银—聚吡咯纳米复合材料的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维、二维和三维的金属纳米粒子尤其是贵金属的纳米粒子具有优良的光、电和催化性能。然而,金属纳米粒子易发生团聚,而且在空气中容易被氧化。因此,在金属纳米粒子体系中一般多加入稳定剂,在其表面形成包覆层使其稳定存在。在金属纳米粒子表面包覆高聚物材料,也可以延长它在空气中的稳定性。此外,聚合物层还可以增加体系的柔韧性,在一定程度上改善它的加工性能。但是,由于通用高聚物包覆层的绝缘性而影响了金属纳米粒子固有的电性能。如果采用导电高聚物包覆金属纳米粒子不仅可以延长金属纳米粒子在空气中的稳定性,保持金属纳米粒子的导电性能,同时金属纳米粒子也可以改善导电高聚物的强度和加工性能。这种以金属纳米粒子为核、导电高聚物为壳的纳米复合材料,在纳米微电子和纳米电路等领域具有潜在的应用前景。
     首次利用金属纳米线吸附相应离子的方法,原位制备出银—聚吡咯同轴纳米电缆。由于金属纳米线的高表面原子比率特性,在其表面能够吸附上相同原子的离子。首先用AgNO_3水溶液处理制备出的银纳米线,通过表面离子的氧化还原反应、Zeta电位测定等,证明了在银纳米线的表面吸附了一层Ag~+离子。该Ag~+离子层可以在不另加入其它氧化剂的情况下氧化吡咯单体在银纳米线表面发生聚合。因此,在吸附
Metal nanoparticles with one-dimensional, two-dimensional and three-dimensional structure had been the focus of many recent studies because of their excellent optical, electrical and catalytic properties. However, the potential applications are limited due to their uncontrollable aggregation in aqueous solution. Furthermore, metal nanoparticles are sensitive to air and moisture. Therefore, stabilizer is used to prevent the coalescence of the metal nanoparticles which can form a coating layer on their surface. A polymer envelop can protect metal nanoparticles from oxidation and corrosion, keeping good performance for a long time. And the polymer adds flexibility to the system and improves processability to a large extent. However, the conductivity of metal nanoparticles has been insulated for coating by conventional polymer materials. The electrical property of metal nanoparticles will be maintained if coated by a conducting polymer layer. At the same time, the metal nanopartilces will
引文
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348), 56-58
    [2] T. J. Trentler, K. M. hickman, W. E. Buhro, Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors——An analogy to vapor-liquid-solid growth, Science, 1995, 270, 1791-1794
    [3] H. J. Dai, E. W. Wong, C. M. Lieber, Synthesis and characterization of carbide nanorods, Nature, 1995, 375,769-772
    [4] H. Q. Han, S. S. Fan, Q. Q. Li, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction, Science, 1997, 277, 1287-1289
    [5] G. Fasol, Applied physics——Nanowires: Small is beautiful. Scinece, 1998, 280, 545-546
    [6] Y. Zhang, K. Suenaga, S. Iijima, Coaxial nanocable silicom carbide core shelled by silica and borou nitride, Science, 1998, 281,973-975
    [7] 张立德,准一维纳米材料家族的新成员——同轴纳米电缆,中国科学院院刊,1999,5,350-352
    [8] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science, 2001, 291, 1947-1949
    [9] R. S. Wagner, W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 1964, 4, 89-98
    [10] X. F. Duan, C. M. Lieber, General synthesis of compound semciconductor nanowires, Adv. Mater., 2000, 12(4), 298-302
    [11] Y. Wu, P. Yang, Gemanium nanowire growth via simple vapor transport, Chem. Mater., 2000, 12(3), 605-607
    [12] Y. Tang, N. Wang, Y. Zhang, Synthesis and characterization of amorphous carbon nanowires, Appl. Phys. Lett., 1999, 75(19), 2912-2923
    [13] Z. Bai, D. Yu, H. Zhang,Y. Ding, Y. Wang, X. Cai, Q. Hang, G. Xiong, S. Feng, Nano-scale GeO_2 wires synthesized by physical evaporation, Chem. Phys. Lett., 1999, 303(3-4), 311-314[14] C. Chen, C. Yeh, C. Chen, M. Yu, H. Liu, J. Wu, K. Chen, L. Chen, J. Peng, Y. Chen, Catalytic growth and characterization of gallium nitride nanowires, J. Am. Chem. Soc., 2001, 123(12), 2791-2798
    [15] Y. Wang, G. Meng, L. Zhang, C. Liang, J. Zhang, Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence, Chem. Mater., 2002, 14(4), 1773-1777
    [16] A. M. morales, C. M. Lieber, A laser ablation method for the synthesis for crystalline semiconductor nanowires, Science, 1998, 279(5384), 208-211
    [17] W. Han, A. Zettl, Physical approach to the synthesis of galliun nitride nanorods, Appl. Phys. Lett., 2002, 80(2), 303-305
