用户名: 密码: 验证码:
金属氧化物纳米结构的热氧化合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构是指至少有一维空间尺度处于1~100 nm的结构。与传统块体材料相比,纳米结构具有许多优越的物理、化学性质和更为广泛的应用前景,因此近些年来越来越受到人们的重视。过渡族金属氧化物作为材料中非常重要的一类,在超导、巨磁阻、介电等方面中有很多优异的性质。而纳米尺度的过渡族金属氧化物纳米材料,近些年来在电池、催化剂、电致发光材料、传感器等领域展示出了广阔的应用前景,因此越来越受到人们的重视。如何制备过渡族金属氧化物纳米材料是当今科学界的研究热点之一。
    在本论文中,使用一种直接氧化金属丝/金属片的方法,在低温下制备出了氧化铌(NbO_2)和氧化镍(NiO)的纳米结构,并且研究了纳米结构生长的机理。其中单相的NbO_2是首次合成,性能测试结果表明NbO_2纳米结构在1 KHz到10 MHz区间内具有良好的介电性质。其介电常数与SiO_2和Si_3N_4相近,且在测试频率范围内稳定,损耗在测试频率范围内始终小于1%,在器件制造中具有良好的应用前景。
    在制备Ni氧化物纳米结构的过程中,我们分别在Si基底和Ni金属基底上观察到了不同的NiO纳米结构。其中Ni基底生长NiO纳米线的发现提示了我们硅基原位加热金属膜合成纳米线的可能性;而锥形结构的合成对于场发射性能无疑是非常有利的结构。通过对这些结构的表征和不同生长条件的比较,分别研究了其生长机理。这些对于今后其它金属氧化物纳米结构的可控合成是有益的经验。
Nanostructures – structures that are defined as having at least onedimension between 1 and 100 nm – have received steadily growing interestsas a result of their peculiar and fascinating properties, and applicationssuperior to their bulk counterparts. Transition metal oxides are a large familyof materials exhibiting various interesting properties such assuperconductivity, colossal magneto-resistance and piezoelectricity, etc.Transition metal oxides with a reduced size down to the nanometer scale arepromising materials for applications in batteries, catalysts, electrochromicmaterials and sensors. The ability to generate such minuscule structures isessential to much of modern science and technology.
    In this treatise, a simple oxidation process, i.e. heating directly the metalslice or spiral coil, was put forward to fabricate niobium oxide (NbO2) andnickel oxide (NiO) nanostructures. This was the first time the synthesis of pureNbO_2 phase was reported. The NbO_2 nanostructure has excellent dielectricproperties in the frequency range from 1 kHz to 10 MHz. Its dielectric constantis close to those of SiO_2 and Si_3N_4 and independent on the frequency applied.The NbO2 nanostructure has a dielectric loss less than 1% in the measuredfrequency range, which makes it a potential material for applications into MOSdevices.
    For the synthesis of the nickel oxide nanostructure, it is found thatdifferent NiO nanostructures – nanowires and cones film – were synthesizedon the Si and Ni substrates, respectively. The NiO nanowires synthesized onthe Ni substrate implies the possibility of synthesizing metal oxide nanowiresby heating metal film on the Si/SiO_2 substrate directly, and the cone structuresare advantageous for the field-emission displays. From the nanostructurescharacterization and growth condition comparison, the growth mechanism was
    investigated, which is useful for the controllable synthesis of other metaloxide nanostructures in the future.
引文
[1] C.M. Lieber. One-dimensional nanostructures: Chemistry, physics & applications. Solid State Commun. 1998, 107:607-616
    [2] A special issue on semiconductor quantum dots. MRS Bull. 1998, 2:15
    [3] S. Iijima. Helical microtubules of graphitic carbon, Nature 1991, 35:56-58
    [4] M. Remskar, A. Mrzel, Z. Skraba, et al. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 2001, 292:479-481
    [5] A.M. Morales, C.M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279:208-211
    [6] L. Manna, E.C. Scher, A.P. Alivisatos. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122:12700-12706
    [7] Z.W. Pan, Z.R. Dai and Z.L. Wang. Nanobelts of semiconducting oxides. Science 2001, 291:1947-1949
    [8] 朱静等. 纳米材料与纳米器件. 北京:清华大学出版社,2003. 7-8
    [9] 刘吉平,郝向阳,等. 纳米科学与技术. 北京:科学出版社,2002. 1-2
    [10] The White House, Office of the Press Secretary, National Nanotechnology Initiative: Leading to the Next Industrial Revolution, 2001
    [11] 张立德,牟季美,等. 纳米材料与纳米结构. 北京:科学出版社,2001. 10-13
    [12] 许井社等. 纳米材料及应用技术. 北京:化学工业出版社,2004. 321-443
    [13] Y.N. Xia, P.D. Yang, Y.G. Sun, et al. One dimensional nanostructures: Synthesis. Characterization and applications. Adv. Mater. 2003, 15:353-389
    [14] Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, X. Zhang. A simple method to synthesize nanowires. Chem. Matt. 2002, 14:3564-3568
    [15] Z.R. Dai, Z.W. Pan, Z.L. Wang. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13(1):9-24
    [16] P. Yang, C.M. Lieber. Nanorod-superconductor composites: A pathway to materials with high critical current densities. Science 1996, 273:1836-1840
