PMMA微球表面过渡金属氧化物壳层聚集体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以形貌和尺寸剪裁为目的的材料合成研究,是材料研究领域的一个重要方向。现代的材料应用已经不仅仅取决于材料的物相组分,而对材料的精细结构提出了更高的要求。过渡金属氧化物具有优异的电磁、光电以及催化等性能,广泛应用在固体催化、光催化、择形分离、微型电磁装置、光致变色材料、电极材料以及信息储存等领域。近年来,由纳米次级颗粒聚集而成的各种过渡金属氧化物形貌体的调控合成成为研究热点。纳米颗粒聚集体材料一方面秉承了块体材料的宏观性能优势,有序的组装次级纳米颗粒,避免纳米尺寸材料的无序团聚;其宏观形貌结构特征可以根据实际应用进行剪裁调节。另一方面其特殊的结构层次兼有纳米颗粒的表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性。
     在合成过程中,过渡金属氧化物晶体趋向于异向生长,容易形成大晶体而失去纳米颗粒的特性,且难以聚集成形。本论文设想采用PMMA聚合物微球为模板,利用PMMA分子中螯合基团的功能,在高分子微球表面富集过渡金属离子,并诱导生成氧化物纳米晶粒;这些晶粒在合适的结晶环境中生长并自组装,形成具有球壳层结构的聚集体形貌。这种对称弧形结构的球壳形貌聚集体有望产生基于材料结构特点的特殊性能。
     论文中首先对PMMA微球进行表面活化处理,强化微球表面对过渡金属离子的配位作用。选择合适的沉淀剂,使结晶中心趋向于在PMMA微球表面优先成核。最后经陈化反应,在PMMA微球表面形成由次级颗粒聚集而成的过渡金属氧化物晶体壳层。采用SEM、XRD、TEM、TGA、IR、XPS等现代分析测试手段,对材料的微观结构、物相、物理性质等进行表征。用UV测试表征了材料的光吸收性能。初步探讨了基于PMMA微球为模板、过渡金属氧化物壳层聚集体的形成机理。
     氧化锌是材料研究领域的热点。它是一种性能优异的宽带半导体材料,具有特殊的光、电、催化性能。氧化铜作为一种重要的过渡金属氧化物,具有多种催化活性,在C_1化学合成、NO_x还原和气敏材料、锂离子电池、场发射器、氧电极催化等领域显示出良好的应用前景。论文以这两种过渡金属氧化物为目标产物进行研究。研究发现,通过常温常压的溶液法可以在PMMA微球表面合成过渡金属氧化物颗粒紧密聚集的壳层结构。不同的阳离子反应物、沉淀剂、陈化反应温度、溶液pH值、陈化反应时间等是影响壳层颗粒尺寸、形貌、聚集形态和致密度的主要因素。形成的核壳结构复合材料,壳层由过渡金属氧化物颗粒紧密组装而成。其中氧化锌颗粒尺寸约100 nm,氧化铜颗粒尺寸200 nm-300 nm。复合物显示出特殊的UV-Vis吸收特性,内核PMMA的热分解温度延后50℃-100℃。通过放大的电镜照片可以看出,壳层聚集体有明显的孔结构特征,富于材料高比表面积的同时,还有一定的择形透过性。
     对壳结构聚集体的形成机理研究表明,PMMA微球的表面活化处理是表面优先成核结晶的前提。氮、氧等原子的协同配位作用,以及功能基团在高分子链上的序列排列,对过渡金属阳离子在PMMA微球表面的富集提供了电荷与空间构型基础。沉淀剂的选择是诱导晶体在PMMA表面异相结晶,避免晶体体相结晶的关键。研究结果显示:对氧化锌而言,氢氧化钠是较好的沉淀剂;而对氧化铜而言,以氨水作为沉淀剂得到的产物较优。合适的沉淀剂与阳离子容易形成稳定的络合产物,增加阳离子在体相中的溶解度,减小浓度积,有效的缓解了晶体在体相溶液中直接成核结晶,客观上有利于在PMMA表面的优先成核。后续的陈化反应则遵循典型的奥斯特瓦尔德(Ostwald)晶体熟化理论,晶体自组装在PMMA微球表面形成致密、完整的壳层聚集体。
Researches on the morphology and size tailoring during the synthesis process of materials are quite necessary for the development of material. Nowadays, phase composition is not the only factor that should be considered during the application of materials. Microstructures, such as the shape, size and texture, are even more important. The oxides of transitional metal exhibit highly desirable optical, electronic, magnetic and catalytic properties, which have been widely applied in field such as solid catalysis, photocatalysis, shape-selective separation, micro electromagnetic device, photochromic materials, electrode materials and information storage device. In recent years, shaped aggregations by nanoparticles of transitional metal oxides attract more interests. Such shaped aggregations perform the properties of the bulk materials. What’s more, the sub-building block units exhibit unique properties such as surface effect, little size effect and quantum measure effect, due to their nanoscaled size.