    [18] K. Chang, J. Wu, Low-temperature catalytic synthesis galliun nitride nanowries, J. Phys. Chem. B., 2002, 106(32), 7796-7799
    [19] X. Duan, J. Wang, C. M. Lieber, Synthesis and optical properties of Galiun arsenide nanowries., Appl. Phys. Lett., 2002, 76(9), 1116-1118
    [20] M. Yazawa, M. Kohuchi, A. Muto, Semiconductor nanowhiskers. Adv. Mater., 1993, 5(7~8), 577-580
    [21] M. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of Zinc oxide nanowires by bapor transport, Adv. Mater., 2001, 13(2), 113-116
    [22] Y. Kong, D. Yu, B. Zhang, Ultraviolet- emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett., 2001, 78(4), 407-409
    [23] C. Tang, S. Fan, D. L. L. Marc, P. Li, Silica-assisted catalytic growth of oxide and nitride nanowires, Chem. Phys. Lett., 2001, 333(1-2), 12-15
    [24] X. Peng, G. Meng, X. Wang, Y. Wang, J. Zhang, X. Liu, L. Zhang, Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers, Chem. Mater., 2002, 14(11), 4490-4493
    [25] Y. Y. Wu, P. D. yang, Direct observation of Vapor-Liquid-Solid nanowires growth, J. Am. Chem. Soc., 2001, 123(13), 3165-3166
    [26] D. P. Yu, C. S. Lee, Synthesis of Nano-scale silicon wires by excimer laser ablation at high temperature, Solid State Commun., 1998, 105(6), 403-407
    [27] H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, S. T.??Lee, Bulk-quanity GaN nanowires synthesized from hot filmanet chemical vapor deposition, Chem. Phys. Lett., 2000, 327(5-6), 263-270
    [28] K. hiruma, M. Yazawa, T. Katsuyama, Growth and optical-properties of nanometer-scale GaAs and InAs whiskers,J Appl. Phys., 1995, 77(2), 447-462
    [29]Y. Y. Wu, B. Messer, P. D. Yang, Superconducting MgB2 nanowires, Adv. Mater., 2001, 13(19), 1487-1489
    [30] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, C. M. Lieber, Highly polzarized photoluminescence and photodetection from single indium phosphide nanowires, Science, 2001, 293(5534), 1455-1457
    [31] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Synthesis of β-Ge2O3 nanowires by laser ablation, J. Phys. Chem. B, 2002, 106(37), 9536-9539
    [32] P. D. Yu, Q. L. Hang, Y. Ding, Amorphous silica nanowires: intensive blue light emitters, Applied Phys. Lett., 1998, 73(21), 3076-3078
    [33] K. Hiruma, T. Katsuyama, K. Ogawa, Quantum size microcrystals grown unising orgnometallic vapor-phase epitaxy, Appl. Phys. Lett., 1991, 59(4), 431-433
    [34] M. Yazawa, M. koguchi, K. Hiruma, Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett., 1991, 58(10), 1080-1082
    [35] C. J. otten, O. R. Lourie, M. F. Yu, J. M. Cowley, M. J. Dyer, R. S. Ruoff, W. E. Buhro, Crystalline boron nanowires, J. Am. Chem. Soc, 2002, 124(17), 4564-4565.
    [36]Y. Feldman, E. Wasserman, D. J. Srolovitz, High-rate gas-phase growth of MoS2 nested inorganic fullerences and nanotubes, Science, 1995, 267 (5159), 222-225
    [37]T. J. Trentler, S.C. Goel, K. M. Hichman, A. M. Chiang, A. M. Beatty, P. C. Bibbons, W. E. Buhro, Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: elucidation of molecular and nonmolecular components of the pathway, J. Am. Chem. Soc., 1997, 119(9), 2172-2181
    [38]Y. Sun, Y. Yin, B. T. Mayere, T. Herricks, y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chem. Mater., 2002, 14, 4736-4745
    [39] Y. Sun, Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Adv. Mater, 2002, 14(11), 833-837
    [40] Y. Qian, Solvothermal synthesis of nanocrystalline Ⅲ-Ⅴ semiconductors, Adv. Mater, 1999, 11(13), 1101-1102
    [41] Y. D. Li, H.W. Ding, Y. T. Qian, L. Yang, G E. Zhou, Nonaqueous synthesis of CdS nanorod semiconductor, Chem. Mater., 1998, 10(9), 2301-2303.
    [42] Y. Li, H. Liao, Y. Ding, Y. Fan, Y. Zhang, Y. Qian, Solvothermal elemental direct reaction to CdE (E= S, Se, Te) semiconductor nanord, Inorg. Chem., 1999, 38(7), 1382-1387.