    [17] S. Wang, S. Yang. Growth of crystalline Cu2S nanowire arrays on copper surface: Effect of copper surface structure, reagent gas composition, and reaction temperature. Chem. Mater. 2001, 13:4794-4799
    [18] X. Jiang, T. Herricks, Y. Xia. CuO nanowires can be synthesized by heating copper substrates in air. Nano. Lett. 2002, 2:1333-1338
    [19] Y. Yin, G. Zhang, Y. Xia. Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv. Funct. Mater. 2002,12:293-298
    [20] R.S. Wagner, W.C. Ellis. Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4:89-90
    [21] Elemental Semiconductor: a) Y.J. Zhang, Q. Zhang, N.L. Wang, Synthesis of thin Si whiskers (nanowires) using SiCl4. J. Cryst. Growth 2001, 226:185-191 b) J. Westwater, D.P. Gosain, S. Tomiya, S. Usui. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B 1997, 15:554-557
    [22] III-V semiconductor: a) C.C. Chen, C.C. Yeh, C.H. Chen, et al. Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 2001, 123:2791-2798 b) J. Zhang, X.S. Peng, X.F. Wang, et al. Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3. Chem. Phys. Lett. 2001, 345:372-376 c) M.Q. He, P.Z. Zhou, S.N. Mohammad, et al. Growth of GaN nanowires by direct reaction of Ga with NH3. J. Cryst. Growth 2001, 231:357-365 d) W.S. Shi, Y.F. Zheng, N. Wang, et al. Synthesis and microstructure of gallium phosphide nanowires. J. Vac. Sci. Tech. B 2001, 19:1115-1118
    [23] II-IV semiconductor: a) Y.W. Wang, L.D. Zhang, C.H. Liang, et al. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chem. Phys. Lett. 2002, 357:314-318 b) Y.W. Wang, G.W. Meng, L.D. Zhang, et al. Catalytic growth of large scale single-crystal CdS nanowires by physical evaporation and their photoluminescence. Chem. Mater. 2002, 14:1773-1777
    [24] Oxides: a) Y.J. Chen, J.B. Li, Y.S. Han, et al. The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth 2002, 245:163-170 b) X.C. Wu, W.H. Song, K.Y. Wang. Preparation and photoluminescence properties of amorphous silica nanowires. Chem. Phys. Lett. 2001, 336:53-56 c) M.H. Huang, Y. Wu, H. Feick, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2000, 13:113-116
    [25] Y. Wu, P. Yang. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123:3165-3166
    [26] a) Y. Wu, H. Yan, M. Huang, B. Messer, et al. Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chem. Eur. J. 2002, 8:1261-1268 b) M.S. Gudiksen, C.M. Lieber. Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 2000, 122:8801-8802
    [27] J. C. Hulteen, C.R. Martin. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7:1075-1087
    [28] R.L. Fleisher, P.B. Walker. Nuclear Tracks in Solids. Berkeley CA: University of California Press, 1975
    [29] A. Despic, V.P. Parkhutik. Modern Aspects of Electrochemistry (Eds: J.O. Bockris, R.E. White, B.E. Conway), Vol.20. New York: Plenum Press, 1989: Ch. 6
    [30] Z. Zhang, D. Gekhtman, M.S. Dresselhaus, J.Y. Ying. Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem. Mater. 1999, 11:1659-1665
    [31] M. Barbic, J.J. Mock, D.R. Smith, S. Schultz, Single crystal silver nanowires prepared by the metal amplification method. J. Appl. Phys. 2002, 91:9341-9345
    [32] Y. Yin, Y. Lu, Y. Sun, Y. Xia. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2002, 2:427-430
    [33] Y. Zhang, H. Dai. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett. 2000, 77:3015-3017
    [34] H. Liu, D.K. Biegelsen, N.M. Johnson, F.A. Pnoc, R.F.W. Pease. Self-limiting oxidation of Si nanowires. J. Vac. Sci. Technol. B 1993, 11:2532-2537
    [35] J.R. Heath, F.K. LeGoues. A liquid solution synthesis of single crystal germanium quantum wires. Chem. Phys. Lett. 1993,208:263-268
    [36] X. Wang, Y. Li. Selected-control hydrothermal synthesis of alpha-and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124:2880-2881
    [37] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos. Shape control of CdSe nanocrystals. Nature 2000, 404:59-61
    [38] Y. Sun, B. Gates, B. Mayers, Y. Xia. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2:165-168
    [39] V.P. Menon, C.R. Martin. Fabrication and evalution of nanoelectrode ensembles. Anal. Chem. 1995, 67:1920-1928
    [40] D.J. Sellmyer, M. Zheng, R. Skomski. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. Condens. Mater. 2001, 13:R433-R460
    [41] P. Buffat, J.P. Borel. Size effect on the melting temperature of gold particles. Phys. Rev. B 1976, 13:2287-2298
