用户名: 密码: 验证码:
低频锂锌铁氧体吸波材料及其在聚合物中分散技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于电子电气设备在工业、民用及军事领域中的应用迅速增长,使得由此产生的电磁辐射成为一种环境污染,而0.5-3 GHz低频段内的电磁辐射已被证明会对人体组织器官产生较严重的危害作用。在现有的电磁辐射防护措施中,辐射吸收是一种实用而且有效的方法。因此,对于民用低频吸波材料进行研究和制备具有非常重要的意义。
     与其他材料相比,尖晶石型铁氧体及六方铁氧体在吸波层厚度、有效吸收频宽等方面具有优势。但由溶胶-凝胶法制备的高质量纳米铁氧体的微波吸收能力大多集中在高频区。有研究表明,采用固相反应法制备的锂锌铁氧体在低频区具有较好的吸波性能,但是固相反应法本身的缺点限制了这种材料的进一步应用。因此,本文利用溶胶凝胶法结合后期煅烧制备了在低频区具有良好吸波性能的微米级锂锌铁氧体。
     本文首先利用溶胶-凝胶法结合后期煅烧成功制备了微米级纯锂锌铁氧体,并利用X射线衍射、扫描电镜及网络矢量分析仪等手段对其微观结构和吸波性能进行了研究。借助反应动力学和铁磁共振理论,研究了热处理工艺参数对其低频吸波性能的影响,发现最终煅烧温度决定颗粒粒径,不同的升温速率影响后期煅烧过程中锂和锌的实际汽化损失量,而纯锂锌铁氧体的实际颗粒大小和物相组成会对其由铁磁共振引起的低频微波吸收产生影响。以200℃/h升至500℃下煅烧及以240℃/h升至1200℃下煅烧所得的纯锂锌铁氧体均在0.5-3 GHz的频段内具有吸波性能,而后者的吸波效果更好,其在2.8 GHz及10 mm的吸波层厚度下具有最高的反射衰减,可达-25.89 dB。该制备工艺尚未见报道。但这种纯锂锌铁氧体主要在2.5-3 GHz内具有微波吸收能力,其有效吸波频带仍需要向低频区移动。
     为增强其在0.5-3 GHz内的吸波能力以及拓宽其吸波频宽,本文利用相同工艺参数的溶胶凝胶法结合后期煅烧,对锂锌铁氧体分别进行了镁、铜、镧及铈的不等量掺杂。对掺杂后所得锂锌铁氧体进行微观结构及吸波性能的检测并与纯锂锌铁氧体进行对比。结果发现,掺杂镁、铜、镧及铈会改变锂锌铁氧体晶格中金属离子的分布状态,而掺杂镧和铈还会引起锂锌铁氧体磁晶各向异性的变化。这些变化导致相应的等效磁场发生改变,进而对铁磁共振引起的低频吸波性能产生影响。另外,镁、铜、镧、铈在锂锌铁氧体中均具有最大掺杂量。若实际掺杂量超过这一限定值,所得铁氧体材料中会分别形成MgFe_2O_4,CuFe_2O_4,LaFeO_3和CeO_2。一方面,MgFe_2O_4,CuFe_2O_4和LaFeO_3的产生会引起掺杂锂锌铁氧体生成量的减少。另一方面,MgFe_2O_4,CuFe_2O_4,LaFeO_3的低频吸波能力相对较弱。会使得实际铁氧体材料的低频吸波能力进一步减弱。
     但当铈的掺杂量超过限定值时,CeO_2的形成并不影响实际所得铁氧体中锂锌铁氧体的数量。值得注意的是,当铈掺杂到一定量时,实际铁氧体中CeO_2的富集以及其与锂锌铁氧体的复合比例将使材料的介电损耗得到增强,进而大幅提高其低频吸波能力。所得铁氧体材料在1.68 GHz及10 mm的吸波层厚度下的反射阻断衰减最高值可达-28.06 dB,并且其有效吸波频带分布在1.25-2.25频段内,带宽可达1 GHz。因此,这种实际制备的铁氧体复合材料在0.5-3 GHz频段内是一种很有实用化前景的吸波材料。
     根据全貌分析法及复合材料有效电磁参数的计算公式,本文利用MATLAB编写了可对不同频率点处复合吸波材料的反射衰减、吸波层厚度及组分配比间的关系进行表征的计算模型。应用此模型得到一系列有效的锂锌铁氧体/乙炔碳黑复合吸波剂的相关数据。从中取三种组分利用球磨法制备了不同的锂锌铁氧体/乙炔碳黑复合材料,并对其吸波性能进行检测。结果表明,根据上述预分析模型设计并实际制备的复合材料,其低频吸波性能确实优于纯锂锌铁氧体。这表明该预分析模型和预设计方法对于低频吸波材料的制备有所助益。
     细颗粒吸波剂在聚合物中的快速均匀分散对于涂敷型吸波材料的吸波性能、机械性能和实用化都有着非常重要的影响。为推进吸波涂料的实用化,本文研制了往复射流分散法及相应装置,并对不饱和聚酯树脂中的微米级锂锌铁氧体及纳米碳管进行了分散实验。对分散后前驱体混合物的粘度及由其固化所得复合材料的断口表面的相关检测发现,相对于超声分散法的处理结果,经往复射流分散处理后的锂锌铁氧体及纳米碳管在聚合物基体中均呈现更为均匀的分布状态,且分散处理时间更短。该技术不仅可快速对微米级吸波剂实施均匀分散,而且对纳米吸波剂颗粒也有很好的分散效果。因此,往复射流分散对于聚合物中的细颗粒吸波剂将是一种有效的新型分散技术。
In recent years,electromagnetic radiation has become a specific type of environmental pollution,due to the rapid growth in utilization of electrical and electronic devices in industrial,commercial and military applications.And electromagnetic radiation in frequency range of 0.5-3 GHz has been proved to be harmful to human tissues and organs severely.Radiation absorption is quite practical and effective among the present measures of radiation protection. Therefore,it would have great significance to study and prepare some effective low-frequency microwave absorbing materials in civil utilization.
