含氮硼酸酯在聚醚水溶液中的摩擦学性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界性能源危机的出现和社会对环保的重视,水基润滑液得到迅速的发展;水基润滑液将在工业领域发挥着越来越大的作用。本文将月桂酸无规共聚醚(Lauric acid random copoly-ether, LPE)和硼酸三乙醇胺(Boric acid triethanolamine,BN)按质量比1:1混合配制成水基润滑液(BN-LPE);以LPE水溶液为参照组,对BN-LPE水溶液进行减摩抗磨性能、流变性能及成膜性能分析并做机理分析。
     利用四球摩擦磨损试验机对润滑液的减摩抗磨性能进行评价分析。分别考虑浓度、载荷和转速对润滑液减摩抗磨性能的影响;利用X射线光电子能谱仪(X-ray photoelectron spectroscopy instrument, XPS)分析出磨痕表面的生成物成分;利用Micro XAM型三维共聚焦表面形貌仪对磨痕表面进行形貌分析。研究发现BN-LPE水溶液具有良好的减摩抗磨性能,其减摩性能随浓度的增加而增强;浓度在15%-35%时,其平均摩擦系数在0.03左右;最低摩擦系数达到0.005左右。分析原因是硼酸三乙醇胺分解后和月桂酸无规共聚醚或其基团反应生成新的硼酸酯,吸附在金属表面形成致密的化学反应膜从而起到有效的减摩抗磨性能。
     利用Physica MCR301旋转流变仪对BN-LPE水溶液做流变性能分析,得出不同质量浓度和温度下BN-LPE水溶液的动力粘度和剪切率之问的关系曲线。经分析得出BN-LPE水溶液的动力粘度较小,这可能是其减摩性能良好的原因。
     选择半浸泡的润滑方式,利用NGY-6纳米级润滑膜厚度测量仪对BN-LPE水溶液的成膜性能进行研究,分别考虑浓度、载荷和线速度对成膜性能的影响。研究发现:BN-LPE水溶液的成膜性能在高载荷下较稳定并有一定的承载能力;随着载荷的增大,线速度对成膜性能的影响越小;经分析该润滑液在试验中可能形成了化学吸附膜。
     本文研究的含氮硼酸酯在聚醚水溶液中的摩擦学性能,经试验表明该水基润滑液具有良好的减摩抗磨性能,具有很好的工业应用前景。图61幅,表7个,参考文献67篇。
With the emergence of the world energy crisis and the social attention of the environmental protection, water-based lubricant develops rapidly and will play more and more important role in industrial fields. In this study, the water-based lubricant, the1:1(w/w) solution of lauric acid random copoly-ether (LPE):boric acid triethanolamine (BN) is prepared. Friction-reducing, anti-wear, rheology, film-forming performances and mechanism analysis of BN-LPE solution are tested, taking LPE solutions as reference groups.
     The friction-reducing and anti-wear performances of lubricants are studied by the four-ball tribometer. The influences of concentration, load and revolution to friction-reducing and anti-wear performances are considered. The products on the grinding surface are analyzed by X-ray photoelectron spectroscopy instrument (XPS). The surface morphology is analysized by Micro XAM type3-D surface profile meter. The results reveal that BN-LPE solution has well friction-reducing and anti-wear properties. Moreover, friction-reducing performance gets better and better with the increasing of concentration. The average friction coefficient is about0.03in solution of15%~35%; the minimum friction coefficient is as low as0.005. BN decomposes and reacts with LPE, producing new type boric acid ester and playing effective friction-reducing and anti-wear properties by adsorbing on the metal surface, forming a compact chemical reaction film.
     Rheology of BN-LPE aqueous solution is tested by physica MCR301rotating rheometer. Then getting the relation curve between dynamic viscosity and shear rate of different quality concentration and temperature in BN-LPE aqueous solution. The dynamic viscosity of BN-LPE aqueous solution is small, this may be the reason for well friction-reducing performance.