     However, anisotropic growth and structure collapse are two problems during the fabrication of the aggregations of transitional metal oxides. As a result, nanoparticles might grow into bulk particles which are hard to aggregate. In this thesis, spherical shell shaped aggregation of transitional metal oxides is supposed to be obtained using polymethylmethacrylate (PMMA) as core template. Particles of transitional metal oxides are induced to grow preferably on the surface of the PMMA microspheres, based on the electrostatic and stereochemical interactions at the inorganic-organic interface. Then, spherical shell shaped aggregation is supposed to finally be constructed by these building blocks through self- assembling. Such 3-D hierarchical organization with curved symmetry results in special surface properties.
     ZnO and CuO crystals were selected as the shell materials, since both of these two oxides are important semiconductor oxides. During our experimental process, PMMA microspheres were pretreated by NH3.H2O first. Solution route was then used to prepare the transitional metal oxides crystals. Precipitation agent in this step was crucial. After that, an aging reaction was carried out to obtain spherical shell shaped aggregation with well crystallinity. SEM, XRD, TEM, TGA, UV and IR measurements were used to investigate the morphology, size, texture and structure of the products. Furthermore, formation mechanism of such spherical shell shaped aggregation was explored.
     The results show that shape and size of the sub-crystallites, as well as the form of the aggregations can be tuned by many parameters, such as the zince/copper source, precipitation agent, aging temperature, aging time and pH value of the solution. The final core-shell composites contain integral spherical shell aggregated by ZnO crystals with the size of 100 nm, or CuO crystals with size of 200 nm-300 nm. The composites exhibit novel UV adsorption in the range of ultra-violet band. The decomposition temperature of the PMMA core increase for about 50℃-100℃with the protection of the oxide shell. High-resolution observation shows that the shell aggregation has porous character. More interestingly, porous ZnO aggregation with hollow interior are obtained after the removing of the PMMA core, implying that the shell aggregation depends on certain binding and interpenetrating among its building units.
     XPS analysis shows that a trace of N was detected on the surface of NH3.H2O treated PMMA microspheres. Ammonolysis is believed to take place at the surface of the PMMA microspheres. Since O and N are preferable ligands to Zn ions and Cu ions, the cations tended to bind to the surface of the PMMA cores. The crystal growth centers are thus supplied to induce the preferable crystallization of ZnO crystal on the surface of PMMA. It is found that NaOH is the optimal precipitation agent for ZnO crystal aggregated on the PMMA surface, and NH3.H2O for CuO crystal. Both the precipitation can react with the cation to form coordination structure, correspondingly. Formation of the complex restrains the crystal growth homogeneously, and the heterogeneous nucleation on the PMMA surface becomes preferable. With the growth of the nuclei during the aging reaction following a typical Ostwald ripening process, the constructional shell aggregations composed of transitional metal oxide particles are finally formed.
引文
[1]王立峰.微孔分子筛材料的合成及新合成体系的开拓[D].吉林:吉林大学研究生院, 2008.
    [2]李元.利用有机分子制备无机微/纳米材料简便环保新途径研究[D].重庆:西南大学研究生院, 2009.
    [3]熊晓云.一种硅源活化合成硅铝沸石的方法[D].吉林:吉林大学研究生院, 2007.
    [4]Zhou Z., Kato K., Komaki T., et al. Effects of dopants and hydrogen on the electrical conductivity of ZnO[J]. Journal of the European Ceramic Society, 2004, 24(1): 139-146.
    [5]Hong R.Y., Pan T.T., Qian J.Z., et al. Synthesis and surface modification of ZnO nanoparticles[J]. Chemical Engineering Journal, 2006, 119(2-3): 71-81.
    [6]Teng F., Yao W.D., Zheng Y.F., et al. Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis[J]. Sensors and Actuators B: Chemical, 2008, 134(2): 761-768.