    [42] a) Y. Wu, P. Yang. Melting and welding semiconductor nanowires in nanotubes, Adv. Matter. 2001, 13:520-523 b) Y.Y. Wu, P.D. Yang. Germanium/carbon core-sheath nanostructures. Appl. Phys. Lett.2000, 77:43-45
    [43] a) E.O. Hall. Proc. Phys. Soc. London B 1951, 64:747 b) N.J. Petch, J. Iron Steel Inst. 1953, 174:25
    [44] J. Schiotz, F.D. Di Tolla, K.W. Jacobsen. Softening of nanocrystalline metals at very small grain sizes. Nature 1998, 391:561-563
    [45] E.W. Wong, P.E. Sheehan, C.M. Lieber. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277:1971-1975
    [46] P. Poncharal, Z.J. Wang, D. Ugarte, W.A. De Heer. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283:1513-1516
    [47] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu. Ultrahigh Strength and High Electrical Conductivity in Copper. Science 2004, 304:422-426
    [48] a) X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409:66-69 b) Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, C.M. Lieber. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294:1313-1317 c) D.H. Cobden. Molecular electronics -Nanowires begin to shine, Nature 2001, 409:32-33 d) G.Y. Tseng, J.C. Ellenbogen. Nanotechnology -Toward nanocomputers. Science 2001, 294:1293-1294
    [49] Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, Electronic transport properties of single-crystal bismuth nanowire arrays, Phys. Rev. B 2000,61,4850-4861
    [50] a) Y. Wang, X. Duan, Y. Cui, C.M. Lieber. Gallium nitride nanowire nanodevices, Nano Lett. 2002, 2:101-104;b) Y.Cui. C.M. Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291:851-853
    [51] S.W. Chung, J.Y. Yu, J.R. Heath. Silicon nanowire devices. Appl. Phys. Lett. 2000, 76:2068-2070
    [52] N.I. Kovtyukhova, B.R. Martin, J.K.N. Mbindyo, T.E. Mallouk. Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices. Mater. Sci. Eng. C 2002, 19:255-262
    [53] Y. Huang, X. Duan, Q. Wei, C.M. Lieber. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291:630-633
    [54] M. Huang, S. Mao, H. Feick, et al. Room temperature ultraviolet nanowire nanolasers. Science 2001, 292:1897-1899
    [55] H. Kind, H. Yan. M. Law, B. Messer, P. Yang. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14:158-160
    [56] E.C. Walter, F. Favier, R.M. Penner. Palladium mesowire Arrays for fast hydrogen sensors and hydrogen-actuated switches. Anal. Chem. 2002, 74:1546-1553
    [57] M. Law, H. Kind, F. Kim, B. Messer, P. Yang. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 2002, 41:2405-2408
    [58] N. Ozer, M.D. Rubin, C.M. Lampert. Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering -A comparison, Sol. Eenergy Matter. Sol. CELLS 1996, 40:285-296
    [59] S. Venkataraj, R. Drese, Ch. Liesch, and O. Kappertz, et al. Temperature stability of sputtered niobium–oxide films. J. App. Phy. 2002, 91(8):4863-4871
    [60] S. Yoshio, T. Nobuo, S. Tamio. Electrical properties of semi-conducting NbO2. J. Phy. Soc. Jap. 1985, 54:1514-1518
    [61] V. Evert. The Metal-Insulator Transition of NbO2: an Embedded Peierls Instability. Con. Matter. 2001, 1:1-4
    [62] JCPDS Card, No 85-0379
    [63] 徐毓龙. 氧化物与化合物半导体基础. 西安:西安电子科技大学出版社,1991. 194-205
    [64] H.X. Yang, Q.F. Dong, X.H. Hu, et al. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH center dot H2O. J. Power Source 1999, 79(2):256-261
    [65] E.L. Miller, R.E. Rocheleau. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J Electchem. Soc. 1997, 144(9):3072-3077
    [66] H.Y. Guan, C.L. Shao, S.B. Wen, et al. Preparation and characterization of NiO nanofibres via an electrospinning technique. Inorg. Chem. Comm. 2003, 6(10):1302-1303
    [67] Y. Lin, T. Xie, B.C. Cheng, et al. Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem. Phys. Lett. 2003, 380:521-525
    [68] X.Y. Deng, Z. Chen. Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance. Mater. Lett. 2004, 58(3-4):276-280
    [69] JCPDF Card: 47-1049
    [70] R.E. Dietz, G.I. Parisot and A.E. Meixner. Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys. Rev. B 1971, 4(7):2302-2310
    [71] N.G. Chopra, R.J. Luyken, K. Cherrey, et al. Boron-Nitride Nanotubes, Science 1995, 269(5226): 966-967
    [72] T. Toyoda, H Nakanishi, S Endo and T Irie. Fundamental absorption edge in the semiconductor CdInGaS4 at high temperatures. J. Phys. D: Appl. Phys. 1985, 4:747-751

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700