微液滴制备不同形貌CuO及其光催化和气敏性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CuO是一种典型的P型窄带半导体材料,禁带宽度为1.2eV。由于纳米CuO具有独特的电、光、催化特性,可以作为用途广泛的多功能无机材料。在气体传感、催化以及电池材料等领域有着广泛的用途。目前,纳米氧化铜的制备方法多种多样如水热法、热氧化法、化学气相沉积法等。虽然通过上述方法可以制备出各种形貌的CuO,但这些方法都存在着实验条件苛刻,成本高昂,需要添加其它试剂等缺点。所以,研究一种低成本、工艺流程简单的形貌可控的CuO的方法尤为迫切。
     本文中,我们探索了一种简单的制备不同形貌CuO纳米结构的方法。采用液滴控制、气泡辅助结合固相法在不同衬底上制备不同形貌的纳米氧化铜,并分析各种实验因素对产物形貌的影响。通过在疏水衬底上滴加不同体积硝酸铜溶液液滴,经过不同热处理生成CuO纳米结构。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)等对样品的结构、成分、形貌进行分析和表征。结果表明产物为单斜CuO、形貌有片状和片球等。
     使用光学显微镜在热处理时对样品进行原位观察,根据实验现象,提出一种由液滴控制、气泡辅助生长CuO的机制。指出初始液滴大小等因素对CuO产物的生长以及形貌起重要影响。
     初步研究了不同形貌CuO的光催化性能以及气敏性能。使用不同形貌的CuO作为催化剂对亚甲基蓝和甲基橙进行光催化处理。实验数据表明,片球的光催化性能最为优异。将不同形貌的CuO制成气敏元件,发现片球状CuO对200 ppm乙醇和200 ppm甲醛的气敏性能最好。
As a P-type semiconductor with a narrow band gap (1.2 eV), cupric oxide (CuO) has beenwidely exploited for a number of interesting properties, such as fabrication of electrical,optical, and photovoltaic devices; gas sensing; heterogeneous catalysis and so on. Thesevarious CuO structures have been synthesized by a number of different methods, such ashydrothermal synthesis, thermal evaporation and chemical vapor deposition. However, thesemethods required either sophisticated instruments or involved complicated procedures. Thus,a simple and fast route for the synthesis of CuO materials under ambient conditions is stillrequired to meet economic and industrial needs.
     In this paper, we report a simple method for controlling the morphology of CuOnanostructures by droplet on the hydrophobic substrate. This method doesn’t requiredsophisticated instruments or involved complicated procedures. We use X-ray diffraction andfield emission scanning electron microscope to characterize and observe the structure andmorphology. The results indexed to the monoclinic phase CuO with platelets and flower-likemorphology.
     In order to understand the formation mechanism of such different morphology of CuO, theanneal process was observed by optical microscope. According the results of experiment, weindicate a simple method for controlling the morphology of CuO nanostructures by droplet.The morphology of CuO shapes could be controlled by volume of droplet et al.
     The thesis focused on treating the Methylene blue trihydrate and Methyl orange withdifferent morphology of CuO photocatalyst under UV. We also use the CuO as asemiconductor gas sensor and the results show that the flowerlike CuO have the bestsensitivity to ethanol and methyl alcohol.
引文
[1]张秀荣,纳米材料的分类及其物理性能[J],现代物理知识.2002,(3):24.
    [2] G.Papadimitropoulos,N.Vourdas,V.Em.Vamvakas,D.Davazoglou.Deposition and characterization ofcopper oxide thin films[J].Journal of Physics:Conference Series,2005,10:182-185.
    [3] B.Balamurugan,B.R.Mehta.Optical and structural properties of nanocrystalline copper oxide thin filmsprepared by activated reactive evaporation[J].Thin Solid Film,2001,396:90-96.