    [7]Cruccolini A., Narducci R., Palombari R.. Gas adsorption effects on surface conductivity of nonstoichiometric CuO[J]. Sensors and Actuators B: Chemical, 2004, 98(2-3): 227-232.
    [8]Xu Y.Y., Zhao D., Zhang X.J., et al. Synthesis and characterization of single-crystallineα-Fe2O3 nanoleaves[J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 41(5): 806-811.
    [9]Xue J.M., Zhou Z.H., Wang J.. Synthesis of nanocrystallineγ-Fe2O3 in silica matrix by mechanical crystallization from precursor at room temperature [J]. Materials Chemistry and Physics, 2002, 75(1-3): 81-85.
    [10]Slavica Z., Sne?ana B., Branka K., et al. Chemical reduction of nanocrystalline CeO2 [J]. Ceramics International, 2009, 35(1): 195-198.
    [11]Xiao X.L., Luan Q.F., Yao X., et al. Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase[J]. Biosensors and Bioelectronics, 2009, 24(8): 2447-2451.
    [12]Chan C.C., Chang C.C., Hsu W.C., et al. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films[J]. Chemical Engineering Journal, 2009, 152(2-3): 492-497.
    [13]Zhang Q. H., Gao L.. One-step preparation of size-defined aggregates of TiO2 nanocrystalswith tuning of their phase and composition[J]. Journal of the European Ceramic Society, 2006, 26(9): 1535-1545.
    [14]胡泽善,汤敏,丁社光,等,纳米氧化锌的制备技术及其进展[J].材料导报, 2008, 22(Ⅺ): 69-72.
    [15]王补宣,周乐平,彭晓峰.尺寸效应和表面效应对纳米颗粒比热容的影响[J].热科学与技术, 2004, 3(1): 1-6.
    [16]缪晓春.纳米氧化铜及其复合物的制备和性能研究[D].南京:南京理工大学, 2003.
    [17]史建新.无机纳米粒子表面接枝包覆PMMA的制备研究[D].兰州:兰州理工大学, 2007.
    [18]王建勋.聚甲基丙烯酸甲酯纳米复合材料的制备及性能研究[D].天津:天津大学研究生院, 2004.
    [19]陈军.新型亚克力材料的应用[J].材料技术, 2007, 10: 110-115.
    [20]曾文茹.聚甲基丙烯酸甲酯的燃烧特性及化学动力学研究[D].合肥:中国科学技术大学研究生院, 2002.
    [21]许丹,冯新星,史途停,等.添加纳米TiO2对PMMA性能的影响[J].浙江工程学院学报, 2004, 21(3): 178-181.
    [22]刘虹,蒋正萍. PMMA/SiO_2杂化材料制备及热性能[J].西南民族大学学报, 2009, 35(4): 809-812.
    [23]徐飞.纳米粒子/PMMA复合材料的制备及性能的研究[D].杭州:浙江大学研究生院, 2007.
    [24]Mann S., Colfen H., Angew. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures[J]. Chem. Int. Ed., 2003, 42: 2350-2365.
    [25]金达莱.两亲共聚物及溶剂效应对溶液合成无机材料的形貌调控研究[D].杭州:浙江大学研究生院, 2005.
    [26]丁德玲,刘家祥,韩跃新.漩涡状纳米级氧化锌聚集体的制备[J].有色金属, 2007, 59(4): 27-30.
    [27]文德,刘妙丽.自组装制备磁性复合微球聚集体[J].西南民族大学学报, 2009, 35(2): 327-331.
    [28]胡寒梅,邓崇海.微波合成氧化锌纳米棒聚集体[J].合成化学, 2009, 17(2): 233-235.
    [29]许静.核-壳结构纳米复合材料的制备与表征[D].吉林:吉林大学研究生院, 2007.
    [30]陈精华.纳米SiO2/聚丙烯复合材料的反应性增容及界面设计[D].广州:中山大学研究生院, 2008.
    [31]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社, 2003: 18-22.
    [32]史建新.无机纳米粒子表面接枝包覆PMMA的制备研究[D].兰州:兰州理工大学, 2007.
    [33]权英.有机高分子-无机纳米复合粒子改性高分子材料的力学性能-相态与群子标度之间关系的研究[D].北京:北京化工大学研究生院, 2002.
    [34]倪星元,姚兰芳,沈军,等.纳米材料制备技术[M].北京:化学工业出版社, 2008: 18-22.
    [35]张惠珠.不同形貌过渡金属氧化物微晶的制备及形成机理研究[D].杭州:浙江大学研究生院, 2008.