     As far as thickness and working frequency bandwidth are concerned,spinel ferrites and hexaferrites have obvious advantages.However,nano-size ferrites with high quality,which are prepared by sol-gel method,usually have microwave absorption in high frequency region.Some researches have indicated that micron-size pure lithium zinc ferrite(LiZn ferrite) prepared by solid-state reaction method have good low-frequency microwave absorption.But further application of this material is restricted by some inherent disadvantages.So in present work, sol-gel process was combined with subsequent calcination in order to prepare micron-size LiZn ferrite,which could exhibit good microwave absorbing properties in the frequency range of 0.5-3 GHz.
     Firstly,micron-size pure LiZn ferrites were successfully prepared by a combination of sol-gel process with subsequent calcination,and the microstructure and microwave absorbing properties of them were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and network vector analyzer.The effects of calcination processing parameters on low-frequency microwave absorption were also studied according to kinetics of reaction and ferromagnetic resonance theory.The particle diameter is determined by final calcination temperature,and the heat-treatment speed rate has effect on vaporization loss of lithium and zinc during the calcination.The differences of actual particle size and phase composition of pure LiZn ferrites would have a further influence on their low-frequency microwave absorption generated from ferromagnetic resonance.Pure LiZn ferrite calcined at 500℃with a heating rate of 200℃/h and the one calcined at 1200℃with a heating rate of 240℃/h both exhibite microwave absorption in the frequency range of 0.5-3 GHz,and the latter has better wave absorbing properties.A peak value of reflection loss of-25.89 dB can be obtained for absorber thickness of 10 mm at 2.8 GHz,and this preparation method for LiZn ferrite microwave absorbers has not been reported at present. However,this pure LiZn ferrite mainly has microwave absorption in the frequency range of 2.5-3 GHz,and this working frequency band should be shifted towards lower frequency region.
     In order to improve microwave absorption and widen working frequency bandwidth in the frequency range of 0.5-3 GHz,LiZn ferrites doped with different amount of magnesium,copper,lanthanum and cerium were prepared by a combination of sol-gel process with subsequent calcination,respectively.The microstructure and low-frequency microwave absorption of these as-doped LiZn ferrites were characterized and compared with pure LiZn ferrite prepared by the same process.The results indicate that doping with magnesium,copper,lanthanum and cerium can modify the distribution of metallic irons within the crystal lattice of LiZn ferrite.And magnetocrystalline anisotropy of LiZn ferrite can be modified after being doped with lanthanum and cerium.All these modifications lead to changes of corresponding equivalent magnetic field,and then have a further effect on low-frequency microwave absorption generated from ferromagnetic resonance. In addition,there is a maximum doping amount for magnesium-doped, copper-doped,lanthanum-doped and cerium-doped LiZn ferrites.If the actual doping amount exceeds the limited amount,MgFe_2O_4,CuFe_2O_4,LaFeO_3 and CeO_2 will be formed in as-prepared ferrites.On one hand,the formation of MgFe_2O_4, CuFe_2O_4 and LaFeO_3 decrease the amount of as-doped LiZn ferrite.On the other hand,MgFe_2O_4,CuFe_2O_4 and LaFeO_3 have relatively poor microwave absorption in low frequency region.As a result,the low-frequency microwave absorption of actual ferrite becomes much worse.