    [43] Y. Li, Y. Ding, Y. Wang, A novel chemical route to ZnTe semiconductor nanorods, Adv. Mater, 1999, 11(0), 847-850
    [44] Y. Li, M. Sui, Y. Ding, G Zhang, J. Zhuang, C. Wang, Preparation of Mg(OH)2 nanorods, Adv. Mater, 2000, 12(11), 818-821
    [45] Q. Yang, K. Tang, C. Wang, Y. Qian, S. Zhang, PVA-assisted synthesis and characterization of CdSe and CdTe nanowires, J. Phys. Chem. B., 2002, 106(36), 9227-9230
    [46] B. R. Martin, D. J. Dermody, B. D. Reiss, M. Fang, L. A. Lyon, M. J. Natan, T. E. Mallouk, Orthogonal self-assembly on colloidal gold-platinum nanorods, Adv. Mater, 1999, 11(12), 1021-1025
    [47] C. Schonenberger, B. M. I. V. D. Zande, L.G J. Fokkin, M. Henny, S. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, U. Staufer, Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology, J. Phys. Chem. B., 1997, 101(28), 5497-5505
    [48] D. J. Pena, J. K. N. Mbindyo, A J. Carado, T. E. Mallouk, C.D. Keating, B. Razavi, T.S. Mayer, Template growth of photoconductive metal-CdSe-metal nanowires, J. Phys. Chem. B., 2002, 106(30), 7458-7462
    [49] L. Sun, P. C. Searson, C. L. Chien, Electrochemical deposition of nickel nanowires arrays in single-crystal mica films, Appl. Phys. Lett., 1999, 74(9), 2803-2805
    [50] C. R. Martin, Nanomaterials: A membrance-based synthetic approach, Science, 1994,266, 1961-1966
    [51]V. M. Cepak, C. R. Martin, Preparation of polymeric micro- and nanostructures using a template-based deposition method, Chem. Mater., 1999, 11(5), 1363- 1367
    [52] V. M. Cepak, J. C. Hulteen, G Che, K. B. Jirage, B. B. Lakshmi, E. R. Fisher, C. R. Martin, H. Yoneyama, Chemical strategies for template syntheses of composite micro- and nanostructures, Chem. Mater., 1997, 9(5), 1065-1067
    [53] S. Rahman, H. Yang, Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates, Nano Lett., 2003, 3(4), 439-442
    [54] M. E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes, Adv. Mater., 2001, 13(1), 62-65
    [55] W. Lee, H. Yoo, J. Lee, Template route toward a novel nanostrucrured superionic conductor film; AgI nanorod/y- Al2O3, Chem. Commun., 2001, 2530-2531
    [56]Z. zhang, D. Gekhtman, M. S. Dresselhaus, J. Y Ying, Processing and characterization of single-crystalline ultrafine bismuth nanowires, Chem. Mater., 1999,11(7), 1659-1665
    [57] Y. W. Wang, L. D. Zhang, G W. Meng, X. S. Peng, X. Y. Jin, J. Zhang, Fabrication of ordered ferromagnetic-nonmagnetic alloy nanowire arrays and their magnetic property dependence on annealing temperature, J. Phys. Chem. B., 2002, 106(10), 2502-2507
    [58] B. B. lakshmi, C. J. Patrissi, C. R. Martin, Sol-gel template synthesis of semiconductor oxide micro- and nanostructures, Chem. Mater., 1997, 9(11), 2544-2550
    [59] B. B. Lakshami, P. K. Dorhout, C. R. Martin, Sol-gel template synthesis of semiconductor nanostructures, Chem. Mater, 1997, 9(3), 857-862
    [60] C. Jerome, R. Jerome, Electrochemical synthesis of polypyrrole nanowires, Angew. Chem. Int. Ed, 1998, 37(18), 2488-2490
    [61] Y. Q. Zhu, W. K. Hsu, H. W. Kroto, D. R. M. Walton, An alternative route to NbS2 nanotubes, J. Phys. Chem. B., 2002, 106(31), 7623-7626
    [62] J. Sloan, D. V. Wright, H. G Woo, et al. Capillarity and silver nanowire formation observed insingle walled carbon nanotubes, Chem. Commun., 1999, 8, 699-700
    [63] A. Gobindaraj, B. C. Satishkumar, M. Nary, C. N. R. Rao, Metal nanowires andintercalated metal layers in single-walled carbon nanotube bundles, Chem. Mater., 2000, 12(1), 202-205
    [64] B. K. Pradhan, T. Kyotani, A. Tomita, Nickel nanowires of 4 nm diameter in the cavity of carbon nanotube, Chem. Commun., 1999, 14, 1317-1318
    [65] D. Zhou, S. Seraphin, Production of silicon-carbide whiskers from carbon nanoclusters, Chem, Phys. Lett., 1994, 222(3), 223-238
    [66] H. J. Dai, E. W. Wong, Y. Z. Lu, Synthesis and characterization of carbide nanorods, Nature, 1995, 375(6534), 769-772
    [67] Z. Pan, H. L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, S. Xie, Oriented silicon carbide nanowires: synthesis and field emission properties, Adv. Mater., 2000, 12(16), 1186-1190
    [68] W. Han, S. Fan, Q. Li, Y. Hu, Synthesis of gallium nitride nanorods through a carbon nanotubes-confined reaction, Science, 1997, 277(5330), 1287-1289
    [69] W. Han, S. Fan, Q. Li, B. Gu, Synthesis of silicon nitride nanorods using carbon nanotubes as a template, Appl. Phys. Lett., 1997, 71(16), 2271-2273
    [70] C. Tang, S. Fan, M. L. De La Chapele, H. Dang, P. Li, Synthesis of gallium phosphide, Adv. Mater, 2000, 12(18), 1346-1348
    [71]Y. Zhang, J. zhu, Q. Zhang, et al., Synthesis of GeO2 nanorods by carbon nanotubes template, Chem. Phys. Lett., 2000, 317(3/5), 504, 509
    
    [72]M. P. Zach, K. H. Ng, R. M. Penner, Molybdenum Nanowires by Electro-deposition, Science, 2000, 290(5499), 2120-2123
    [73] E. Braun, Y. Eichen, U. Sivan, G Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wires, Nature, 1998, 391(6669), 775-778
    
    [74] Y. Xia, P. Yang, Y Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: Synthesis, characterization, and application, Adv. Mater, 2003, 15(5), 353-389
    [75]N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun., 2001, 618-619
