用户名: 密码: 验证码:
低维氧化锌纳米材料的合成及浸润性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在低维纳米材料制备科学和技术研究方面的一个重要趋势是加强控制工程的研究,包括颗粒尺寸、形状、表面、微结构的控制。目前在一维纳米结构阵列中,研究最热的主要有三种:硅纳米线、碳纳米管和ZnO纳米线/纳米带。ZnO纳米线由于其独特的结构和光电等性质,成为当今一维纳米材料研究的热点之一。虽然ZnO纳米材料的研究已经取得了长足的发展,但在工艺简单、低成本、高产率、高结晶质量、及形貌可控制备上依然存在很大挑战。本论文研究工作以一维ZnO纳米线阵列为主要研究对象,另外研究了零维和二维纳米材料,围绕着材料的生长、结构形貌、液滴浸润性机理以及超疏水性等方面,开展了一系列工作,具体内容如下:
     在第一章中,对纳米材料的合成技术、基于自组装法合成一维纳米功能材料的研究进展、一维纳米材料的性质和应用、以及研究意义做了概述。
     在论文第二章中,首先总结了ZnO材料的基本性质,然后开始介绍本论文的主要工作:ZnO纳米线阵列应用于器件的一个前提是必须具备很好的垂直性和分散性,人们在以往的研究中采用了模板法、化学气相沉积法、金属气相外延生长法等多种方法来实现对纳米线阵列的调控。与其它制备方法相比,水热法具有反应条件温和、易操作、成本较低、产物分散性好、结晶质量高、团聚少及易于推广等优点。本章利用磁控溅射在玻璃或Si衬底上溅射一层ZnO籽晶层的基础上,再利用水浴法/水热法生长了垂直性、分散性和重复性具佳的ZnO纳米线阵列。与水浴法生长的ZnO纳米线的长径比为20:1相比;水热法生长的ZnO纳米线的长径比达到104:1,ZnO纳米线的柔韧性非常好,即使在纳米线的上端发生弯曲也不会断裂。本章还阐述了ZnO纳米线的生长过程:ZnO极性面表面能高,要经过表面重整以降低表面能,所以极性面(0001面)的生长速度要大于其他晶面;同时纳米线某个面生长的快慢与其生长速度也有关系,不同面的生长速度也不一样:V[0001] > V[01(1|-)0] > V[0001(1|-)],综合上面两个因素考虑ZnO纳米线沿着(0001)方向快速生长。此外研究了温度和HF对ZnO形貌的影响。随着温度的升高,水的电离度会增加,水中增加的H~+离子会抑制ZnO沿c轴择优取向生长,从而造成ZnO由低温(<100℃)的纳米线状结构向高温(>150℃)片状结构的转变。当反应溶液中加入HF时,H~+对ZnO的影响主要有两点:一方面随着H~+离子浓度的增加,ZnO结构的长径比不断减小,由柱状结构向磷片组成的球状结构转变,另一方面H~+使ZnO结构逐渐变薄,由球状变为了花瓣状;F~-使ZnO表面出现粗糙结构,最终使微结构由鳞片状变成纤维状。
     在论文第三章中,在粗糙结构表面湿润特性研究的基础上,建立了一个描述液滴在实际微纳米复合结构表面浸润特性的新的半浸润模型。首先介绍与接触角相关的一些定义和基本理论,对静态接触角和接触角滞后现象进行分析。然后分析描述液滴在固体表面浸润状态的传统理论模Wenzel模型和Cassie模型的联系和区别,并在此基础上提出一个新的解释液滴在不同形貌固体表面浸润性质的模型—半浸润模型,并用此模型计算了特殊表面的接触角,得出了和实验相一致的结论。最后利用半浸润模型给出了接触角滞后和滚动角的关系。
     在论文第四章中,实验研究了ZnO纳米线阵列、网状乳突节点阵列及其它微纳仿生自组装复合结构表面的浸润特性。利用溶胶凝胶法和水浴法在玻璃衬底上分别制备了疏水性SiO_2薄膜和超疏水性ZnO纳米线阵列薄膜,并在理论上对实验结果进行了验证。利用简单的水热自组装的方法制备了网状乳突结点状ZnO薄膜,该薄膜经HTMS修饰以后具有稳定的超疏水性。建立了一个“张力接触模型”来解释水的表面张力和快速蒸发是网状乳突结构形成的原因。这种网状结构是一种类荷叶的微纳米复合结构,水滴在该结构表面的接触角高达170o,滚动角小于2o。同时,利用Cassie模型从理论上验证了该结果。此外,研究了花状ZnO结构的制备及其超疏水性。最后,在没有贵金属(Au,Ag等)辅助的情况下,利用简单化学刻蚀的方法,在Si(001)面上刻蚀出金字塔状结构,研究了金字塔表面的疏水性。
     在论文第五章中,主要是通过用禁带宽度较窄的荧光量子点CdSe与宽禁带ZnO纳米线复合,实现不同能带之间的调制,以达到对太阳光宽波段的吸收,为下一步光电器件的研究奠定基础。研究了荧光量子点CdSe纳米颗粒的制备及其光学性质(吸收、光致发光)。通过改变反应时间,实现了CdSe量子点尺寸和发光波长的调控。为了提高光生载流子的传输效率,通过配位键的转换,利用短碳链分子巯基丙酸(MPA)代替量子点表面的长碳链分子三正辛基氧化磷(TOPO)。此外,利用低温水热法(50℃)制备出了高结晶质量的ZnO纳米线阵列。最后,成功的将CdSe量子点链接到ZnO纳米线表面。
     在论文最后一章,对全文进行了总结及对未来的展望。
The important trend of preparation sciences and technology research of low dimensional nanomaterials is to strengthen the control engineering research, including particle size, shape, surface, microstructure control. There are three most representing one-dimensional nanostructures that are being actively studied in nanotechnology: silicon nanowires, carbon nanotubes, and ZnO nanowire/nanobelts. ZnO is one of the few dominant nanomaterials for nanotechnology, based on its unique structure and photoelectricity properties. Although the ZnO nanomaterials research has made great progress, there are still great challenges in simple process, low cost, high yield, high crystalline quality and morphology controllable preparation. In this paper, we mainly study the one-dimensional ZnO nanowire arrays, zero-dimensional and two-dimensional nanomaterials are the supplement. Considering the above background, this dissertation focused on the aspects of materials growth, structure, wetting mechanism of droplets, and superhydrophobicity. The contents can be divided into the followings:
     In chapter 1, we outlined the synthesis of nanomaterials technology, review of one-dimensional nanomaterials synthesis based on the self-assembly method, and research significance.