     However,the formation of CeO_2 has no effect on the amount of LiZn ferrite in actual ferrite when the actual doping amount of cerium exceeds the limited value. It needs to be mentioned that when the doping amount of cerium reaches a specific value,the enrichment of CeO_2 and suitable component ratio between CeO_2 and LiZn ferrite can strengthen the dielectric attenuation for microwave,and improve the low-frequency microwave absorption of actual ferrite material greatly.A peak value of reflection loss of-28.06 dB can be obtained for absorber thickness of 10 mm at 1.68 GHz,and the distribution of working frequency band is in the frequency range of 1.25-2.25 GHz.Therefore,this as-prepared ferrite composite material is a practical and promising microwave absorber in the frequency range of 0.5-3 GHz.
     According to panorama analysis method and the formula of effective electromagnetic parameters of composite materials,MATLAB was used to compile a model for characterizing the correlations between the reflection loss, absorber thickness and component ratio of composite microwave absorbers at different frequency points.By utilizing this model,a plenty of data about predictive LiZn ferrite/ acetylene carbon black(ACB) composite microwave absorbers,such as matching conditions and component ratios,had been achieved. According to these data,three LiZn ferrite/ACB composite materials with different component ratios were then prepared by ball milling method,and their microwave absorbing properties were measured.The results indicate that these as-prepared composite materials,which are designed by this predictive analysis model mentioned above,do have better low-frequency microwave absorption than pure LiZn ferrite.And this indicates that the predictive analysis model and pre-design method can be useful for the preparation of low-frequency microwave absorbers.
     In microwave absorbing coating,rapid and uniform dispersion of fine microwave absorbers in polymer has a significant influence on its actual mechanical properties,microwave absorption and practical applications.In this paper,reciprocating fluid injection process(RFIP) and the dispersing device for RFIP were developed in order to promote further practical applications for microwave absorbing coating.And they were used in dispersion experiment for micro-size LiZn ferrite and carbon nanotubes(CNTs) in unsaturated polyester resin(UPR).Viscosity of dispersed precursor mixture and the fracture surface of final composite cured from precursor mixture were characterized.And it can be discovered from the results that in polymer matrix,LiZn ferrite and CNTs dispersed by RFIP could both exhibit more homogenous distribution within less processing time than the ones dispersed by ultrasonication.This technology is not only applicable for rapid and homogeneous dispersion of micro-size microwave absorbers,but also has an excellent dispersive action on nano-size microwave absorbing agents.Therefore,RFIP will be a novel and effective process for dispersing fine microwave absorbing agents in polymer.
引文
[1]吕航,周志勤.电磁辐射防护的基本技术和进展[J].环境污染与防治,199921(5):30-31.
    [2]张淑琴,张彭.电磁辐射的危害与防护[J].工业安全与环保,2008,34(3):30-32.
    [3]梁晓燕,王军丽,杨健,等.信息设备的电磁辐射与消除[J].广西水利水电,2004,(2):108-109.
    [4]胡波,张洪欣,高光珍.计算机视频显示器电磁泄漏信息的再现[J].滨州学院学报,2008,24(3):69-73.
    [5]董伯昌.国外无线通讯安全标准简介[J].环境与健康杂志,2000,17(6):375-375.
    [6]李莹,刘学成.对我国电磁辐射防护标准的几点建议[J].中国辐射卫生,2005,14(2):157-158.
    [7]刘宝华,孔令丰,郭兴明.国内外现行电磁辐射防护标准介绍与比较[J].辐射防护,2008,28(1):51-56.
    [8]施云琼.防电磁辐射的整体屏蔽设计[J].电气应用,2008,27(11):64-66,76.
    [9]查振林,许顺红,卓海华.电磁辐射对人体的危害与防护[J].北方环境,2004,29(3):25-28.
    [10]刘国华,王文祖.电磁辐射防护织物的开发[J].技术创新,2003,(8):19-22.
    [11]王乐军,丁兆涛,吕翠莲,等.防辐射织物与服装的开发[J].产业用纺织品,2002,20(10):12-14.
    [12]甘雪萍,胡文彬,张青青,等.电磁波屏蔽织物的发展现状[J].表面技术,2006,35(6):48-50.
    [13]王洪燕,潘福奎,张守斌.电磁辐射与防电磁辐射纺织品[J].纺织科技进展,2008,(3):28-31,68.
    [14]郝万军.电磁辐射防护涂料概述[J].安全与电磁兼容,2002,(6):35-35,37.
    [15]邢丽英.隐身材料[M].北京:化学工业出版社,2004:1-6.
    [16]师昌绪.材料大词典[M].北京:化学工业出版社,1994:950-959.
    [17]王光华,董发勤,贺小春.纳米吸波材料研究进展[J].中国粉体技术,2007,13(4):35-38.
    [18]余泉茂,陈焕铭,胡本芙.纳米技术研究新进展及发展展望[J].材料导报,2002,16(8):5-7.
    [19]李世涛,乔学亮,陈建国.纳米复合吸波材料的研究进展[J].宇航学报,2006,27(2):317-322.