    [76]X. Zhang, J. Zhang, Z. Liu, C. Robinson, Inorganic/organic mesostructure directedsynthesis of wire/ribbon-like polypyrrole nanostructures, Chem. Commun., 2004, 1582-1583
    [77] Z. Wei, Z. Zhang, M. Wan, Formation mechanism of self-assembly polyaniline micro/nanotubes, Langmuir, 2002, 18, 917-921
    [78] L. Zhang, M. Wan, Self-Assembly of Polyaniline—From Nanotube to Hollow Microspheres, Adv. Funct. Mater., 2003, 13(10), 815-820
    [79] J. Kim, S. Cha, K. Shin, J. Jho,, J. Lee, Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions, Adv. Mater., 2004, 16(5), 459-464
    [80] J. D. Holmes, K. P. Johnston, C. T. Doty, B. A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires, Science, 2000, 287(5457), 1471-1473
    [81] B. Gates, Y. Yin, Y. Xia, A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm, J. Am. Chem. Sco., 2000, 122(50), 12582-12583
    [82] B. Gates, B. Mayers, A. Grossman, Y. Xia, A sonochemical approach to the synthesis of crystalline selenium nanowires in solution and on solid supports,Adv. Mater, 2002, 14(23), 1749-1752
    [83] 王中林,纳米线和纳米带——材料,性能和器件,卷Ⅱ:功能材料的纳米线和纳米带,清华大学出版社,2004,第14章
    [84] Y. Zhang, K. Suenaga, S. Iijima, Coaxial nanocable silicom carbide core shelled by silica and borou nitride, Science, 1998, 281,973-975
    [85] Q. Li, C. Wang, Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation, Appl. Phys. Lett., 2003, 82(9), 1398-1400
    [86] Y. Wong, Q. Li, Study of the crystallinity of ZnO in the Zn/ZnO nanocable heterostructures, J. Mater Chem., 2004, 14, 1413-1418
    [87] S. O. Obare, N. R. Jana, C. J. Murphy, Preparation of polystyrene-and silicacoated gold nanorods and their use as templates for the synthesis of hollow nanotubes, Nano Lett., 2001, 1(11), 601-603
    [88] X. Wang, P. Gao, J. Li, C. J. Summers, Z. Wang, Rectangular porous ZnO-ZnS??nanocables and ZnS nanotubes, Adv. Mater., 2002, 14(23), 1732-1735
    [89] K.S. Mayya, F. I. Gitins, A. M. Dibaj, F. Caruso, Nanotubes prepared by templating sacrificial nickel nanorods, Nano Lett., 2001, 1(12), 727-730
    [90] Y. Yin, Y. Lu, Y. Sun, Y. Xia, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica, Nano Lett, 2002, 2(4), 427-430
    [91]Z. Huang, P. C. Wang, A. G MacrDiarmid, Y. Xia, G M. Whitesides, Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanse as templates, Langmuir, 1997, 13(24), 6480-6484
    [92] X. Zhang, Z. Lu, M. Wen, H. Liang, J. Zhang, Z. Liu, Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties, J. Phys. Chem. B., 2005, 109, 1101-1107
    [93] P.M. Ajayan, S. Iijima, Capillarity-induced filling of carbon nanotubes, Nature, 1993,361,333-334
    [94] H. Cao, Z. Xu, H. Sang, D. Sheng, C. Tie, Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules, Adv. Mater., 2001, 132, 121-123
    [95] H. Cao, Z. Xu, F. Sheng, J. Hong, H. Sang, Y. Du, An array of ion nanowires encapsulated in polyaniline nanotubules and its magnetic behavior, J. Mater. Chem., 2001, 11,958-960
    [96] J. Zhang, G. Shi, C. Liu, L. Qu, M. Fu, F. Chen, Electrochemical fabrication of polythiophene film coated metallic nanowire arrays, J. Mater. Sci., 2003, 38, 2423-2427
    [97] Y. Xie, Z. Qiao, M. Chen, X. Liu, Y. Qian, γ-irradiation route to semiconductor/polymer nanocable fabrication, Adv. Mater., 1999, 11(18), 1512-1515
    
    [98] Z. Qiao, Y. Xie, M. Chen, J. Xu, Y. Zhu, Y. QIan, Synthesis of lead sulfide/(polyvinyl acetate) nanocomposites with controllable morphology, Chem. Phys. Lett., 2000, 321, 504-507
    [99] S. Yu, X. Cui, L. Li, K. Li, B. Yu, M. Antonietti, H. Colfen, From starch tometal/carbon hybrid nanostructures: Hydeothermal metal-catalyzed carbonization, Adv. Mater., 2004, 16(18), 1636-1640
    [100] L. Luo, S. Yu, H. Qian, T. Zhou, Large-scale fabrication of flexible silver/cross-lined poly(vinyl alcohol) coaxial nanocables by a facile solution approach, J. Am. Chem. Soc, 2005, 127, 282-2823
    [101] J. C. Yu, X. Hu, Q. Li, L. Zhang, Microwave-assisted synthesis and in-situ self-assembly of coaxial Ag/C nanocables, Chem. Commun., 2005, 2704-2706
    [102] N. R. Jana, L. Gearheart. C. J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun., 2001, 7, 617-618
    [103] N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of high aspect ration cylindrical gold nanorods, J. Phys. Chem. B., 2001, 105(19), 4065-4067
    [104] S. Lind, M.B. Mohamed, M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,J Phys. Chem. B., 1999, 103(16), 3073-3077
    [105] M. B. Mohamed, V. Volkov, S. Link, M. A. El-Sayed, The "lighting" gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett., 2000, 317(6), 517-523
    [106] T. M. Whitney, J. Jiang, P. C. Searson, C. L. Chien, Fabrication and magnetic properties of arrays of metallic nanowires, Science, 1993, 261(5126), 1316-1319
    [107] T. Thurn-Albrecht, J. Schotter, G. A. Kastle, Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates, Science, 2000, 290(5499), 2126-2129
    [108] M. Delvaux, J. Duchet, P. Stavaux, R. Legras, Sophie D. C, Chemical and electrochemical synthesis of polyaniline micr- and nano-tubules, Synth. Met., 2000, 113,275-280
    
    [109] J. M. mativetsky, W. R. Datars, Vhyscia B., 2002, 324, 191
