zhang Z F, Liu W M, Xue Q J. The effect of LaF3 nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system. T ribol Int, 2001, 34: 83-88.
    [161] Liu W M, Chen S. An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin. Wear, 2000, 238: 120-124.
    [162]张平余,齐尚奎,薛群基等.脂肪酸及表面修饰MoS2纳米微粒LB膜在摩擦过程中结构变化的XPS研究.摩擦学学报, 2000, 20 (3): 211-213.
    [163] Zhang Z F, Liu W M, Xue Q J. Tribological properties and lubricating mechanism of the rare earth complex as a grease additive. Wear, 1996, 194: 80-85.
    [164]刘大军,龙军等.纳米材料在轴承润滑脂中的应用.轴承, 2005, 6: 35-38.
    [165]刘维民.几种纳米微粒作为锂基脂添加剂对钢-钢摩擦副摩擦磨损性能的影响研究.摩擦学学报, 2005, 25(2): 107-111.
    [166]松永正久.固体润滑手册.范煌等译,北京:机械工业出版社, 1986.
    [167] Van Acker K, Vercammen K. Abrasive wear by TiO2 particles on hard and on low friction coatings. Wear, 2004, 256: 353-361.
    [168]乌学东.表面修饰纳米粒子的摩擦学性能.上海交通大学学报,1999,33(2): 225-227.
    [169]杨清香.含纳米颗粒润滑脂的流变特性研究[硕士学位论文].哈尔滨工业大学机电电学院, 2007.
    [170]刘维民.纳米颗粒及其在润滑油脂中的应用.摩擦学学报, 2003, 23(4): 265-267.
    [171] Cusano C, Sliney H E. Dynamics of solid dispersions in oil during the lubrication of point contacts, part 1-graphite. ASLE Trans, 1982, 25: 183-189.
    [172] Wan G T Y, Spikes H A. The behavior of suspended solid particles in rolling and sliding EHL contacts. STLE Trans, 1988, 31: 12-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700