    [20]Tadayoshi I,Osamu H.FDTD analysis for protecting human body from electromagnetic wave using thin resistive sheet[J].Electronics and Communications in Japan,2000,83(9):86-92.
    [21]巩晓阳,曹万民.纳米材料用语吸收电磁波的物理机制[J].物理与工程,2007,17(5):39-41,62
    [22]焦桓,罗发,周万成.纳米吸波材料研究与发展趋势[J].宇航材料工艺,2001,31(5):9-11.
    [23]Gaman A I,Napari I,Winkler P M,et al.Homogeneous nucleation of n-nonane and n-propanol mixtures:A comparison of classical nucleation theory and experiments[J].Journal of Chemical Physics,2005,123(24):1-12.
    [24]Olmedo L,Chateau G,Deleuze C,et al.Microwave characterization and modelization of magnetic granular materials[J].Journal of Applied Physics,1993,73(10):6992-6994.
    [25]Meshram M R,Agrawal N K,Sinha B,et al.Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber[J].Journal of Magnetism and Magnetic Materials,2004,271(2-3):207-214.
    [26]Maosheng C,Jing Z,Jie Y,et al.Computation design and performance prediction towards a multi-layer microwave absorber[J].Materials and Design,2002,23(6):557-564.
    [27]Kim S -S,Kim S -T,Ahn J -M,et al.Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic mierospheres of low density[J].Journal of Magnetism and Magnetic Materials,2004,271:39-45.
    [28]Liu J,Itoh M,Jiang J,et al.Electromagnetic wave absorption properties of ε-Fe_3N/Y_2O_3 nanocomposites derived from Y_2Fe_(17) intermetallic compound [J].Journal of Magnetism and Magnetic Materials,2004,277:251-256.
    [29]Liu J,Itoh M,Jiang J,et al.A GHz range electromagnetic wave absorber with wide bandwidth made of FeCo/Y2O3 nanocomposites[J].Journal of Magnetism and Magnetic Materials,2004,271:L147-L152.
    [30]彭伟才,陈康华,李晶儡,等.随机分布Fe纳米线复合材料的吸波性能[J].中国有色金属学报,2005,15(2):288-294.
    [31]黄兰萍,陈康华,李晶儡,等.Fe磁性纳米线阵列的制备与微波吸收性能研究[J].稀有金属材料与工程,2006,35(3):480-483.
    [32]邓联文,冯则坤,江建军,等.纳米晶Fe_(85)Si_1Al_6Cr_8扁平状颗粒材料微波吸收特性[J].金属学报,2006,42(3):321-324.
    [33]高玲玲,周馨我,范广裕.导电高分子应用研究的若干进展[J].材料导报,1995,9(4):54-59.
    [34]Huang J,Wan M.Temperature and pressure dependence of conductivity of polyaniline systhesized by in situ doping polymerization in the pretence of organic function acid as dopants[J].Solid State Communications,1998,108(4):255-259.
    [35]Chandrakanthi N,Careem M A.Preparation and characterization of fully oxidized form of polyaniline[J].Polymer Bulletin,2000,45:113-120.
    [36]Wong T C P,Chambers B,Anderson A P,et al.Large area conducting polymer composites and their use in microwave absorbing material[J].Electronics Letters,1992,28(17):1651-1653.
    [37]Courric S,Tran V H.The electromagnetic properties of poly (p-phenylene-vinylene) derivatieves[J].Polymer,1998,39(12):2399-2408.
    [38]Epstein A J,MacDiarmid A G.Polyanilines:from solitons to polymer metal,from chemical curiosity to technology[J].Synthetic Metals,1995,69:179-182.
    [39]Hourouebie P,Blondel B,Dhume S.Microwave and optical properties of soluble conducting polymers[J].Synthetic Metals,1997,85:1437-1438
    [40]Pant R P,Dhawan S K,Kataria N D,et al.Investigations on ferrofluid-conducting polymer composite and its application[J].Journal of Magnetism and Magnetic Materials,2002,252:16-19.
    [41]Long Y,Chen Z,Duvail J L,et al.Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures[J].Physica B,2005,370:121-130.
    [42]陈骁,熊忠,陶雪钰,等.导电聚苯胺的合成及电磁学性能、吸波性能研究[J].塑料工业,2005,33(5):5-7,11.
    [43]董星龙,左芳,钟武波,等.纳米镍/聚苯胺复合粒子的制备与表征[J].功能材料,2005,36(10):1558-1560.
    [44]谢俊磊,杜仕国,施冬梅.新型雷达吸波材料研究进展[J].飞航导弹,2008,(7):58-61.
    [45]Jaggard D L,Engheta N.Chirosorb as an invisible medium[J].Electronics Letters,1989,25(3):173-174.
    [46]Jaggard D L,Engheta N,Liu J.Chiroshield:a Salisbury/Dallenbach shield alternative[J].Electronics Letters,1990,26(17):1332-1334.