     In chapter 2, the basic properties of ZnO materials were summarized, and then began to introduce the work of this thesis. ZnO nanowires arrays used in the device must have good verticality and dispersion. It’s usually used template method, chemical vapor deposition, metal vapor phase epitaxy growth method, etc. to achieve control of nanowire arrays. Compared with other methods, hydrothermal method has the advantage of mild reaction condition, easy operation, lower cost, good dispersion, good crystal quality, small agglomeration, and easy popularization. ZnO seeds layer was deposited on glass or silicon substrate by rf magnetron sputtering, then ZnO nanowire arrays with excellent vertical, dispersion and repeatability was grown by bath or hydrothermal method. The aspect ratio of ZnO nanowire grown by hydrothermal method can reach to 104:1, compared with bath method 20:1. ZnO nanowires grown by hydrothermal methods have good flexibility, they will be not break even the top of nanowires bending. This chapter also describes the growth process of ZnO nanowires: ZnO polar surface has high surface energy, ZnO nuclei needs re-engineering to reduce the surface energy, so the polar surface (0001) grow greater than other planes. Meanwhile, the growth rate of different planes is relationship with its own growth rate. The growth rate of different faces is: V[0001] > V[011(1|-) 0] > V[0001(1|-) ]. Integrating the above two factors, the ZnO nanowire grow rapidly along the (0001) direction. Furthermore, the effect of temperature and HF on ZnO morphology was studied. As the temperature increase, the ionization of water will increase. The increase of H~+ in water inhibits ZnO growth along the c-axis preferred orientation, resulting ZnO morphology changes from nanowire (≤100℃) to sheet structure (≥150℃)。When add HF into reaction solution, HF has two main effect on ZnO morphology: on the one hand, with the increase of H~+ ion concentration, the aspect ratio of ZnO structure decreasing, and the structure change from columnar to globular structure consisting of sheets; on the other hand, H~+ make ZnO structure thinner and thinner, ZnO sphere change into petal-like. F- ion rough the ZnO surface, lead to ZnO structure become micro-fibrous from sheet-like.
     In chapter 3, based on the wetting research on rough surface, a new model of half-soakage-model describing wetting properties, which suit to droplet sitting on realistic micro-nano composite structure surface, was established. First introduced some definitions and basic theory related to contact angle, and analysis contact angle and contact angle hysteresis phenomenon. Then, analyzed the links and differences between Wenzel-Baxter and Cassie model, they described the droplet wetting states on solid surface. And on the traditional model basis, a new model, half-soakage-model, describing droplet wetting states on different morphology surface was proposed. Then, contact angle on special surface was calculated by half-soakage-model, the theory results were consistent with experimental value. Finally, the relationship between contact angle hysteresis and sliding angle was obtained by this new model.
     In chapter 4, wettability was studied in experiment on the surfaces of ZnO nanowire arrays, reticulate ZnO film with papillary nodes, and other biomimetic micro-nano composite self-assembly structure. Introduced the use of sol-gel and bath methods to fabricate hydrophobic SiO_2 sphere film and superhydrophobic ZnO nanowire arrays film, and verified the experimental result by Cassie theory. A simple hydrothermal self-assembly method was adopted to grow a newly reported reticulate ZnO film with papillary nodes. This structure can extremely enhance the dewettability for the surface modification with low-surface-energy materials such as heptadecafluorodecyltrimethoxy-silane (HTMS). A“tension contact model”was proposed to explain the surface tension of water and rapid evaporation technology cause the formation of reticular papillae structure. This reticular micro-nano composite structure is similar to lotus leave, the contact angle on this film surface can reached as high as 170o, the sliding angle lower than 2o. Meanwhile, the calculated value is in good agreement with the experimental datum. In addition, wettability of ZnO flower-like structure surface was studied. Finally, pyramid-shaped structure was established on Si (001) surface by simple chemical etching method, water contact angle on this surface was measurement.
     In chapter 5, in order to achieve wide-band absorption of sunlight, narrow band gap fluorescent QDs CdSe composite with wide band gap ZnO nanowires to realize different band modulation for laying a foundation for the study of optoelectronic devices. The fabrication and optical properties (absorption, photoluminescence) of fluorescent QDs was studied. The size and emission wavelength of CdSe QDs can be easily controlled, by changing the reaction time. Short carbon chain molecules mercaptopropionic acid (MPA) instead of long carbon chain molecules trioctylphosphine oxide (TOPO) on the CdSe QDs surface by bond conversion, it is propitious to the transfer of photogenerated charge. On the other hand, high crystalline quality ZnO nanowire arrays were prepared by low temperature hydrothermal method (50℃). Finally, the CdSe QDs linked successfully to the ZnO nanowire surface.
     In the last chapter, it is a summary of the full text and the vision for the future.