    [36]谢钢.纳米/微米氧化物、硫化物的形貌控制和催化性能研究[D].西安:西北大学研究生院, 2006.
    [37]王振希,郑典模,李建敏,等.直接沉淀法制备纳米氧化锌工艺[J].无机盐工业, 2006, 38(9): 40-42.
    [38]任崇桂,徐建,贾晏金,等.亚微米级多刺状星形氧化铜的制备[J].化学学报, 2007, 65(5): 459-464.
    [39]汤皎宁,龚晓钟,李均钦.均匀沉淀法制备纳米氧化锌的研究[J].无机材料学报, 2006, 21(1): 65-69.
    [40]车心如.纳米复合磁性材料的制备及磁性能研究[D].大连:大连交通大学研究生院, 2008.
    [41]王海涛.聚合物/无机物纳米复合材料的制备和性能研究[D].上海:复旦大学研究生院, 2005.
    [42]Jiang L., Li G.C., Ji Q.M.. Morphological control of flower-like ZnO nanostructures[J]. Materials Letters, 2006, 61(2007): 1964-1967.
    [43]Mahyar M., Shadi T., Hamed A.. Self-assembly of ZnO nanoparticles and subsequent formation of hollow microspheres[J]. Journal of Alloys and Compounds, 2008, 468(2009): 303-307.
    [44]谷永庆,侯振雨.微乳液法合成的CuO纳米材料的气敏性[J].郑州轻工学院学报, 2004, 19(4): 53-54.
    [45]张经纬,王伟,吴志申,等.均匀沉淀法制备一维结构的氧化锌[J].化学研究, 2008, 19(2): 84-87.
    [46]王龙硕.配位氧化均匀沉淀法制备纳米氧化铜及应用研究[D].湘潭:湘潭大学, 2008.
    [47]刘新建,孙广.液相法合成分等级CuO纳米片[J].信阳师范学院学报, 2008, 21(1): 118-121.
    [48]苗向阳,刘可,柯惟中,等.两种不同形貌的ZnO纳米粒子的制备和光学性能的研究[J].南京师范大学学报, 2007, 30(4): 66-70.
    [49]刘海波. PMMA/GO纳米复合材料的制备与表征[D].大连:大连工业大学, 2008.
    [50]许婷.聚甲基丙烯酸酯复合物的研究[D].武汉:武汉理工大学, 2008.
    [51]陈卢松,黄争鸣. PMMA透光复合材料研究进展[J].塑料, 2007, 36(4): 90-95.
    [52]顾中强,王海泉,陈莉,等. PMMA/SiO2纳米复合膜表面性能的研究[J].南京工业大学学报, 2007, 29(3): 1-6.
    [53]陈卢松,黄争鸣,董国华,等. PMMA透光纳米复合材料的制备[J].航空材料学报, 2008, 28(1): 59-64.
    [54]孙涛. PMMA/无机纳米复合材料的制备及性能研究[D].兰州:兰州理工大学, 2007.
    [55]王振旅,马红超,朱万春,等.在纳米Cu-ZnO上仲丁醇的催化脱氢[J].高等学校化学学报, 2002, 23(11): 2163-2165.
    [56]万勇.二氧化硅空心球及核壳结构的制备与形成机理研究[D].合肥:中国科学技术大学, 2007.
    [57]白佳海,王厚德,刘俊成.氧化锌纳米晶的制备及光催化性能的研究[J].硅酸盐通报, 2008, 27(6): 1263-1266.
    [58]刘俊,徐志兵,王燕群.纳米氧化锌的制备及其光催化性能研究[J].合肥工业大学学报, 2008, 31(6): 898-901.
    [59]陈洪民,吴晓,黄贞岚.纳米氧化锌的制备及应用研究进展[J].江西化工, 2008, 3: 11-13.
    [60]李祥生,朱正吼,李璠,等.纳米氧化铜粉的合成[J].材料导报, 2008, 22(Ⅹ): 128-130.
    [61]Paschoalino M., Guedes N.C., Jardim W., et al. Inactivation of E. coli mediated by high surface area CuO accelerated by light irradiation >360 nm[J]. Journal of photochemistry and photobiology A: Chemistry, 2008, 199 (2008): 105-111.
    [62]Su Y.K., Shen C.M., Yang H.T., et al. Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route[J]. Transactions of nonferrous Metals society of China 2007, 17(2007): 783-786.