    [47]Jaggard D L,Liu J C,Sun X.Spherical chiroshield[J].Electronics Letters,1991,27(1):77-79.
    [48]Ge F -D,Chen L -M,Zhu J.Reflection characteristics of chiral microwave absorbing coatings[J].International Journal of Infrared and Millimeter Waves,1996,17(1):255-268.
    [49]Sung C -C,Ro R,Chang Y-M.Scattering characteristics of the chiral slab for normally incident longitudinal elastic waves[J].Wave Motion,1999,30:135-142.
    [50]赵东林,沈曾民.螺旋形手征碳纤维的微波介电特性[J].无机材料学报,2003,18(5):1057-1062
    [51]Bahr A J,Clausing K R.An approximate model for artificial chiral material [J].IEEE Transactions on antennas and propagation,1994,42(12):1592-1598.
    [52]王国强,王绍明,章平.不同电导率基底旋波介质手性参量的特性研究[J].郧阳师范高等专科学校学报,2004,24(3):21-25
    [53]陈仁松,何俊发,汪建科,等.螺旋形纳米碳纤维的电磁波吸收特性分析[J].上海航天,2006,(2):42-44
    [54]章平,黄致新,王国强.螺旋体结构参数对手性材料反射系数的影响[J].华中师范大学学报(自然科学版),2007,41(1):48-50
    [55]Wu M,Zhao Z,He H,et al.Preparation and microwave characteristics of magnetic iron fibers[J].Journal of Magnetism and Magnetic Materials,2000,217(1):89-92.
    [56]吴明忠,赵振声.多晶铁纤维吸收剂微波复磁导率和复介电常数的理论计算[J].功能材料,1999,30(1):91-93,102.
    [57]赵九蓬,李垚,吴佩莲.新型吸波材料研究动态[J].材料科学与工艺,2002,10(2):219-224.
    [58]Wu M Z,He H H,Zhao Z S,et al.Electromagnetic and microwave absorbing properties of iron fiber-epoxy resin composites[J].Journal of physics.D:Applied physics,2000,33:2398-2401.
    [59]Lagarkov A N,Sarychev A K.Electromagnetic properties of composites containing elongated conducting inclusions[J].Physical Review B,1996,53(10):6319-6336.
    [60]邵蔚,赵乃勤,师春生,等.吸波材料用吸收剂的研究及应用现状[J].兵器材料科学与工程,2003,26(4):65-68.
    [61]Yu X,Zhang X,Li H,et al.Simulation and design for stratified iron fiber absorbing materials[J].Materials and Design,2002,(23):51-57.
    [62]周永江,程海峰.溶胶.凝胶法在吸收剂表面制备SiO_2涂层[J].新技术新工艺,2006,(10):54-56.
    [63]李小莉,贾虎生.羰基多晶铁纤维吸波性能的研究[J].材料工程,2007,(3):14-17.
    [64]赵振声,聂彦,张秀成.多晶铁纤维微波吸收剂的分级改性及其应用初探[J].磁性材料及器件,2004,35(3):32-34.
    [65]Meshram M R,Agrawal N K,Sinha B,et al.Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber[J].Journal of Magnetism and Magnetic Materials,2004,271:207-214.
    [66]Sugimoto S,Maeda Y,Okayama K,et al.Compositional dependence of the electromagnetic wave absorption properties of BaFe_(12-x-y)Ti_xMn_yO_(19) in the GHz Frequency Range[J].Materials Transactions,1999,40(9):887-890.
    [67]娄明连,阚涛.铁氧体多层结构电波吸收体的研究[J].电子元件与材料,1999,18(3):43-45
    [68]张永祥,丁荣林,李韬,等.六角型铁氧体吸波材料的研究[J].硅酸盐学报,1998,26(3):275-280.
    [69]汪忠柱,毕红,林玲,等.六角晶系BaZnCoTi-W型铁氧体的吸波性能研究[J].安徽大学学报(自然科学版),2006,30(2):64-66.
    [70]李貌,方庆清,熊为华,等.PANI包覆单一铁氧体的结构和吸波性能[J].安徽大学学报(自然科学版),2008,32(4):60-63.
    [71]Teh G B,Nagalingam S,Jefferson D A.Preparation and studies of Co(Ⅱ) and Co(Ⅲ)-substituted barium ferrite prepared by sol-gel method[J].Materials Chemistry and Physics,2007,101:158-162.
    [72]Mu G,Chen N,Pan X,et al.Preparation and microwave absorption properties of barium ferrite nanorods[J].Materials Letters,2008,62:840-842.
    [73]Wu K H,Ting T H,Liu C I,et al.Electromagnetic and microwave absorbing properties of Ni_(0.5)Zn_(0.5)Fe_2O_4/bamboo charcoal core-shell nanocomposites[J].Composite Science and Technology,2008,68:132-139.