     Considering the influences of film performance on concentration, load and linear velocity in half soak, BN-LPE aqueous solution is analysized by NGY-6nanoscale lubrication film thickness gauge. Results reveals that BN-LPE solution has well film performance and relatively a certain stable carrying capacity; with the increasing of the load, the linear velocity to the influence on the film performance is small; the lubricating solution in trials may form the chemical adsorption membrane by analyzing.
     This paper studied the tribological properties of boric acid ester containing nitrogen in polyether aqueous solution, the test showed that the water-based lubricant had well friction-reducing, anti-wear properties and a well industrial application prospect.
引文
[1]吴超,贾晓鸥.环境友好型水基润滑剂的现状及发展[J].河北理工学院学报,2006.11,28(4):32-36.
    [2]温诗铸,黄平.摩擦学原理[M].第3版.北京:清华大学出版社,2008:4-10.
    [3]T.曼格,W.德雷泽尔.润滑剂与润滑[M].北京:化学工业出版社,2003:1-2.
    [4]周耀华,张广林.金属加工润滑剂[M].第二版.北京:中国石化出版社,2010(2):50-61.
    [5]胡晓兰等.硼酸酯水解稳定性研究与应用[J].材料导报.2002,16(1):58-60.
    [6]刘广龙等.含氮硼酸酯添加剂的研究现状[J].润滑与密封,2004(2):114-116.
    [7]张秀玲等.复合硼酸酯多功能添加剂的研究[J].现代化工,1997(6):24-25.
    [8]谭秀民等.含氮硼酸酯润滑液添加剂的合成与性能测试[J].应用科技,2005,32(2):59-61.
    [9]胡晓兰等.新型硼酸酯类偶联剂的合成和表征[J].西北工业大学学报,2003,21(3):364-367.
    [10]方建华等.含硼和氮的脂肪酸水基润滑添加剂的制备及其摩擦学性能[J].摩擦学学报,2003,23(3):226-230.
    [11]易伦等.影响水基润滑剂抗磨性能的几个因素.中南矿冶学院学报,1994,25(3):392-396.
    [12]刘维民等.润滑油添加剂一硼酸酯的摩擦磨损性能及其抗磨机理之研究[J].摩擦学学报,1992,12(4):347-352.
    [13]贾晓鸣等.应用正交试验法优化硼酸酯配方设计.河北理工学院学报[J],1996,18(3):63-66.
    [14]刘俊君.新型含氮硼酸酯极压抗磨剂的合成及摩擦学性能研究[D].广东工业大学
    [15]李久盛等.有机硼酸酯在菜籽油中的摩擦学研究[J].润滑液,2004,4,19(2):32-34.
    [16]张翔等.新型硼氮型润滑液添加剂的合成及摩擦学性能[J].润滑与密封,2009,34(2):65-70.
    [17]吴超等.蓖麻油硼酸酯水基润滑剂的制备及性能[J].河北理工大学学报(自然科学版),2007,29(4):53-59.
    [18]方建华等.含硼、氮改性菜籽油润滑添加剂的摩擦学性能[J].石油学报,2005,21(5):91-95.
    [19]方建华等.硼氮型改性蓖麻油润滑添加剂的摩擦学性能[D].石油炼制与化工,2002,33(3):9-12.
    [20]方建华等.含硼和氮的脂肪酸水基润滑添加剂的制备及其摩擦学性能[J].摩擦学学报,2003,23(3):226-230.
    [21]孙玉彬等.环境友好润滑油的发展及其摩擦学研究现状[J].摩擦学学报,2008,28(4):381-387.
    [22]韩恒文等.植物油环境友好润滑油的改性研究进展[J].润滑油,2008,23(6):6-13.
    [23]胡文云等.磷硼氮型润滑添加剂的制备及摩擦学性能研究[J].润滑与密封,2006,6(178):108-109.