引文
[1]张立德,牟季美纳米材料和纳米结构2000,科学出版社
    [2] Bezryadin, A.; Goldbart, P. M. Adv. Mater. 2010, 22, 1111
    [3] Zhou, M. J.; Zhu, H. J.; Wang, X. N.; Xu,Y. M.; Tao,Y.; Hark, S. K.; Xiao, X. D.; Li, Q. Chem. Mater. 2010, 22, 64
    [4] Weng, C. H.; Huang, C. C.; Yeh, C. S.; Lei, H. Y.; Lee G. B. Microfluid Nanofluid 2009, 7, 841
    [5] Howard, R. E.; Liao, P. F.; Skocpol, W. J.; Jackel, L. D.; Graighead H. G. Science 1983, 221, 117
    [6] Ito, T.; Okazaki, S. Nature 2000, 406, 1027
    [7] Bloomstein, T. M.; Horn, M. W.; Rothschild, M.; Kunz, R. R.; Palmacci, S. T.; Goodman, R. B. J. Vac. Sci. Technol. B 1997, 15, 2112
    [8] Wallraff, G. M.; Hinsberg, W. D. Chem. Rev. 1999, 99, 1801
    [9] Silverman, J. P. J. Vac. Sci. Technol. B 1997, 15, 2117
    [10] Pease, R. F. J. Vac. Sci. Technol. B 1992, 10, 278
    [11] Smith, H. I.; Schattenburg, M. L. J. Res. Dev. 1993, 37, 319
    [12] Pease, R. F. W.; J. Vac. Sci. Technol. B 1992, 10, 278
    [13] Nakayama, Y. J. Vac. Sci. Technol. B 1990, 8, 1836
    [14] Berger, S. D. J. Vac. Sci. Technol. B 1991, 9, 2996
    [15] Pfeiffer, H. C.; Stickel, W. Microelectron. Eng. 1995, 27, 143
    [16] Manne, S.; Hansma, P. K.; Massie, J.; Elings, V. B.; Gewirth, A. A. Science 1991, 251, 183
    [17] Juno, T.; Carsson, S. B.; Xu, H.; Montelius, L.; Samuelson, L. Appl. Phys. Lett. 1998, 72, 548
    [18] Eigler, D. M.; Schweizer, E. K. Nature 1990, 344, 524
    [19] Kolb, D. M.; Ullmann, R.; Will, T. Science 1997, 275, 1097
    [20] Smith, S. A.; Wolden, C. A.; Bremser, M. D.;Hanser, A. D.; Davis, R. F. Appl. Phys. Lett. 1997, 71, 3631
    [21] Lill, T.; Joubert, O. Science 2008, 319, 1050
    [22] Huang, C. Y.; Dong, B.; Lu, N.; Yang, B. J.; Gao, L. G.; Tian, L.; Qi, D. P.; Wu, Q.; Chi, L. F. Small 2009, 5, 583
    [23] Liptak, R. W.; Devetter, B.; Thomas III, J. H.; Kortshagen, U.; Campbell, S. A. Nanotechnology, 2009, 20, 035603
    [24] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature, 1996, 382,607
    [25] Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2000, 122, 734
    [26] Caruso, F.; Caruso, R.; Mohwald, H. Science, 1998, 282, 1111
    [27] Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G. Science, 1996, 273, 1690
    [28] Patil, V.; Mayya, K. S.; Pradhan, S. D.; Sastry, M. J. Am. Chem. Soc. 1997, 119, 9281
    [29] Bico, J.; Roman, B.; Moulin, L.; Boudaoud, A. Nature, 2004, 432,690
    [30] Bowden, N. B.; Weck, M.; Choi, I. S.; Whitesides, G. M. Acc. Chem. Res. 2001, 34, 231
    [31]公茂刚,许小亮,曹自立,刘远越,朱海明,物理学报2009, 58, 1885
    [32] Wang, Z. L. Materials Science and Engineering R, 2009, 64, 33
    [33] Lin, W.; Xiu, Y. H.; Jiang, H. J.; Zhang, R. W.; Hildreth, O.; Moon, K. S.; Wong, C. P. J. Am. Chem. Soc.2008, 130, 9636
    [34] Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625
    [35] Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89
    [36] Schmidt, V.; Wittemann, J. V.; Gosele, U. Chem. Rev. 2010, 110, 361
    [37] Wagner, R. S.; Ellis, W. C. Trans. Metal. Soc. AIME 1965, 233, 1053
    [38] Kikkawa, J.; Ohno, Y.; Takeda, S. Appl. Phys. Lett. 2005, 86, 123109
    [39] Wang, Y. W.; Schmidt, V.; Senz, S.; Gosele, U. Nature Nanotechnology 2006, 1, 186
    [40] Ihn, S. G.; Song, J. I. Nano Lett. 2007, 7, 39
    [41] Wang, Y. F.; Lew, K. K.; Ho, T. T.; Pan, L.; Novak, S. W.; Dickey, E.C.; Redwing, J. M.; Mayer, T. S. Nano Lett. 2005, 5, 2139
    [42] Fang, X.S.; Ye, C. H.; Zhang, L. D.; Wang, Y. H.; Wu, Y. C. Adv. Funct. Mater. 2005, 15, 63
    [43] Pan, Z. W.; Dai, Z. R.; Wang Z. L. Science 2001, 291, 1947
    [44] Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303, 1348
    [45]公茂刚,许小亮,曹自立,刘远越,朱海明.物理学报2009,58, 1885
    [46] Wang, G. S.; Deng, Y.; Guo, L. Chem. Eur. J. 2010, 16, 10220
    [47] Mai, L. Q.; Gu, Y. H.; Han, C. H.; Hu, B. Chen, W.; Zhang, P. C.; Xu, L.; Guo, W. L. Dai, Y. Nano Lett. 2009, 9, 826
    [48] Cao, M. H.; Hu, C. W.; Wu, Q. Y.; Guo, C. X.; Qi, Y. J.; Wang, E. B. Nanotechnology 2005, 16, 282
    [49] Cao, M. H.; Hu, C. W.; Wang, E. B. J. Am. Chem. Soc. 2003, 125, 11196
    [50] Du, N.; Xu, Y. F.; Zhang, H.; Zhai, C. X.; Yang, D R. Nanoscale Res Lett. 2010, 5, 1295
    [51] Nath, M.; Parkinson, B. A. Adv. Mater. 2006, 18, 1865