    [74]Xu P,Han X J,Wang X H,et al.Effect of Ni(OH)_2 coating on the electromagnetic properties of hexagonal barium ferrite[J].Materials Chemistry and Physics,2008,108:196-200.
    [75]康青.新型微波吸收材料[M].北京:科学出版社,2006:34.
    [76]Kagotani T,Fujiwara D,Sugimoto S,et al.Enhancement of GHz electromagnetic wave absorption characteristics in aligned M-type barium ferrite Ba_(1-x)La_xZn_xFe_(12-x-y)(Me0.5Mn0.5)_yO_(19)(x=0.0-0.5;y=1.0-3.0,Me:Zr,Sn) by metal substitution[J].Journal of Magnetism and Magnetic Materials,2004,272-276:e1813-e1815.
    [77]Qiu J,Lan L,Zhang H,et al.Effect of titanium dioxide on microwave absorption properties of barium ferrite[J].Journal of Alloys and Compounds,2008,453:261-264.
    [78]杨永峰,黄英,郭银明,等.离子掺杂钡铁氧体的研究进展[J].硅酸盐通报,2007,26(6):1153-1159.
    [79]张雄,李敏,窦丹若.纳米六角晶型吸波铁氧体的制备与性能研究[J].材 料导报,2003,17(S1):69-71.
    [80]孟凡君,刘爱祥,刘宗林,等.替代M-型钡铁氧体纳米粒子的微波吸收性能[J].无机化学学报,2002,18(10):1067-1070
    [81]张海军,姚熹,张良莹,等.BaFe_(12)O_(19)-BaTiO_3/SiO_2-B_2O_3微晶玻璃陶瓷的sol-gel合成及微波性能[J].功能材料,2003,34(1):44-45.
    [82]Ruan S P,Xu B K,Suo H,et al.Microwave absorption behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material [J].Journal of Magnetism and Magnetic Materials,2000,212(1):175-177.
    [83]Gruskova A,Slama J,Dosoudil R,et al.Microwave properties of some substituted LiZn ferrites[J].Journal of Magnetism and Magnetic Materials,2008,320:c860-c864
    [84]Yusoff A N,Abdullah M H.Microwave electromagnetic and absorption properties of some LiZn ferrites[J].Journal of Magnetism and Magnetic Materials,2004,269:271-280.
    [85]Roy P K,Bera J.Effect of Mg substitution on electromagnetic properties of (Ni_(0.25)Cu_(0.2)Zn_(0.55))Fe_2O_4 ferrite prepared by auto combustion method[J].Journal of Magnetism and Magnetic Materials,2006,298(1):38-42.
    [86]Bueno A R,Gregori M L,Nobrega M C S.Microwave-absorbing properties of Ni_(0.50-x)Zn_(0.50-x)Me_(2x)Fe_2O_4(Me = Cu,Mn,Mg) ferrite-wax composite in X-band frequencies[J].Journal of Magnetism and Magnetic Materials,2008,320:864-870.
    [87]邓龙江,梁迪飞,谢健良.EMC用大损耗NiCuZn铁氧体吸收瓦材料研究[J].功能材料,2001,32(2):144-146
    [88]杜敏生,李国栋,张常在.Ba3-zYzCo2Fe24O41铁氧体的制备与吸波性能研究[J].内蒙古大学学报(自然科学版),2008,39(3):332-336.
    [89]Sun C,Sun K.Preparation and microwave absorption properties of Ce-substituted lithium ferrite[J].Solid State Communication,2007,141:258-261.
    [90]Wang J,Zhang H,Bai S,et al.Microwave absorbing properties of rare-earth elements substituted W-type barium ferrite[J].Journal of Magnetism and Magnetic Materials,2007,312(2):310-313.
    [91]Sun J J,Li J B,Sun G L.Effects of La2O3 and Gd2O3 on some properties of Ni-Zn ferrite[J].Journal of Magnetism and Magnetic Materials,2002,250:20-24.
    [92]李红英,施伟光,甘树才.稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性[J].吉林大学学报(工学版),2006,36(6):856-860.
    [93]云月厚,张常在,李国栋.掺杂稀土元素镧的钡铁氧体超微粉末的微波吸收特性研究[J].功能材料,2004,s35:749-750,754.
    [94]云月厚,刘永林,张伟.化学共沉淀法制备的纳米Ni_(0.5)Zn_(0.5)Ce_xFe_(2-x)O_4铁氧体微波吸收特性研究[J].材料工程,2008,(3):58-62
    [95]Dishovsky N,Grigorova M.On the correlation between electromagnetic waves absorption and electrical conductivity of carbon black filled polyethylenes[J].Materials Research Bulletin,2000,35:403-409.
    [96]Feng Y B,Qiu T,Shen C Y.Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite[J].Journal of Magnetism and Magnetic Materials,2007,318:8-13.