    [24]王永刚等.一种含杂环二硫醚硼酸酯衍生物的摩擦学行为[J].润滑与密封,2010,35(9):36-39.
    [25]巩清叶等.含硫硼酸酯中硫和硼在菜籽油中的协同减摩抗磨作用[J].摩擦学学报,2002,22(5):360-363.
    [26]熊云等.磷氮化脂肪酸水基润滑添加剂的制备及其摩擦学性能[J].石油学报,2009,9(25):93-97.
    [27]孙令国等.含磷酸酯铵盐官能团硼酸酯衍生物的摩擦学性能研究[J].润滑与密封,2010,35(1):52-55.
    [28]Guangbin Yang, Zhanming Zhang, Guihui Li, etc. Synthesis and Tribological Properties of S-and P-Free Borate Esters With Different Chain Lengths[J]. Journal of Tribology. April 2011(133):021801-1.
    [29]高慎琴.化工机器[M],北京:化学工业出版社,1992:50-51.
    [30]郑发正等.环境友好润滑剂的研究概况[J].表面技术,2004,33(2):9-11.
    [31]刘建芳等.环境友好型水基润滑剂的摩擦学性能研究.武汉工业学院学报[J].2008,27(4):26-28.
    [32]叶斌等.几种纳米添加剂在环境友好润滑剂中的摩擦化学特性[J].机械工程材料,2005,2(6):55-58.
    [33]Zheng Zhi, Shen Guangqiu, Wan Yong, Cao Lili, Xu Xiangdong, Yue Qixian, Sun Tianjian. Synthesis Hydrolytic Stability and Tribological Properties of Novel Borate Esters Containing Nitrogen as Lubricant Additives[J]. Wear, 1998(9):135-144.
    [34]Yang Honggang, Zhang Jia, Ye Meng. Research on the Performance of an Eco-friendly Nitrogen Organic Boric Acid Ester Antirust Additive[J]. Advanced Materials Research, 2012 (399):1348-1351.
    [35]Jiusheng Li, Xiaohong Xu, Yonggang Wang, Tianhui Ren. Tribological Studies on a Novel Borate Ester Containing Benzothiazol-2-yl and Disulfide Groups as Multifunctional Additive[J].Tribology International 2010(43): 1048-1053.
    [36]Ouyang Ping, Zhang Xianming. Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education[C].2011 Third International Conference on Measuring Technology and Mechatronics Automation, Changsha.
    [37]李嘉等.环氧丙烷改性油酸三乙醇胺作为可生物降解水基润滑添加剂研究[J].润滑与密封,2006(11):21-23.
    [38]戴恩期等.环境友好水基全合成金属加工切削液的研究[J].润滑与密封,2007,32(12):103-107.
    [39]Liran Ma, Chenhui Zhang. Discussion on the Technique of Relative Optical Interference Intensity for the Measurement of Lubricant Film Thickness[J]. Tribol Lett 2009(36):239-245.
    [40]孙跃涛,张朝辉,刘思思.月桂酸无规共聚醚水溶液减摩抗磨性能试验研究[J].机械工程学报,2011,47(23):125-129.
    [41]李冬青等.硼酸酯作为润滑油添加剂的研究进展状况[J].材料与应用,2010,6.
    [42]胡晓兰,梁国正.硼酸三乙醇胺酯的合成及表征[J].高分子材料科学与工程,2004.3,20(2).
    [43]William E.Olliges. Lubricant Compositions Containing Stable Boric Acid Suspension[P]. United States,No:0015105,2011-01-20.
    [44]胡晓兰,梁国正.硼酸三乙醇胺酯的合成及表征[J].高分子材料科学与工程,2004,20(2):69-74.
    [45]K. P. Rao, C. L. Xie. A Comparative Study on the Performance of Boric Acid with Several Conventional Lubricants in Metal Forming Processes[J]. Tribology International 2006 (39):663-668.