    [110] J. G Park, S. H. Lee, B. Kim, and Y. W. Park, Electrical resistivity of polypyrrole nanotube measured by conductive scanning probe microscope: The role of contact force, Appl. Phys. Lett., 2002, 81, 4625-4627
    [111] J. Joo, K. T. Park, B. Kim, M. S. Kim, S. Y. Lee, C. K. Leong, I. K. Lee, D. H. Park, W. K. Yi, S. H. Lee, K. S. Ryu, Conducting polymer nanotube and nanowire synthesized by using nanoporous templates: Synthesis, characteristics, and application, Synth. Met., 2003, 135-136, 7-9
    [112] A.G. MacDiamid, W. E. Jones, I. D. Norris, I. Gao, I.A.T. Johnson, N. I. Pinto, I. Hone, B. Han, F. K. Ko, H. Okuzaki, M. Liaquno, Electrostatically-generated nanofibers of electronic polymers, Synth. Met., 2001, 119, 27-30
    [113] J. G. Park, G. T. Kim, V. Krstic, B. Kim, S. H. Lee, S. Roth, M. Burghard, Y. W. Park, Nanotransport in polyacetylene single fiber: Toward the intrinsic properties, Synth. Met., 2001, 119, 53-56
    [114] M. Bockrath, D. H. Cobden, R. E. Smalley, Single-electron transport in ropes of carbon nanotubes, Science, 1997, 275, 1922-1925
    [115] R. S. Lee, H. J. Kim, R. E. Smalley, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br., Nature, 1997, 388, 255-257
    [116] Y. Long, L. Zhang, Y. Ma, Z. Chen, N.Wang, Z. Zhang, M.Wan, Electrical Conductivity of an Individual Polyaniline Nanotube Synthesized by a Self-Assembly Method, Macromol. Rapdi Commun., 2003, 24, 938-942
    [117] Y. Long, Z. Chen, N. Wang, Y. Ma, Z. Zhang, L. Zhang, M. Wan, Electrical conductivity of a single conducting polyaniline nanotube, Appl. Phys. Lett., 2003, 83(9), 1863-1865
    [118] S. Cuenot, S. Demoustier-Champagne, B. Nysten, Elastic Modulus of Polypyrrole Nanotubes, Phys. Rev. Lett., 2000, 85, 1690-1693
    [119] Y.Z. Long, J. L. Luo, J. Xue, Specific heat and magnetic susceptibility of polyaniline nanotubes: inhomogeneous disorder, J. Phys.: Condens. Matter., 2004, 16, 1123-1130
    [120] 董亚杰,李亚栋,一维纳米材料的合成,组装与器件,科学通报,2002,47(5),641-649
    [121] X.F. Duan, Y. Huang, C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, 2001, 409,??66-69
    [122] Y. Cui, C. M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 2001, 291, 851-853
    [123] M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevithc, L. Sun, D. H. Reich, P. C. Searson, G J. Meyer, Magnetic alignment of fluorescent nanowires, Nano Lett., 2001, 1(3), 155-158
    [124] B. Messer, J. H. Song, P. D. Yang, MicroChannel networks for nanowire patterning, J. Am. Chem. Soc, 2000, 122(41), 10232-10233
    [125] Y. Huang, X. F. Duan, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks, Science, 2001, 291, 630-633
    [126] Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Unconventional methods for fabricating and patterning nanostructures, Chem. Rev., 1999, 99(7), 1823- 1248
    [127] J. Kong, N. R. Franklin, C. Zhou, M. G Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science, 2000, 287, 622-625
    [128] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 2001, 293, 1289-1292
    [129] M. H. Huang, S. Mao, P. D. yang, Rom-temperature ultraviolet nanowire nanolasers, Science, 2001, 292, 1897-1899
    [130] Y. Cui, X. Duan, J. Hu, C. M. Lieber, Doping and electrical transport in silicon nanowires, J. Phys. Chem. B., 2000, 104(22), 5213-5216
    [131] S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 1998, 393, 49-52
    [132] P.C. Collins, M. S. Aenold, P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 2001, 292, 706-709
    [133] R. Martel, T. Schmidt, H. T. Shea, Single- and multi-wall carbon naotube field-effect transistors, Appl. Phys. Lett., 1998, 73(17), 2447-2449
    [134] Z. Yao, H. W. C. Postma, L. Balents, Carbon nanotube intramolecular junctions, Nature, 1999,402,273,276
    [135] M. S. Fuhrer, J. Nygard, L. Shih, Crossed nanotube junctions, Science, 2000,288, 494-497
    [136] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Carbon nanotube inter- and intramolecular logic gates, Nano Lett., 2001, 1(9), 453-456
    [137] A. Bachtol, P. Hadley, T. Nakanishi, Logic circuits with carbon nanotube transistors, Science, 2001, 294, 1317-1320
    [138] Y. Huang, X. F. Duan, C. M. Lieber, Logic gates and computation from assembled nanowire building blocks, Science, 2001, 294, 1313-1317
    [139] Y. Huang, X. F. Duan, Y. Cui, C. M. Lieber, Gallium nitride nanowire nanodevices, Nano Lett., 2002, 2(2), 101-104
    [140] G. Y. Tseng, J. C. Ellenbogen, Nanotechnology---Toward nanocomputers, Science, 2001, 294, 1293-1294
    [141] R. F. Service, Breakthrough of the year---- Molecules get wired, Science, 2001, 294, 2442-2443
    [142] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294(30), 1901-1903
    [143] E. Hao, K.L. Kelly, J. T. Hupp, G C. Schatz, Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc, 2002, 124, 15182-15183
    [144] S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms, Natural Materials, 2004, 3, 482-488
    [145] R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Controlling anistropic nanoparticle growth through plasmon excitation, Nature, 2003, 425(2), 487-490
    [146] S. Chen, D. L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Lett., 2002, 2(9), 1003-1007
    [147] Y. Sun, B. Mayers, Y. Xia, Transformation of silver nanospheres into nanbelts and triangular nanoplates through a thermal process, Nano Lett., 2003, 3(5), 675-679.