    [97]Wu K H,Ting T H,Wang G P,et al.Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites[J].Polymer Degradation and Stability,2008,93:483-488.
    [98]张兴华,何显运,梁健军.碳黑/无机材料填充聚合物复合材料的微波吸收特性[J].材料导报,2002,16(7):76-77.
    [99]Sher L.The effects of natural and man-made electromagnetic fields on mood and behavior:the role of sleep disturbances[J].Medical Hypotheses,2000,54(4):630-633.
    [100]D'Andrea J A,Adair E R,de Lorge J O.Behavioral and cognitive effects of microwave exposure[J].Bioelectromagnetics,2003,24(s6):s39-s62.
    [101]Cobb B L,Jauchem J R,Adair E R.Radial arm maze performance of rats following repeated low level microwave radiation exposure[J].Bioelectromagnetics,2004,25(1):49-57.
    [102]Hirata A,Shiozawa T.Correlation of maximum temperature increase and peak SAR in the human head due to handset antennas[J].IEEE Transactions on microwave theory and techniques,2003,51(7):1834-1841.
    [103]Heynick L N,Merritt J H.Radiofrequency fields and teratogenesis[J].Bioelectromagnetics,2003,24(s6):s174-s186.
    [104]刘勇,黄蔚初,程绪浩,等.电磁辐射对家兔小脑蛋白激酶C活力的影响[J].环境与健康杂志,2008,25(9):781-783.
    [105]陈波.手机电磁辐射的研究及对人体影响[J].中国新通信,2008,10(17):65-67.
    [106]赵志华.手机辐射导致大脑温度升高问题的研究[J].信息技术,2008,32(8):134-135,193.
    [107]杨娟,张元珍,刘文惠.935 MHz微波电磁辐射对卵母细胞成熟的影响[J].武汉大学学报(医学版),2008,29(4):519-523.
    [108]周新民,潘涛,王泽林.电磁辐射对人肾小球滤过膜损伤及功能影响的临床观察[J].中国疗养医学,2008,17(5):298-299.
    [109]郭鹞.漫谈电磁辐射生物效应[J].疾病控制杂志2002年增刊,2002,6(s):1-8.
    [110]胡波,张洪欣,高光珍.计算机视频显示器电磁泄漏信息的再现[J].滨州学院学报,2008,24(3):69-73.
    [111]苏莹,张凤晓,高强.浅谈复杂电磁环境下的信息安全[J].经济技术协作信息,2008,(17):106.
    [112]常书惠,李翠.电磁波的应用及其辐射的防护[J].济南职业学院学报,2008,69:73-74,27
    [113]陶振声,范学伟,王倩,等.铁氧体吸波材料的性能及应用[J].磁性材料及器件,2007,38(5):57-60
    [114]邓廷成,张俊,凌跃辉.微波暗室用NiZn铁氧体吸波体[J].安全与电磁兼容,2004,(2):35,50.
    [115]Zhu H,Lin H,Guo H,et al.Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route[J].Materials Science and Engineering:B,2007,138(1):101-104.
    [116]Zhou K -S,Deng J -J,Yin L -S,et al.Microwave absorbing properties of La0.8Ba0.2MnO3 nano-particles[J].Transactions of the Nonferrous Metals Society of China,2007,17:947-950.
    [117]Sun C,Sun K.Preparation and characterization of magnesium-substituted LiZn ferrites by a sol-gel method[J].Physica B,2006,391(2):335-338.
    [118]Ahmed T T,Rahman L Z,Rahman M A.Study on the properties of the copper substituted NiZn ferrites[J].Journal of Materials Processing Technology,2004,153-154:797-803.
    [119]Li B,Yue Z -X,Qi X-W,et al.High Mn content NiCuZn ferrite for multiplayer chip inductor application[J].Materials Science and Engineering:B,2003,99:252-254.
    [120]Rezlescu E,Rezlescu N,Popa P D,et al.Effect of copper oxide content on intrinsic properties of MgCuZn ferrite[J].Materials Research Bulletin,1998,33(6):915-925.
    [121]桑丽霞,傅希贤,白树林,等.制备方法对LaFeO_3及掺杂LaFeO_3光催化活性的影响[J].化学工业与工程,2000,17(6):336-340.
    [122]白树林,傅希贤,杨秋华,等.LaFeO_3的光催化性[J].应用化学,2000,17(3):343-345.
    [123]宋爱君,高发明.LaFeO_3溶胶凝胶合成和光催化性能[J].稀土,2004,25(1):25-27.
    [124]Hoffmann M R,Martin S T,Choi W,et al.Environmental applications of semiconductor photocatalysis[J].Chemical Reviews,1995,95:69-96.
    [125]李姝丹,井立强,付薇,等.纳米LaFeO_3的制备和表征及其气相光催化性能[J].哈尔滨工业大学学报,2007,39(6):1001-1004.