    [46]Y Wang, J.Li, Z.He, T.Ren. Investigation on Phenyl-borated Hydroxyalkyldithio-carbamate as Multi-functional Lubricating Additive with High Hydrolytic Stability and Anti-oxidation[C]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2008:133- 140.
    [47]Jiusheng Li, Xiaohong Xu, Yonggang Wang, Tianhui Ren. Tribological Studies on a Novel Borate Ester Containing Benzothiazol-2-yl and Disulfide Groups as Multifunctional Additive[J]. Tribology International 2010(43): 1048-1053.
    [48]Guangbin Yang, Zhanming Zhang, Guihui Li.Synthesis and Tribological Properties of S-and P-Free Borate Esters With Different Chain Lengths. Journal of Tribology 2011 (4):021801-7.
    [49]http://www.lasurface.com/database/elementxps.php
    [50]http://srdata.nist.gov/xps/
    [51]http://wenku.baidu.com/view/ea7a7c7d27284b73f2425056.html?from=rec&pos=4&weight= 87&lastweight=87&count=5
    [52]D.Philippon, M.-I, De Barros-Bouchet, O.Lerasle, Th.Le Mogne, J.-M, Martin. Experimental Simulation of Tribochemical Reaction Between Borates Esters and Steel Surface[J].Tribol Letters 2011(41):73-82.
    [53]杨鹤.含Mg6Si4010(OH)8金属磨损自修复剂的作用机理及应用案例[D].清华大学,2005.
    [54]Mikulski, P.T., Van Workum, K., Chateaueuf, G.M., Guangtu Gao, Schall, J.D., Harrison, J.A. The Effects of Interface Structure and Polymerization on the Friction of Model Self-assembled Monolayers[J]. Tribology Letters,2011(42): 37-49.
    [55]王恒.金属加工润滑冷却液[M].化学工业出版社,2008(4):63-68.
    [56]李久盛,王永刚等.硼酸酯添加剂的研究现状及发展趋势[C].中国汽车工程学会燃料与润 滑油分会第十二届年会,青岛,2007年9月13.
    [57]党兰生.聚醚合成润滑剂的性能及其应用(A).全国第十三次工业表面活性剂研究与开发会议[C].南宁,2006年8月18-23日.
    [58]王永刚等.一种含杂环二硫醚硼酸酯衍生物的摩擦学行为[J].润滑与密封.2010.9,35(9):36-39.
    [59]罗国强.硼酸酯添加剂的研究[J].润滑与密封,1993(4):13-17.
    [60]孙跃涛.无规共聚醚水基润滑液的摩擦学性能试验研究[D].北京:北京交通大学,2011.
    [61]刘书海.高水基润滑剂成膜机理及性能研究[D].北京:清华大学精仪系,2008.
    [62]Huaping Xiao, Dan Guo, Shuhai Liu, Xinchun Lu, Jianbin Luo. Experimental Investigation of Lubrication Properties at High Contact Pressure[J].Tribology 2010(40): 85-97.
    [63]Ivan Krupka, Punit Kumar, Scott Bair, M.M.Khonsari, Martin Hartl. The Effect of Load(Pressure) for Quantitative EHL Film Thickness[J]. Tribol Lett 2010(37):613-622.
    [64]I.Krupka, M.Hartl, M.Liska.Thin Lubricating Films Behavior at Very High Contact Pressure [J].Tribology International 2006 (39):1726-1731.
    [65]Zhu.D. Elastohydrodynamic Lubrication in Extended Paramete Rranges-partl:Speed Effect, Tribol.Trans 2002(45):540-548.
    [66]Brown W L. The Role of Polyalklene Glycols Insynthetic Metalworking Fluid[J].Lubrication Engineering,1988,44(2):168-171.
    [67]李茂生.水溶性聚醚在金属加工液中的应用[J].合成润滑材料,2003(30):8-10.
    [68]雒建斌,温诗铸.薄膜润滑的时效性研究[J].清华大学学报,1999,39(2):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700