    [51] Wen, X. G; Yang, S. H. Nano Lett. 2002, 2, 451
    [52] Peng, K. Q.; Zhang, M. L.; Lu, A. J.; Wong, N. B.; Zhang, R. Q.; Lee, S. T. Appl. Phys. Lett. 2007, 90, 163, 123
    [53] Huang, Z.; Fang, H.; Zhu, J. Adv. Mater. 2007, 19, 744
    [54] Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B. J. Phys. Chem. C 2008, 112, 4444
    [55] Peng, K. Q.; Wang, X.; Wu, X. L.; Lee, S. T. Nano Lett. 2009, 9, 3704
    [56] Menon, V. P.; Martin, C. R. Anal. Chem. 1995, 67, 1920
    [57] Sellmyer, D. J.; Zheng, M.; Skomski, R. J. Phys. Condens. Mater. 2001, 13, 433
    [58] Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L.; Kim, K.; Lieber, C. M. Science 2001, 294, 1313
    [59] Johnson, J.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Saykally, R. J.; Yang, P. Nature. Mater. 2002, 1, 101
    [60] Li, C. Z.; He, H. X.; Bogozi, A.; Bunch, J. S.; Tao, N. J. Appl. Phys. Lett. 2000, 76, 1333
    [61] Walter, E. C.; Faview, F.; Penner, R. M. Anal. Chem. 2002, 74, 1546
    [62] Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289
    [63] Law, M.; Kind, H.; Kim, F.; Messer, B.; Yang, P. Angew. Chem. Int. Ed. 2002, 41, 2405
    [64] Dekker, C. Phys. Today 1999, 5, 22
    [65] Kind, H.; Yan, H.; Law, M.; Messer, B.; Yang, P. Adv. Mater. 2002, 14, 158
    [66] Black, J.; Lowckwood, H.; Mayburg, S. J. Appl. Phys. 1963, 34, 178
    [67] Craford, M. G. IEEE Circuits Devices 1992, 8, 25
    [68] Matsunami, H.; Ikeda, M.; Suzaki, A.; Tanaka, T. IEEE Trans. Electr. Devices 1997, ED-24, 958
    [69] Zhong, Z.; Qian, F.; Wang, D.; Lieber, C. M. Nano Lett. 2003, 3, 343
    [70] Ponce, F. A.; Bour, D. P. Nature 1997, 386, 351
    [71] Kobayashi, T.; Egawa, S.; Sawada, M.; Honda, T. Phys. Status Solidi C 2007,4, 61
    [72] Lee, S. K.; Kim, T. H.; Lee, S. Y.; Choi, K. C.; Yang, P. Pholos, Mag. 2007, 87, 2105
    [73] Zhou, H. L.; Chua, S. J.; Pan, H.; Zhu, Y. W.; Osipowicz, T.; Liu, W.; Zang, K. Y.; Feng, Y. P.; Sow, C. H.; J. Phys. Chem. C 2007, 111, 6405
    [74] Bao, J.; Zimmler, M. A.; Capasso, F. Nano Lett. 2006, 6, 1719
    [75] Jeong, M. C.; Oh, B. Y.; Ham, M. H.; Lee, S. W.; Myoung, J. Min. Small 2007, 3, 568
    [76] Kim, D. C.; Han, W. S.; Kong, B. H.; Cho, H. K.; Hong, C. H. Phys. B 2007, 401, 386
    [77] Gao, H.; Yan, F.; Li, J.; Zeng, Y.; Wang, J. J. Phys. D: Appl. Phys. 2007, 40, 3654
    [78] Tsukazaki, A.; Ohtomo, A.; Onuma, T.; Ohtani, M.; Makino, T.; Sumiya, M.; Ohtani, K.; Chichibu, S. F.; Fuke, S.; Segawa, Y.; Ohno, H.; Koiinuma, H.; Kawasali, M. Nat. Mater. 2005, 4, 42
    [79] Zhang, X. M.; Lu, M. Y.; Zhang, Y.; Chen, L. J.; Wang, Z. L. Adv. Mater. 2009, 21, 2767
    [80] O'Regan, B.; Gratzel, M. Nature 1991, 353, 737
    [81] Uynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425
    [82] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4, 455
    [83] Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Nano Lett. 2006, 6, 2768
    [1] Morales, A. M.; Lieber, C. M. Science, 1998, 279, 208
    [2] Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature, 2001, 409, 66
    [3] Cui, Y.; Lieber, C. M. Science, 2001, 291, 851
    [4] Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L.; Kim, K.; Lieber, C. M. Science 2001, 294, 1313
    [5] Tans, S. J.; Verschueren, R. M.; Dekker, C. Nature 1998, 393, 49
    [6] Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62
    [7] Dai, H.; Kong, J.; Zhou, C.; Franklin, N.; Tmobler, T.; Cassell, A.; Fan, S.; Chapline, M.; J. Phys. Chem. B 1999, 103, 11246
    [8] Collins, P. G.; Arnold, M. S.; Avouris, P. Science 2001, 292, 706
    [9] Fuhrer, M. S.; Nygrad, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; McEuen, P. L. Science 2000, 288, 494
    [10] Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 209, 1947
    [11] Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625
    [12] Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Adv. Func. Mater. 2003, 13, 9
    [13] Physics World, 2008, 36
    [14]曹琦,李相银.物理学报2004, 53, 1573
    [15] Jagadish, J.; Pearton, S. J. Zinc Oxide Bulk, Thin Film and Nanostructures, Elsevier, 2006
    [16]常艳玲,张琦锋,孙晖,吴锦雷.物理学报2007, 56, 2399
    [17] Liu, M.; Kitai, A. H.; Mascher, P. J. Lumin. 1992, 54, 35
    [18] Li, Y.; Tompa, G. S.; Liang, S.; Gorla, C.; Lu, C.; Doyle, J. J. Vac. Sci. Techol. A 1997, 15, 1663