    [148] 南军义,林薇薇,田永辉,共聚物酸掺杂接枝聚苯胺的研究,功能高分子学报,2000,13(5),297—300
    [149] 陈雨萍,磺化聚苯乙烯/聚吡咯复合膜,高分子学报,1996,1(1),72—76
    [150] R. Gangopadhyay, A. De, Conducting Polymer nanocomposites: A brief overview, Chem. Mater., 2000, 12 (3), 608-622
    [151] M. Gill, S. P. Armes, D. Fairhurst, Particles size distributions of polyaniline-silica colloidal composites, Langmuir, 1992, 8, 2178—2182
    [152] M. Gill, J. Mykytiuk, S. P. Armes, Novel colloidal polyaniline-silica somposites, J. Chem Soc Chem Commum, 1992, 108-109
    [153] J. Stejskal, P. Kratoechvil, S. P. Armes,, Polyaniline dispersions: stabilization by colloidal silica particles, Macromolecules, 1996, 29, 6814-6819
    [154] N.J. Terrill, T. Crowley, M. Gill, Small-angle X-ray scattering studies on colloidal dispersions of polyaniline-silica nanocomposites, Langmuir, 1993, 9, 2093-2096
    [155] S. Maeda, S. P. Armes, Preparation of novel polypyrrole-silica colloidal nanocomposites, J. colloid and interface science, 1993, 159,257-259
    [156] M.D. Butterworth, R. Corradi, J. Johal, Zeta potential measurements on conducting polymer-inorganic oxide nanocomposite particles, Journal of colloid and interface science, 1995,174,510-517
    [157] A. Azioune, K. Pech, B. Saoudi, Adsoprption of human serum albumin onto polypyrrole powder and polypyrrole-silica nanocomposites, Synth. Metal.,1999, 102,1419-1420
    [158] K. Yoshizawa, K. Tanaka, T. Yamabe, Ferromagnetic interaction in poly (m-aniline):electron spin resonance and magnetic susceptibility, J. Chem. Phys., 1992, 96, 5516-5522[1] C. Templeton, J. J. Peitron, R. W. Murray, P. Mulvaney, Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters, J. Phys. Chem. B, 2000, 104(3), 564-570
    [2] C. Demaille, M. Brust, M. Tsionsky, A. Bard, J. Anal Chem., 1997, 69, 2323
    [3] N. Chandrasekharan, P. V. Kamat, Improving the photoelectrochemcial performance of nanostructured TiO2 films by adsorption of Gold nanoparticles, J. Phys. Chem. B, 2000, 104(3), 10851-10857
    [4] A. Chen, H. Wang, B. Zhao, X. Li, The preparation of polypyrrole-Fe_3O_4 nanocomposites by the use of common ion effect, Synth. Metal., 2003, 139, 411-415
    [5] A. Chen, H. Wang, X. Li, Influence of concentration of FeCl3 solution on properties of polypyrrole-Fe_3O_4 composites prepared by common ion absorption effect, Synth. Metal., 2004, 145, 153-157.