    [63]张娟,袁昊,向群,等.氧化铜纳米棒的水热合成及其气敏性能研究[J].电子元件与材料, 2009, 28(5): 27-29.
    [64]胡英,周晓华. CuO-ZnO敏感材料气敏机理的研究[J].电子元件与材料, 2001, 20(2): 5-7.
    [65]朱俊武.纳米金属氧化物的微结构控制及其应用性能研究[D].南京:南京理工大学, 2005.
    [66]邹文斌.纳米燃烧催化剂的制备及其催化性能研究[D].南京:南京理工大学, 2006.
    [67]Mann S., Heywood B. R., Rajam S., et al. Controlled crystallization of CaCO3 under stearic acid monolayers[J]. Nature, 1988, 334: 692-695.
    [68]赵文元,王亦军.功能高分子材料化学[M].北京:化学工业出版社, 2005: 298-306.
    [69]文禹撷.金属螯合亲和配基制备及其在分离豆壳过氧化物酶中的应用[D].杭州:浙江大学研究生院, 2003.
    [70]张祥麟,康衡.配位化学[M].湖南:中南工业大学出版社, 1986: 18.
    [71]高素蕴.大豆多肽锌螯合盐的制备及生理活性研究[D].杨陵:西北农林科技大学研究生院, 2003.
    [72]张艳辉,田彦文,邵忠财,等.不同离子对氧化锌晶体形貌的影响[J].东北大学学报, 2006, 27(6): 673-676.
    [73]张祥麟,康衡.配位化学[M].湖南:中南工业大学出版社, 1986:127-128.
    [74]周利民.王一平,黄群武,等.不同形貌ZnO纳米/微米晶粒的制备与光学性能[J].过程工程学报, 2008, 8(2): 390-393.
    [75]王振希,郑典模,李建敏.直接沉淀法制备纳米氧化锌工艺[J].无机盐工业, 2006, 38(9): 40-42.
    [76]常加忠,王振领,李敏,等.具有特殊形貌的氧化锌纳米结构材料[J].周口师范学院学报, 2006, 23(2): 55-58.
    [77]Rodriguez J. A., Jirsak T., Dvorak J., et al. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3[J]. Phys. Chem. B, 2000, 104 (2): 319–328.
    [78]李东英,安黛宗,刘珩.均匀沉淀法制备纳米氧化锌和片状氧化锌粉体[J].云南化工, 2003, 30 (3): 36–39.
    [79]沈轩.不同粒径和形貌ZnO的制备、表征及8-14μm红外发射率研究[D].南京:南京航空航天大学研究生院, 2008.
    [80]黄雯.液相化学法制备形貌可控的纳米氧化锌[D].北京:北京化工大学研究生院, 2008.
    [81]刘俊,徐志兵,王燕群.纳米氧化锌的制备及其光催化性能研究[J].合肥工业大学学报,2008, 31(6): 898-901.
    [82]高海霞.纳米氧化锌聚合物复合材料的制备及其光催化性能研究[D].上海:华东师范大学研究生院, 2007.
    [83]Tang E.J., Cheng G.X., Ma X.L.. Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles [J]. Powder Technology, 2006, 161(3): 209-214.
    [84]Anna K., Nina P., Yuri K., et al. Coating zinc oxide submicron crystals on poly(methyl methacrylate) chips and spheres via ultrasound irradiation[J]. Ultrasonics Sonochemistry, 2008, 15(5): 839-845.
    [85]吴长乐.纳米氧化锌制备新技术及其机理的研究[D].长沙:中南大学研究生院, 2008.
    [86]许文.氧化锌晶体材料的制备及其生长机理研究[D].西安:西安科技大学研究生院, 2008.
    [87]向群.氧化锌基一维纳米复合材料制备及其性能研究[D].上海:上海大学研究生院, 2008.
    [88]Jorge R.O., Tetsuya O., Jorge M.V., et al. A catalytic application of Cu2O and CuO films deposited over fiberglass[J]. Applied Surface Science, 2001, 174(3-4): 177-184.
    [89]Wang H., Xu J.Z., Zhu J.J., et al. Preparation of CuO nanoparticles by microwave irradiation[J]. Journal of Crystal Growth, 2002, 244(1): 88-94.
    [90]Wang W.Z., Zhan Y.J., Wang X.S., et al. Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant[J]. Materials Research BulletinM, 2002, 37(6): 1093-1100.