    [19] Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. J. J. Appl. Phys. 2005, 98, 041301
    [20] Meyer, B. K.; Alves, H.; Hofmann, D. M.; Kriegdeis, W.; Forster, D.; Bertram, F.; Christen, J.; Hoffmann, A.; Straburg, M.; Dworzak, M.; Haboeck, U.; Rodina, A. V.; Phys.Stat. Sol. (b) 2004, 241, 231
    [21] Lambrecht, W. L. R.; Rodina, A. V.; Limpijumnong, S.; Segall, B.; Meyer, B. K. Phys. Rev. B, 2002, 65, 075207
    [22]王卿璞。ZnO薄膜的制备及发光特性的研究。山东大学博士学位论文,2003
    [23] Sakagami, N.; Yamashita, M.; Sekiguchi, T.; Miyashita, S.; Obara, K.; Shishido, T. J. Cryst. Growth 2001, 229, 98
    [24] Park, W. I.; Yi, G. C.; Kim, J. W.; Park, S. M. Appl. Phys. Lett. 2003, 82, 4358
    [25] Urbieta, A.; Fernandez, P.; Piqueras, J.; Sekiguchi, T.; Semicon. Sci. Technol. 2001, 16, 589
    [26] Shan, W.; Walukiewicz, W.; Ager, J. W.; Yu, K. M.; Yuan, H. B.; Xin, H. P.; Cantwell, G.; Song, J. J.; Appl. Phys. Lett. 2005, 86, 191911
    [27] Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Angewandte Chemie-International Edition 2003, 42, 3031
    [28] Djurisic, A. B.; Leung, Y. H.; Small 2006, 2, 944
    [29] Li, D.; Leung, Y. H.; Djurisc, A. B.; Liu, Z. T.; Xie, M. H.; Shi, S. L.; Xu, S. J.; Chan, W. K. Appl. Phys. Lett. 2004, 85, 1601
    [30] Leiter, F.; Alves, H.; Pfisterer, D.; Romanov, N.G.; Hofmnann, D. M.; Meyer, B. K. Physica B: Condensed Mater, 2003, 340, 201
    [31] Van de Walle, C. G. Physica B, 2001, 308, 899
    [32] Wu, X. L.; Siu, G. G.; Fu, C. L.; Ong, H. C. Appl. Phys. Lett. 2001, 78, 2285
    [33] Kohan, A. F.; Ceder, G.; Morgan, D.; Van de Walle, C. G. Phys. Rev. B 2000, 61. 15019
    [34] Janotti, A.; Van de Walle, C.G. J. Cryst. Growth 2006, 287, 58
    [35] Korsunska, N. O.; Borkovska, L. V.; Bulakh, B. M.; Khomenkova,Yu. L.; Kushnirenko, V. I.; Markevich, I. V. J. Lumines, 2003, 102, 733
    [36] Fang, Z. B.; Wand, Y. Y.; Xu, D. Y. Opt. Mater. 2004, 26, 239
    [37] Lin, B. X.; Fu, Z. X.; Jia, Y. B. Appl. Phys. Lett. 2001, 79, 943
    [38] Nicoll, F. H. Appl. Phys. Lett. 1966, 9, 13
    [39] Zu, P.; Tang, Z. K.; Wong, G. K. L.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y.; Solid State Commun. 1997, 103, 459
    [40] Bagnall, D. M.; Chen, Y. F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M. Y.; Goto, T. Appl. Phys. Lett. 1997, 70, 2230
    [41] Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H.; Phys. Rev. Lett. 1999, 82, 2278
    [42] Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science, 2001, 292, 1897
    [43] Yan, H.; Johnson, J.; Law, M.; He, R.; Knutsen, K.; McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. Adv. Mater. 2003, 15, 1907
    [44] Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Appl. Phys. Lett. 1998,72, 3270
    [45] Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Science, 2000, 287, 1019
    [46] Dietl, T. Semicond. Sci. Technol. 2002, 17, 377
    [47] Rebecca, J.; Rriya, G.; Nicola, A. P. J. Phys. Condens Matter. 2005, 17, 667
    [48] Lim, S. W.; Jeong, M. C.; Ham, M. H. J. Appl. Phys. 2004, 43, 280
    [49] Kim, Y. M.; Yoon, M.; Park, I. W.; Lyou, J. H. Solid State Commun. 2004, 129, 175
    [50] Jung, S. W.; An, S. J.; Yi, G. C.; Jung, C. U.; Lee, S. I.; Cho, S. Appl. Phys. Lett. 2002, 80, 4561
    [51] Sharma, P.; Gupta, A.; Rao, K. V.; Owens, F. J.; Sharma, R.; Ahuja, R.; Osorio, Guillen, J. M.; Johansson, B.; Gehring, G. A. Nature Matt. 2003, 2, 673
    [52] Blythe, H. J.; Ibrahim, R. M.; Gehring, G. A.; Neal, J. R.; Foxm, A. M. J. Magn. Mater. 2004, 283, 117
    [53] Ueda, K.; Tabata, H. Kawai, T. Appl. Phys. Lett. 2001, 79, 988
    [54] Yu, W.; Yang, L. H.; Teng, X. Y.; Zhang, J. C.; Zhang, Z. C.; Zhang, L.; Fu. G. S. J. Appl. Phys. 2008, 103, 093901
    [55] Buchholz, D. B. J. Appl. Phys. Lett. 2005, 87, 082504
    [56] Lee, H. J.; Jeong, S. Y.; Hwany, J. Y.; Cho, C. R. Europhys. Lett. 2003, 64, 797
    [57] Venkatesan, M.; Fitzgerald, C. B.; Lunney, J. G.; Coey, J. M. D. Phys. Rev. Lett. 2004, 93, 177206
    [58] Pan, H.; Yi, J. B.; Lin, J. Y. Feng, Y. P.; Ding, J.; Van, L. H.; Yin, J. H. J. Cond-Mat. 2006, 10, 0610870
    [59] Yatsui, T.; Lim, J.; Nakamata, T.; Kitamura, K.; Ohtsu, M.; Yi, G. C. Nanotechnology, 2007, 18, 115603