    [4] Shaibal K.Sarkar,Niharika Burla,Eric W.Bohannan,Jay A.Switzer.Inducing enantioselectivity inelectrodeposited CuO films by chiral etching[J].Electrochimica Acta,2008,53:6191-6195.
    [5] A.A.Samokhvalov, N.N.Loshkareva, Yu.P.Sukhorukov, V.A.Gruverman, B.A.Gizhevskil.Opticalproperties of CuO single crystals[J].American Institute of Physics,1989,49(8):456-459.
    [6] Z. Yang et al. Controlled synthesis of CuO nanostructures by a simple solution route [J]. Journal ofSolid State Chemistry, 180 ,(2007): 1390–1396.
    [7] Vaseem M,Umar A,Kim S H,and Hahn Y B.Low-temperature synthesis of flower-shaped CuOnanostructures by solution process:Formation mechanism and structural properties.Journal of PhysicalChemistry C.2008,112(15):5729-5735.
    [8] JiaW Z,Reitz E,Shim Pi P etal. Spherieal CuO synthesized by a simple hydrothelalreaction:Coneentration dependent size and it selectroeatalytie application[J].Materials Research Bulletin,2009,44:1681-1686.
    [9] Jiatao Zhang, Junfeng Liu, Qing Peng, Xun Wang, Yadong Li. Nearly Monodisperse Cu2O and CuONanospheres:Preparation and Applications for Sensitive Gas Sensors[J] Chem. Mater. 2006, 18, 867-871.
    [10] Zhang Y G, Wang S T, Qian Y T, et al. Complexing-reagent assisted synthesis of hollow CuOmicrosperes [J]. Soild StateSciences, 2006,8(5):462-466.
    [11] Zhang Y, He X L, Li J P, et al. Gas-sensing properties of hollow and hierarchical copper oxidemicrospheres [J]. Sensors and Actuators B, 2007,128:293-298.
    [12]张萌,徐晓冬,赵志红,张密林.离子液体中CuO纳米棒的制备与结构表征[J],精细化工,2007,24(2).
    [13]刘新建,孙广,郑立坤,赵宏霞.液相法合成分等级CuO纳米片[J].信阳师范学院学报:自然科学版.2008,1,(21).
    [14]刘丽来,李哲.一阳极氧化铝模版为基底水热法合成纳米氧化铜[J],材料科学与工程学报. 2009,2(27).
    [15]尚德建. Cuo纳米结构的制备与表征[D].华东师范大学,2009
    [16] Guang Wang, Yan Wei, Wei Zhang, Xiaojun Zhang, Bin Fang, Lun Wang. Enzyme-free amperometricsensing of glucose using Cu-CuO nanowire composites[J].Microchimica acta, 2010, 168.
    [17] N.Nancheva, P.Docheva, M.Mijsheva. Defects in Cu and CuO films produced by reactive magnetronsputtering[J].Materials Letters,1999,39:81-85.
    [18] D.Chen, G.Shen, K.Tang, Y.Qian. Large-scale synthesis of electrolyte of crystal growth[J]. 2003, 254:225-2258.
    [19] A.Y.Oral, E.Mensur, M.H.Aslan, E.Basaran. The preparation of copper(II)oxide thin films and thestudy of their microstructures and optical properties[J].Material Chemisty Physics,2004,83:140-144.
    [20]M.Kaur, K.P.Mithe, S.K.Despande, S.Choudhury, J.B.Siingh, N.Verma, S.K.Gupta, J.V.Yakhmi.Growthand branching of CuO nanowires by thermal oxidation of copper[J]. Journal of Crystal Growth, 2006,289:670-675.
    [21] G.G.Condorelli, G.Malandrino, I.L.Fragala. Kinetic study of MOCVD fabrication of copper(I)andcopper(II)oxide films[J].Chemical Vapor Deposition,1999,5:21-27.
    [22] Jiang X, Herricks T, Xia Y. CuO nanowires can be synthesized by heating copper substrates inair[J].Nano Letters.2002,2(12):1333-1338.