    [91]Reitz J.B., Solomon E.I.. Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity[J]. J. Am. Chem. Soc., 1998, 120(44): 11467-11478.
    [92]Zheng X.G., Xu C.N., Tomokiyo Y., et al. Observation of charge stripes in cupric oxide[J]. Phys. Rev. Lett., 2000, 85(24): 5170-5173.
    [93]Xu Y.Y., Chen D.R., Jiao X.L. Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route[J]. J. Phys. Chem. B, 2005, 109(28): 13561-13566.
    [94]Liu B., Zeng H.C., Mesoscale organization of CuO nanoribbons:Formation of“Dandelions”[J]. J. Am. Chem. Soc, 2004, 126(26): 8124-8125.
    [95]贾志刚.纳米晶构筑介孔过渡金属氧化物的合成与表征[D].杭州:浙江大学研究生院, 2008.
    [96]李泽梁,李俊明,胡海涛,等. CuO纳米颗粒悬浮液中各组分对悬浮液稳定性及黏度的影响[J].热科学与技术, 2008, 4(2): 157-163.
    [97]刘海波PMMA/GO纳米复合材料的制备和表征[D].大连:大连工业大学, 2008.
    [98]王晓丽.聚甲基丙烯酸甲酯材料表面改性及其抗电性能的研究[D].西安:陕西师范大学, 2006.
    [99]Du X. W., Fu Y.S., Sun J., et al. Complete UV emission of ZnO nanoparticles in a PMMA matrix[J] Semicond. Sci. Technol., 2006, 21: 1202-1206.
    [100]孙涛. PMMA/无机纳米复合材料的制备及性能研究[D].兰州:兰州理工大学, 2007.
    [101]崔生,徐娜,沈晓冬.表面接枝聚合法制备纳米Fe3O4/PMMA微球[J].材料导报, 2008, 22(Ⅹ): 156-158.
    [102]Holland B.J., Hay, J.N.. The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy [J]. Polymer, 2001, 42(11): 4825-4835.
    [103]Yu J.M., Tao X.M. Tam H.Y., et al, Modulation of refractive index and thickness of poly(methyl methacrylate) thin films with UV irradiation and heat treatment[J]. Appl. Surf. Sci., 2005, 252(5): 1283-1292.
    [104]Beamson G., Briggs D.. High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database[M]. New York: Chichester, 1992.
    [105]詹国平.纳米氧化锌形貌控制及性能研究[D].武汉:华中科技大学研究生院, 2002.
    [106]郭海容.三维花状ZnO微晶的液相合成及其形成机理[D].石家庄:河北师范大学, 2007.
    [107]张国青,孙萍,熊波,等.氧化锌纳米晶体的生长及生长机理分析[J].材料科学与报, 2006, 24(2): 286-288.
    [108]吕娟.纳米氧化铜直接沉淀法制备工艺及表面改性研究[D].西安:西北大学研究生院, 2008.
    [109]段金霞.中空/多孔氧化锌纳米结构的形态控制及其机理研究[D].武汉:华中师范大学, 2006.
    [110]邓文雅,赵宗彬,沈琳,等.氧化锌空心球的制备及光致发光特征[J].功能材料, 2007,9(38): 1559-1562.
    [111]Tian Y., Lu H.B., Liao L.. Controlled growth surface morphology of ZnO hollow microspheres by growth temperature[J]. Physica E, 2009, 41(4): 729-733.
    [112]刘虹. PMMA/SiO2杂化材料制备及性能研究[J].西南民族大学学报, 2009, 35(4): 809-812.
    [113]陈奎. PP、PMMA/MMT复合材料的力学、摩擦学性能及稳定性研究[D].兰州:兰州理工大学研究生院, 2006.
    [114]韩卫华.乳液聚合法制备聚甲基丙烯酸甲酯无机纳米复合粒子[D].太原:太原理工大学研究生院, 2006.
    [115]冷世伟.多官能团POSS基PMMA共聚物的合成与热性能研究[D].大连:大连理工大学研究生院, 2008.
    [116]Zhou H., Wong S.S.., A facile and mild synthesis of 1-D ZnO,CuO,andα-Fe2O3 nanostructures and nanostructured arrays[J]. Nano, 2008, 2 (5): 944-958.
    [117]袁吉仁,纳米ZnO的光学特性以及在吸波材料中的应用[D].南京:南京理工大学, 2005.
    [118]吴莉莉.纳米氧化锌的准备及其光学性能的研究[D].济南:山东大学研究生院, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700