    [60] Laudise, R. A.; Ballman, A. A. J. Phys. Chem. 1960, 64, 688
    [61]Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F. Nature Mater.2003, 2, 821
    [62] Wang, M.; Ye, C. H.; Zhang, Y.; Hua, G. M.; Wang, H. X.; Kong, M. G.; Zhang, L. D. J. Cryst. Growth 2006, 291, 334
    [63] Wang, Y.; Xu, X. L.; Xie, W. Y.; Wang, Z. B.; Lv, L.; Zhao, Y. L. Acta Physica Sinica. 2008, 57, 2582
    [64] Li, S. Z.; Zhou, S. M.; Liu, H. Y.; Hang, Y.; Xia, C. T.; Xu, J.; Gu, S. L.; Zhang, H. J. Mater. Lett. 2007, 61, 30
    [65]王玲,刘长松,李志文。材料热处理学报,2008,29,14
    [66] Vayssieres, L. Adv. Mater. 2003, 5, 464
    [1] Jiang, L.; Wang, R.; Yang, B.; Li, T. J.; Tryk, D. A.; Fujishima, A.; Hashimoto, K.; Zhu, D. B. J. Pure Appl. Chem. 2000, 72, 73
    [2] Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Science, 2003, 299, 1377
    [3] Gao, X. F.; Jiang, L. Nature, 2004, 432, 36
    [4] Narita, M.; Kasuga, T.; Kiyotani, A. J. Jpn. Inst. Light Met. 2000, 50, 594
    [5] Thieme, M.; Frenzel, R.; Schmidt, S.; Simon, F.; Hennig, A.; Worch, H.; Lunkwitz, K.; Scharnweber, D. Adv. Eng. Mater. 2001, 3, 691
    [6] Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Perry, C. C. Langmuir 2005, 21, 937
    [7]赵高杨,郅晓,常慧丽功能材料2007, 6(38), 1034
    [8] Jiang, L. J Mod. Sci. Instrum. 2003, 3, 6
    [9] Wenzel, R. N. J. Ind. Eng. Chem. 1936, 28, 988
    [10] Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546
    [11] Young, T. Trans Roy Soc London 1805, 95, 65
    [12] Cao, L. L.; Price, T. P.; Weiss, M.; Gao, D. Langmuir 2008, 24, 1640
    [13] Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. Langmuir 1999, 15, 4321
    [14]郑黎俊,乌学东,楼增,吴旦科学通报2004, 49, 1691
    [15] Shibuichi, S.; Onda, T.; Satoh, N.; Tsujii, K. J Phys Chem 1996, 100, 19512
    [16] Ohnson, Jr. R. E.; Dettre, R. H. Adv Chem Ser 1963, 43, 112
    [17] Patankar, N. A. Langmuir 2004, 20, 8209
    [18] Patankar, N. A. Langmuir 2003, 19, 1249
    [19] Barthlott, W.; Neinhuis, C. Planta 1997, 202, 1
    [20] Hazlett, R. D. J. Colloid Interface Sci. 1990, 137, 527
    [21] Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Langmuir 1996, 12, 2125
    [22] Lafuma, A.; Quere, D. Nature Materials 2003, 2, 457
    [23] Xu, L.; Zhang, W. W.; Nagel, S. R. Phys Rev Lett 2005, 94, 184505
    [24] Cheng, Y. T.; Rodak, D. E.; Angelopoulos, A.; Gacek, T. Appl Phys Lett 2005, 87, 194112
    [25] Blossey, R. Nature Mater. 2003, 2, 301
    [26] Furstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Langmuir 2005, 21, 956
    [27] Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Langmuir, 2000, 16, 5754
    [28] Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Langmuir, 2000, 16, 7044
    [29] Otten, A.; Herminghaus, S. Langmuir 2004, 20, 2405
    [30] Jin, M. H.; Feng, X. J.; Feng, L.; Sun, T. L.; Zhai, J.; Li, T. J.; Jiang, L. Adv. Mater. 2005,17, 1977
    [31] Neinhuis, C., Barthlott, W. Annals of Botany 1997, 79, 667
    [32] Autumn, K.; Liang, Y. C. A.; Hsieh, S. T.; Zech, W. G.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J. Nature 2000, 405, 681
    [33] Jin, M. H.; Feng, X. J.; Feng, L.; Zhai, J.; Sun, T. L.; Li, T. J.; Jiang, L. Adv Mater. 2005, 17, 1977
    [34] Liu, M. J.; Jiang, L. Adv. Func. Mater. 2010, 20, 3753
    [35]胡福增,陈国荣,杜永娟.材料表界面.上海:华东理工大学出版社,2001
    [36] Chen, W.; Fadeev, A. Y.; Hsieh, M. C.; Oner, D.; Youngblood, J.; McCarthy, J. Langmuir 1999, 15, 10
    [37] Richard, D.; Quere, D. Nature, 2002, 417, 811
    [38] Aussillous, P.; Quere. D. Nature, 2001, 411, 924
    [39] Furmidge, C. G. L. J. Colloid Sci. 1962, 17, 309
    [40] Wolfram, E.; Faust, R. Wetting, Spreading, and Adhesion. Padday, J. F., Ed. London: Academic Press, 1978. Chapter 10
    [41] Murase, H. Proceedings of the Fifth Interface Meeting of the Science Council of Japan. Tokyo: 1998 (in Japanese)
    [42] Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K. Langmuir 2002, 18, 5818
    [43] Roura, P. ; Fort, J. Langmuir, 2002 18, 566
    [44] Yoshimitsu, Z. ; Nakajiama, A. ; Watanabe, T. ; Hashimoto, K. Langmuir 2002, 18, 5818
    [45] Murase, H. ; Nanishi, K. ; Kogure, H. ; Fujibayashi, T. ; Yamura, K. ; Haruta, N. J. Appl. Polym. Sci. 1994, 54, 2051
    [46] Blossey, R. Nat.Mater. 2003, 2, 301