    [23] Cho Y S, Huh Y D. CuO nanotubes synthesized by the thermal oxidation of Cu nanowires[J]. Bulletinof the Korean Chemical Society.2008,29(12):2525-2527.
    [24] Kaur M, Muthe K P, Despande S K, Choudhury S, Singh J B, Verma N, Gupta S K, Yakhmi J V.Growth and branching of CuO nanowires by thermal oxidation of copper[J]. Journal of Crystal Growth.2006,289(2):670-675.
    [25] LI J Y, XIONG S L, XI B J, et al. Synthesis of CuO per-pendicularly cross-bedded microstructure via aprecursor based route [J]. Crysal Growth & Design,2009,9(9):4108-4115.
    [26]李东升,王文亮,王尧宇,等.混合溶剂前体法制备纳米CuO粉体及其性能表征[J].无机化学学报,2004,20(5):617-620.
    [27] Wu R, Ma Z, Gu Z, Yang Y. Preparation and characterization of CuO nanoparticles with differentmorphology through a simple quick-precipitation method in DMAC-water mixed solvent[J]. Journal ofAlloys and Compounds,2010,504(1):45-49.
    [28] Singh D P, Ojha A K, Srivastava O N. Synthesis of different Cu(OH)2and CuO(nanowires,rectangles,seed-,belt-, and sheetlike)nanostructures by simple wet chemical route[J].The Journal ofPhysical Chemistry C.2009,113(9):3409-3418.
    [29]刘丽来,李学铭,李哲.水热法制备花状和球状微纳米CuO[J].黑龙江科技学院学报,2010,4.
    [30] Xiao H M, Zhu L P, Liu X M, Fu S Y. Anomalous ferromagnetic behavior of CuO nanorodssynthesized via hydrothermal method[J].Solid State Communications.2007,141(8):431-435.
    [31] Li J Y, Xiong S, Pan J, Qian Y. Hydrothermal synthesis and electrochemical properties of urchin-likecore-shell copper oxide nanostructures[J].The Journal of Physical Chemistry C.2010,114(21):9645-9650.
    [32] Cao M H, Hu C W, Wang Y H, Guo Y H, Guo C X, Wang E B. A controllable synthetic route toCu,Cu2O,and CuO nanotubes and nanorods[J].Chemical Communications.2003,(15):1884-1885.
    [33] C.Zhu, C. Chen.Template-free synthesis of Cu2Cl(OH)3namoribbons and use as sacrificial templatefor CuO nanoribbon[J]. J.Cryst.Growth,2004,263,473-478.
    [34] Kumar R V, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-sizetransition metal oxides from metal acetates[J].Chemistry of Materials.2000,12(8):2301-2305.
    [35] Zhu L, Chen Y, Zheng Y, Li N, Zhao J, Sun Y. Ultrasound assisted template-free synthesis of Cu(OH)2and hierarchical CuO nanowires from Cu7Cl4(OH)10·H2O[J].Materials Letters.2010,64(8):976-979.
    [36] Alammar T, Birkner A, Mudring A V. Ultrasound-assisted synthesis of CuO nanorods in a neatroom-temperature ionic liquid[J].European Journal of Inorganic Chemistry.2009,(19):2765-2768.
    [37] R.VijayaKar, R.Elgaiel. Sonochemical Preparation and Characterization of Nanocrystalline CopperOxide Embedded in Poly(vinylalcohol) and Its Effect on Crystal Growth of Copper Oxide[J]. Langmuir,2001,17,1406-1410.
    [38] Wang H, Xu J Z,Zhu J J, Chen H Y. Preparation of CuO nanoparticles by microwave irradiation[J].Journal of Crystal Growth,2002,244(1):88-94.
    [39] Min Y, Wang T, Chen Y. Microwave-assistant synthesis of ordered CuO micro-structures on Cusubstrate[J].Applied Surface Science,2010,257(1):132-137.