    [126]徐科,张朝平.钙钛矿型LaFeO_3纳米材料光催化氧化NO_2的研究[J].中国稀土学报,2007,25:29-32.
    [127]王艳荣,李彦涛,李亚萍.纳米CeO_2的紫外吸收和表面改性研究[J].化工时刊,2008,22(1):4-6.
    [128]徐研,王春云,杨中辰.CeO_2在紫外吸收玻壳中的应用研究[J].稀土,2007,28(3):93-95.
    [129]王艳荣.纳米二氧化铈的资源及应用[J].广州化工,2005,33(5):24-26.
    [130]张敬超,张玉军,谭沙砾,等.纳米二氧化铈的制备及应用[J].现代化工,2004,24:233-235.
    [131]Tessier F,Chevire F,Munoz F,et al.Powder preparation and UV absorption properties of selected compositions in the CeO_2-Y_2O_3 system[J].Journal of Solid State Chemistry,2008,181:1204-1212.
    [132]Chevire F,Munoz F,Baker C F,et al.UV absorption properties of ceria-modified compositions within the fluorite-type solid solution CeO_2-Y_6WO_(12)[J].Journal of Solid State Chemistry,2006,179:3184-3190.
    [133]Masui T,Fujiwara K,Machida K,et al.Characterization of cerium(Ⅳ)oxide ultrafine particles prepared using reversed micelles[J].Chemistry of Materials,1997,9(10):2197-2204.
    [134]Masui T,Yamamoto M,Sakata T,et al.Synthesis of BN-coated CeO_2 fine powders as a new UV blocking material[J].Journal of Materials Chemistry,2000,10:353-357.
    [135]王小康,唐电,张腾.纳米二氧化铈的研究现状[J].国外金属热处理,2003,24(6):11-12,29.
    [136]秦汝虎,秦柏,田春亮,等.吸波材料设计中的全貌分析方法[J].哈尔滨工业大学学报,2002,34(5):679-683
    [137]秦柏,秦汝虎,金崇君.“广义匹配规律”的论证及在隐身材料中的应用[J].哈尔滨工业大学学报,1997,29(4):115-117
    [138]Wiile D S,Michielssen E,Goldberg D E.Genetic algorithm design of pareto optimal broadband microwave absorbers[J].IEEE Transactions on Electromagnetic Compatibility,1996,38(3):518-525.
    [139]Luo K,Guo X,Shi N,et al.Synthesis and characterization of core-shell nanocomposites of polyaniline and carbon black[J].Synthetic Metals,2005,151(3):293-296.
    [140]Omastova M,Podhradska S,Prokes J,et al.Thermal agening of conducting polymeric composites[J].Polymer Degradation and Stability,2003,82(2);251-256.
    [141]Wu G,Li L,Li J -H,et al.Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation[J].Carbon,2005,43(12):2579-2587.
    [142]Souza Jr F G,Sirelli L,Ricardo C,et al.In situ polymerization of aniline in the presence of carbon black[J].Journal of Applied Polymer Science,2006, 102(1):535-541.
    [143]Dai K,Xu X -B,Li Z -M.Electrically conductive carbon black(CB) filled in situ microfibrillar poly(ethylene terephthalate)(PET)/polyethylene(PE)composite with a selective CB distribution[J].Polymer,2007,48(3):849-859.
    [144]张辉.吸收电磁杂波的防辐射污染涂料[J].沈阳师范学院学报,2001,19(1):18-21.
    [145]杨应奎,周兴平,毛联波,等.碳纳米管在聚合物基体中的分散与有序排列研究-(Ⅰ)碳纳米管在聚合物基体中的分散[J].高分子材料科学与工程,2005,21(6):45-49.
    [146]杨应奎,周兴平,毛联波,等.碳纳米管在聚合物基体中的分散与有序排列研究-(Ⅱ)碳纳米管在聚合物基体中的有序排列[J].高分子材料科学与工程,2005,21(6):50-54.
    [147]Park J H,Alegaonkar P S,Jeon S Y,et al.Carbon nanotubes composite:Dispersion routes and field emission parameters[J].Composites Science and Technology,2008,68:753-759.
    [148]Tsai Y-C,Chiu C -C,Tsai M -C,et al.Dispersion of carbon nanotubes in low pH aqueous solutions by means of alumina-coated silica nanoparticles [J].Carbon,2007,45:2823-2827.
    [149]Park S -D,Han D -H,Teng D,et al.Rheological properties and dispersion of multi-walled carbon(MWCNT) in polystyrene matrix[J].Current Applied Physics,2008,8:482-485.
    [150]Yang Y,Grulke E A,George Zhang Z,et al.Temperature effects on the rheological properties of carbon nanotubes-in-oil dispersions[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,298:216-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700