    [47] Gong, M. G.; Xu, X. L.; Cao, Z. L.; Liu, Y. Y.; Zhu, H. M. Acta Phys. Sin. 2009, 58, 1885
    [48] Gong, M. G.; Xu, X. L.; Yang, Z.; Liu, Y. S.; Liu, L. Chinese Physics B 2010, 19, 056701
    [49] Ma, K.; Li, H.; Zhang, H.; Xu, X. L.; Gong, M. G.; Yang, Z. Chinese Physics B 2009, 18, 1942
    [50] Gong, M. G.; Xu, X. L.; Yang, Z.; Liu, Y. Y.; Lv, H. F.; Lv, L. Nanotechnology 2009, 20, 165602
    [51] Johnson, R. E.; Dettre, R. H. Adv.Chem.Ser. 1964, 43, 112
    [52] Bico, J.; Tordeux, C.; Quere, D. Europhys.Lett. 2001, 55, 214
    [53] Ramos, S. M. M.; Charlaix, E.; Benyagoub, A. Surface Science 2003, 540, 355
    [54] Adam, N. K.; Jessop, G. J. Chem. Soc. London 1925, 127, 1863
    [55] Kamusewitz, H.; Possart, W. Appl. Ph y. A 2003, 76, 899
    [56]曹晓平,蒋亦民物理学报,2005, 54,2202
    [57] Oner, D.; McCarthy, T. J. Langmuir 2000, 16: 7777
    [58] Sola, A.; Cerman, Z.; Striffler, B. F.; Spaeth, M.; Barthlott, W. Bioinspiration and Biomimetics 2007, 2, 126
    [59] Liu, J. L.; Feng, X. Q.; Wang, G. F.; Yu, S. W.; J. Phys.: Condens. Matter. 2007, 19, 356002
    [1] Richard, D.; Clanet, C.; Quere, D. Nature 2002, 417, 811
    [2] Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Science 2003, 299, 1377
    [3] Jiang, L.; Zhao, Y.; Zhai, J. Angew. Chem. Int. Ed. 2004, 43, 4338
    [4] Ambade, A. V.; Vutukuri, D. R.; Thayumanavan, S. J. Am. chem. Soc. 2006, 128, 14760
    [5] Scardino, A.; De Nys, R.; Ison, O.; O’Connor, W.; Steinberg, P. Biofouling 2003, 19, 221
    [6] Schultz, M. P.; Kavanagh, C. J.; Swain, G. W.; Biofouling 1999, 13, 323
    [7] Saito, H.; Takai, K.; Takazawa, H.; Yamauchi, G. Mater. Sci. Res. Int. 1997, 3, 216
    [8] Kako, T.; Nakajima, A.; Irie, H.; Kato, Z.; Uematsu, K.; Watanabe, T.; Hasimoto, K. J. Mater. Sci. 2004, 39, 547
    [9] Quere, D. Rep. Prog. Phys. 2005, 68, 2495
    [10] Zielecka, M.; Bujnowska, E. Prog. Org. Coat. 2006, 55, 160
    [11] Coulson, S. R.; Woodward, I.; Badyal, J. P. S.; Brewer, S. A.; Willis, C. J. Phys. Chem. B 2000, 104, 8836
    [12] Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. Langmuir 1999, 15, 4321
    [13] Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Acc. Chem. Res. 2005, 38, 644
    [14] Gao, X. F.; Jiang, L. Nature 2004, 432, 36
    [15] Lee, W.; Jin, M. K.; Yoo, W. C.; Lee, J. K. Langmuir 2004, 20, 7665
    [16] Liu, H.; Feng, L.; Zhai, J.; Jiang, L.; Zhu, D. B. Langmuir 2004, 20, 5659
    [17] Rioboo, R; Voue, M.; Vaillant, A.; Seveno, D.; Conti, J.; Bondar, A. I.; Ivanov, D. A.; Coninck, J. De. Langmuir 2008, 24, 9508
    [18] Jin, M. H.; Feng, X. J.; Xi, J. M.; Zhai, J.; Cho, K.; Feng, L.; Jiang, L. Macromol. Rapid Commun. 2005, 26, 1805
    [19] Li, J.; Fu, J.; Cong, Y.; Wu, Y.; Xue, L. J.; Han, Y. C. Appl. Surf. Sci 2006, 252, 2229
    [20] Zhao, N.; Shi, F.; Wang, Z. Q.; Zhang, X. Langmuir 2005, 21, 4713
    [21] Han, J. T.; Zheng, Y.; Cho, J. H.; Xu, X.; Cho, K. J. Phys. Chem. B 2005, 109, 20773
    [22] Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546
    [23] Cheng, P. H.; Li, D. S.; Yuan, Z. Z.; Chen, P. L.; Yang, D. R. 2008, 92, 41119
    [24] You, J. B.; Zhang, X. W.; Fan, Y. M.; Qu, S.; Chen, N. F. Appl. Phys. Lett.2007, 91, 231907
    [25]王烨,许小亮,谢炜宇,王壮兵,吕柳,赵亚丽物理学报2008, 57, 2582
    [26] Guo, M.; Diao, P.; Cai, S. M. Thin Solid Films 2007, 515, 7162
    [27] Liu, J. Z.; Lee, S.; Lee, K.; Ahn, Y. H.; Park, J. Y.; Koh, K. H. Nanotechnology 2008, 19, 185607
    [28] Song, J. H.; Wang, X. D.; Riedo, E.; Wang, Z. L. Nano Lett. 2005, 5, 1954
    [29] Hoffmann, S.; Ostlund, F.; Michler, J.; Fan, H. J.; Zacharias, M.; Christiansen, S. H.; Ballif, C. Nanotechnology 2007, 18, 205503
    [30] Huang, Y. H.; Bai, X. D.; Zhang, Y. J. Phys.: Condens. Matter. 2006, 18, L179
    [31] Hibbeler, R. C. Mechanics of Materials 3rd edn 1997 (Englewood Cliff, NJ: Prentice-Hall)
    [32] Borras, A.; Barranco, A.; Gonzalez-Elipe, A. R. Langmuir 2008, 24, 8021
    [33] Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv. Mater. 2002, 14, 1857
    [34]王步国,施尔畏,仲维卓,殷之文,科学通报,1997,42,1113
    [35] Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. J. Crt. Grow. 1999, 203, 186
    [36] Lehmann, V. Electrochemistry of silicon, Wiley-VCH: Weinheim, 2002, pp 51-54.