    [6] 朱传征,许海涵,物理化学,第一版,北京,科学出版社,2000,第十二章,540
    [7] Y. Sun, Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Adv. Mater., 2002, 14(11), 833-837
    [8] T. Nguyen, A. Diaz, A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder, Adv. Mater., 1994, 6, 858-860
    [9] J. Liu, M. Wan, Composites of polypyrrole with conducting and ferromagnetic behaviors, J. Poly. Sci. A., 2000, 38, 2734-2739
    [10] B. Tian, G. Zerbi, Lattice-dynamics and vibrational-spectra of polypyrrole, J. Chem. Phys., 1990, 92, 3886-3891
    [11] G. B. Street, T. C. Clarke, M. Krounbi, K. Kanazawa, V. Lee, P. Pfluger, J. C. Scott, G. Weiser, Mol. Cryst. Liq. Cryst., 1985, 83, 253
    [12] T. Ojio, S. Miyata, Highly transparent and conducting polypyrrole polyvinyl-alcohol composites films prepared by gas state polymerization, Polym. J.,??1986, 18, 95-98
    [13] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Uniform silver nanowires synthesis by reducing AgNO_3 with ethylene glycol in the presence of seeds and poly(vinylpyrrolidone), Chem. Mater., 2002, 14, 4736-4745
    [14] L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles, Langrnuir, 1996, 12, 4329-4335[1] Q. Li, C. Wang, Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation, Appl. Phys. Lett, 2003, 82(9), 1398-1400
    [2] Y. Wong, Q. Li, Study of the crystallinity of ZnO in the Zn/ZnO nanocable heterostructures, J. Mater. Chem., 2004, 14, 1413-1418
    
    [3] S. O. Obare, N. R. Jana, C. J. Murphy, Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes, Nano Lett., 2001, 1(11), 601-603
    [4] X. Wang, P. Gao, J. Li, C. J. Summers, Z. Wang, Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes, Adv. Mater., 2002, 14(23), 1732-1735
    [5] K.S. Mayya, F. I. Gitins, A. M. Dibaj, F. Caruso, Nanotubes prepared by templating sacrificial nickel nanorods, Nano Lett., 2001, 1(12), 727-730
    [6] Y. Yin, Y. Lu, Y. Sun, Y. Xia, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica, Nano Lett., 2002, 2(4), 427-430
    [7] H. Cao, Z. Xu, H. Sang, D. Sheng, C. Tie, Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanorubules, Adv. Mater., 2001, 132, 121-123
    [8] H. Cao, Z. Xu, F. Sheng, J. Hong, H. Sang, Y. Du, An array of ion nanowires encapsulated in polyaniline nanorubules and its magnetic behavior, J. Mater. Chem., 2001, 11,958-960
    [9] J. Zhang, G Shi, C. Liu, L. Qu, M. Fu, F. Chen, Electrochemical fabrication of polythiophene film coated metallic nanowire arrays, J. Mater. Sci., 2003, 38, 2423-2427
    [10]Y. Xie, Z. Qiao, M. Chen, X. Liu, Y. Qian, γ-irradiation route to semiconductor/polymer nanocable fabrication, Adv. Mater., 1999, 11(18), 1512 -1515
    [11]Z. Qiao, Y. Xie, M. Chen, J. Xu, Y. Zhu, Y. Qlan, Synthesis of leadsulfide/(polyvinyl acetate) nanocomposites with controllable morphology, Chem. Phys. Lett., 2000, 321, 504-507
    [12]S. Yu, X. Cui, L. Li, K. Li, B. Yu, M. Antonietti, H. Colfen, From starch to metal/carbon hybrid nanostructures: Hydeothermal metal-catalyzed carbonization, Adv. Mater., 2004, 16(18), 1636-1640
    [13]L. Luo, S. Yu, H. Qian, T. Zhou, Large-scale fabrication of flexible silver/cross-lined poly(vinyl alcohol) coaxial nanocables by a facile solution approach, J. Am. Chem. Soc, 2005, 127, 282-2823
    [14] J. C. Yu, X. Hu, Q. Li, L. Zhang, Microwave-assisted synthesis and in-situ self-assembly of coaxial Ag/C nanocables, Chem. Commun., 2005, 2704-2706
    [15]Y. Sun, Y. Yin, B. T. Mayere, T. Herricks, y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chem. Mater, 2002, 14, 4736-4745
    [16]Y. Sun, Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process, Adv. Mater, 2002, 14(11), 833-837
    [17]G. Bogels, H. Meekes, P. Bennema, D. Bollen, Growth Mechanism of Vapor-Grown Silver Crystals: Relation between Twin Formation and Morphology, J. Phys. Chem. B., 1999, 103(36), 7577-7583
    [18]S. Link, Z. L. Wang, M. A. El-Sayed, How Does a Gold Nanorod Melt? J. Phys. Chem. B., 2000, 104(33), 7867-7870
    [19]T. Nguyen, A. Diaz, A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder, Adv. Mater, 1994, 6, 858-860
    [20] J. Liu, M. Wan, Composites of polypyrrole with conducting and ferromagnetic behaviors,J Poly. Sci. A., 2000, 38, 2734-2739
    [21]B. Tian, G Zerbi, Lattice-dynamics and vibrational-spectra of polypyrrole, J. Chem. Phys., 1990, 92, 3886-3891
    [22]M.M. Alvarez, J. T. Khoury, T. G Schaaff, M. N. Shafigullin, I. Vezmar, R. L. Whetten, Optical Absorption Spectra of Nanocrystal Gold Molecules, J. Phys. Chem. B., 1997, 101(19), 3706-3712
    [23] G. B. Street, T. C. Clarke, M. Krounbi, K. Kanazawa, V. Lee, P. Pfluger, J. C. Scott,G Weiser, Mol. Cryst. Liq. Cryst., 1982, 83, 253
    [24] T. Ojio, S. Miyata, Highly transparent and conducting polypyrrole polyvinyl-alcohol composites films prepared by gas state polymerization, Polym. J., 1986, 18,95-98
    [25] Schatz, G C; Van Duyne, R. P. In Handbook of Cibrational Spectroscopy; Chalmer, J. M., Griffiths P. R., Eds.; Wiley: New York, 2002
    [26]E. Matijevic, Preparation and properties of uniform size colloids, Chem. Mater, 1993,5,412-426
    
    [27] M. J. Kerhker, J. Colloid Interface Sci., 1985, 105, 297
    [28] D. Sarkar, J. N. Halas, General vector basis function solution of Maxwell's equations, Phys. Rev. E, 1997, 56, 1102-1112
    [29] R. Jin, Y. C. Cao, E. Hao, G S. Metraux, G. C. Schatz, C. A. Mirkin, Controlling anistropic nanoparticle growth through plasmon excitation, Nature, 2003, 425(2), 487-490