    [1] Artemyev, M .V.;Woggon, U.; Wannemacher, R .; Jaschinski, H.; Langbein, W. Nano.Lett. 2001, 1, 309.
    [2] Bruchez, M . Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P.; Science 1998, 281, 2013
    [3] Chan, W. C.W.; Nie, S.; Science 1998, 281, 2016.
    [4] Colvin,V. L.; Schlamp, M. C.; Alivisatos, A .P.; Nature 1994, 370, 354.
    [5] Han, M .Y.; Gao, X .H.; Su, J. Z.; Nie, S. Nat. Biotechnol. 2001, 19, 631.
    [6] Klimov,V.1.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C.A.; Eisler, H. J.; Bawendi, M .G.; Science 2000, 290, 314.
    [7] Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Science 2002, 295, 1506.
    [8] Cheng, Y.; Xiong, P.; Fields, L.; Zheng, J. P.; Yang, R. S.; Wang, Z. L., Appl. Phys. Lett. 2004, 85, 6389
    [9] Law, J. B. K.; Thong, J. T. L. Appl. Phys. Lett. 2006, 88, 133114
    [10] Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu,Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897
    [11] Park, W. I.; Yi, G. C. Adv. Mater. 2004, 16, 87
    [12] Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Chem. Phys. Lett. 2004, 396, 21
    [13] Vayssieres, L. Adv. Mater. 2003, 15, 464
    [14] Pal, U.; Santiago, P. J. Phys. Chem. B 2005, 109, 15317
    [15] Wang, M.; Ye, C. H.; Zhang,Y.; Wang, H. X.; Zeng, X. Y.; Zhang, L. D. J. Mater. Sci.: Mater. Electron. 2008, 19, 211
    [16] Fan, Z. Y.; Chang, P. C.; Lu, J. G.; Walter, E. C.; Penner, R. M.; Lin, C. H.; Lee, H. P. Appl. Phys. Lett. 2004, 85, 6128
    [17] Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Gao, X. G.; Li, J. P. Appl. Phys. Lett. 2004, 84, 3085
    [18] Wang, Z. L.; Song, J. H. Science 2006, 312, 242
    [19] Soci, C.; Zhang,A.; Xiang, B.; Dayeh,S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. Nano Lett. 2007, 7, 1003
    [20] Wang, J. X.; Sun, X. W.; Yang, Y.; Huang, H.; Lee,Y. C.; Tan, O. K.; Vayssieres, L. Nanotechnology 2006,17, 4995
    [21] Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463
    [22] Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. J Am. Chem. Soc. 2003, 125, 12567
    [23] Hirate, T.; Sasaki, S.; Li, W.; Miyashita, H.; Kimpara, T.; Satoh, T. Thin Solid Films 2005, 487, 35
    [24] Choopun, S.; Tabata, H.; Kawai, T. J. Cryst. Growth 2005, 274, 167
    [25] Kong, B. H.; Cho, H. K. J. Cryst. Growth 2006, 289, 370
    [26] Chik, H.; Liang, J.; Cloutier, S. G.; Kouklin, N.; Xua, J. M. Appl. Phys. Lett. 2004, 84, 3376
    [27] Ahsanulhaq, Q.; Umar, A.; Hahn,Y. B. Nanotechnology 2007, 18, 115603
    [28] Yu, H. D.; Zhang, Z. P.; Han, M. Y.; Hao, X. T.; Zhu, F. R. J. Am. Chem. Soc. 2005,127, 2378
    [29] Liu, D. H.; Liao, L.; Li, J. C.; Guo, H. X.; Fu, Q. Mater. Sci. Eng. B 2005, 121, 77
    [30] Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P. Inorg. Chem. 2006, 45, 7535
    [31] Gong, M. G.; Xu, X. L.; Yang, Z.; Liu, Y. Y.; Lv, H. F.; Lv, L. Nanotechnology 2009, 20, 165602
    [32] Wang, Y.; Xu, X. L.; Xie, W. Y.; Wang, Z. B.; Lv, L.; Zhao, Y. L. Acta Physica Sinica 2008, 57 2582
    [33] Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.; Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407
    [34] Djursic, A. B.; Leung, Y. H. Small 2006, 2, 944
    [35] Wang, F. F.; Cao, L.; Pan, A. L.; Liu, R. B.; Wang, X.; Zhu, X.; Wang, S. Q.; Zou, B. S. J. Phys. Chem. C 2007, 111, 7655
    [36] Erbil. H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Science 2003, 299, 1377
    [37] Jiang, L.; Zhao, Y.; Zhai, J. Angew. Chem. Int. Ed. 2004, 43, 4338
    [38] Ambade, A. V.; Vutukuri, D. R.; Thayumanavan, S. J. Am. Chem. Soc. 2006, 128, 14760
    [39]公茂刚,许小亮,曹自立,刘远越,朱海明物理学报2009,58, 1885
    [40] Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. Langmuir 1999, 15, 4321
    [41] Cassie, A. B. D.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546
    [42] Nozik, A. J. Nature Nanotechnology 2009, 9, 548
    [43]Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E. H. Science 2009, 324, 1542
    [44] Nozik, A. J. Phys. E 2002, 14, 115
    [45] Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Lett. 2005, 5, 865
    [46] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nat. Mater. 2005, 4, 455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700