    [30] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294(30), 1901-1903
    [31] S. Link, M. A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, J. Phys. Chem. B., 1999, 103(40), 8410-8426
    [32] P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir, 1996, 12(3), 788-800
    [33] S. Chen, D. L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Lett., 2002, 2(9), 1003-1007
    [34] Y. Sun, B. Mayers, Y. Xia, Transformation of silver nanospheres into nanbelts and triangular nanoplates through a thermal process, Nano Lett., 2003, 3(5), 675-679
    [35] S. Link, M. B. Mahamed, M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,J. Phys. Chem. B., 1999, 103(16), 3073-3077
    [36]C. S. Ah, S. D. Hong, D. J. Jang, Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances, J. Phys. Chem. B., 2001,105(33), 7871-7873
    
    [37]Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z.P. Zhou, J. X. Wang, L. Song, L.F. Liu, W. Y Zhou, G Wang, C. Y Wang, S. S. Xie, J. M. Zhang, D. Y Shen, Evidence for the monolayer assembly of poly (vinylpyrrolidone) on the surface of silver nanowires, J. Phys. Chem. B., 2004, 108(34), 12877-12881
    [1] C. A. Mirkin, T. L. Letsinger, T. C. Mucic, J. J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382, 607-609
    [2] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluoresent biological labels, Science, 1998, 281, 2013-2016
    [3] M. Han, X. Gao, J. Z. Su, S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotechnolo., 2001, 19, 631-635
    [4] Y. C. Cao, T. Jin, C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science, 2002, 297, 1536-1540
    [5] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G C. Schatz, J. G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 2001, 294(30), 1901-1903
    [6] E. Hao, K.L. Kelly, J. T. Hupp, G. C. Schatz, Synthesis of silver nanodisks using polystyrene mesospheres as templates, J. Am. Chem. Soc, 2002, 124, 15182-15183
    [7] M. Maillard, S. Giorgio, M. P. Pileni, Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties, J. Phys. Chem. B, 2003, 107,2466-2470
    [8] S. Chen, Z. Fan, D.L. Carroll, Silver nanodisks: synthesis, characterization, and self-assembly, J. Phys. Chem. B, 2002, 106, 10777-10781
    [9] R. Jin, Y. C. Cao, E. Hao, G S. Metraux, G C. Schatz, C. A. Mirkin, Controlling anistropic nanoparticle growth through plasmon excitation, Nature, 2003, 425(2), 487-490
    [10]S. Chen, D. L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates, Nano Lett, 2002, 2(9), 1003-1007
    [11] Y. Sun, B. Mayers, Y. Xia, Transformation of silver nanospheres into nanbelts andtriangular nanoplates through a thermal process, Nano Lett., 2003, 3(5), 675-679
    [12]S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry, Biological synthesis of triangular gold nanoprisms, Natural Materials, 2004, 3,482-488[1] C. Templeton, J. J. Peitron, R. W. Murray, P. Mulvaney, Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters, J. Phys. Chem. B, 2000, 104(3), 564-570
    [2] C. Demaille, M. Brust, M. Tsionsky, A. Bard, J. Anal Chem., 1997, 69, 2323
    [3] N. Chandrasekharan, P. V. Kamat, Improving the photoelectrochemcial performance of nanostructured TiO2 films by adsorption of Gold nanoparticles, J. Phys. Chem. B, 2000, 104(3), 10851-10857
    [4] J. Zheng, Z. Zhu, H. Chen, Z. Liu, Nanopatterned assembling of colloidal Gold nanoparticles on silicon, Langmuir, 2000, 16(10), 4409-4412
    [5] M.C. Bourg, A. Badia, R. B. Lenox, Gold-sulfur bonding in 2D and 3D slef-assembly monolayers: XPS characterization, J. Phys. Chem. B, 2000, 104(3), 6562-6567
    [6] G. Peto, G. L. Molnar, Z. Paszti, O. Geszti, A. Beck, L. Guczi, Mater. Sci. Eng. C, 2002, 19,95
    [7] M.H. Schoenfisch, J. E. Pemberton, Air stability of alkanethiol self-assembled monolayers on silver and gold surfaces, J. Am. Chem. Soc, 1998, 120(18), 4502-4513
    [8] K. Huang, M. Wan, Self-assembled polyaniline nanostructures with photoi- somerization function, Chem. Mater., 2002, 14(8), 3486-3492
    [9] R. Gangopadhyay, A. De, Conducting polymer nanocomposites: A brief overview, Chem. Mater, 2000, 12, 608-622
    [10]S.M. Marinakos, D. A. Shultz, D. L. Feldheim, Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules, Adv. Mater, 1999, 11(1), 34-37
    [11]S. T. Marinakos, J. P. Novak, L. C. Brousseau, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim, Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimenions and guest encapsulation, J. Am.Chem. Soc, 1999, 121,8518-8522
    [12] S. T. Selvan, J. P. Spatz, H. A. Klok, M. Moller, Gold-polypyrrole core-shell particles in diblock copolymer micelles, Adv. Mater., 1998, 10(2), 132-134
    [13]Y. C. Liu, T. C. Chuang, Synthesis and characterization of gold/polypyrrole core-shell nanocomposites and elemental gold nanoparticles based on the gold-containing nanocomplexes prepared by electrochemical methods in aqueous solutions, J. Phys. Chem. B., 2003,107, 12383-12386
    [14] B. Tian, G. Zerbi, Lattice-dynamics and vibrational-spectra of polypyrrole, J. Chem. Phys., 1990, 92, 3886-3891
    [15] J. Liu, M. Wan, Composites of polypyrrole with conducting and ferromagnetic behaviors, J. Poly. Sci. A., 2000, 38, 2734-2739
    [16]T. Nguyen, A. Diaz, A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder, Adv. Mater., 1994, 6, 858-860

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700