    [40] Xu X, Zhang M, Feng J, Zhang M. Shape-controlled synthesis of single-crystalline cupric oxide bymicrowave heating using an ionic liquid[J].Materials Letters.2008,62(17-18):2787-2790.
    [41] Wang W W, Zhu Y J, Cheng G F, Huang Y H. Microwave-assisted synthesis of cupric oxidenanosheets and nanowhiskers[J].Materials Letters.2006,60(5):609-612.
    [42] Keyson D, Volanti D P, Cavalcante L S, Simoes A Z, Varela J A, Longo E. CuO urchin-nanostructuressynthesized from a domestic hydrothermal microwave method[J]. Materials Research Bulletin. 2008,43(3):771-775.
    [43] Kapoor I P S,Srivastava P,and Singh G.Nanocrystalline transition metal oxides as catalysts in thethermal decomposition of ammonium perchlorate[J].Propellants Explosives Pyrotechnics, 2009,34(4):351-356.
    [44] Li C F,Yin Y D,Hou H G,Fan N Y,Yuan F L,Shi Y M,and Meng Q L.Preparation and characterizationof Cu(OH)2and CuO nanowires by the coupling route of microemulsion with homogenous precipitation[J].Solid State Communications,2010,150(13-14):585-589.
    [45] Xu Y Y,Chen D R,Jiao M L,and Xue K Y.CuO microflowers composed of nanosheets: Synthesis,characterization,and formation mechanism[J].Materials Research Bulletin,2007,42(9):1723-1731.
    [46]朱俊武,张维光,王恒志,杨绪杰,陆路德,汪信.纳米CuO的形貌控制合成及其性能研究[J].无机化学学报, 2004,(07) .
    [47]吉芳英,邱雁,徐璇,袁云松.CuO/TiO2-H2O2可见光催化亚甲基蓝脱色效果及影响因素研究[J].环境工程学报,2008,2(6).
    [48]李建,毕建洪,董华泽.纳米TiO2、NiO和CuO的制备、表征及催化苯酚羟基化反应研究[J].应用化学,2011,4(40).
    [49] Zhang Xiaojun,Gu Aixia,Wang Guangfeng. Fabrication of CuO nanowalls on Cu substrate for a highperformance enzyme-free glucose sensor[J]. Crysteng comm,2010,12:1120-1126.
    [50] Wang G X, Gou X L, Horvat J, Park J. Facile synthesis and characterization of iron oxidesemiconductor nanowires for gas sensing application[J].Journal of Physical Chemistry C, 2008, 112(39):15220-15225.
    [51] Wang Y L, Jiang X C, Xia Y N. A solution-phase,precursor route to polycrystalline SnO2nanowiresthat can be used for gas sensing under ambient conditions[J].Journal of the AmericanChemical Society,2003,125(52):16176-16177.
    [52] Ahn M W, Park K S, Heo J H, Park J G, Kim D W, Choi K J, Lee J H, Hong S H. Gas sensingproperties of defect-controlled ZnO-nanowire gas sensor[J].Applied Physics Letters, 2008, 93(26):263103-263105.
    [53] Li X L, Lou T J, Sun X M, Li Y D. Highly sensitive WO3hollow-sphere gas sensors[J]. InorganicChemistry,2004,43(17):5442-5449.
    [54] Hansen B J, Kouklin N, Lu G H, Lin I K, Chen J H, Zhang X.Transport,analyte detection,andopto-electronic response of p-type CuO nanowires[J].Journal of Physical Chemistry C, 2010, 114(6):2440-2447.
    [55] Chen J J, Wang K, Hartman L, et al. H2S detection by vertically aligned CuO nanowire array sensors[J]. Phys Chem: C,2008,112(41):16017-16021.
    [56] Jiatao Zhang, Junfeng Liu, Qing Peng, Xun Wang, Yadong Li. Nearly Monodisperse Cu2O and CuONanospheres:Preparation and Applications for Sensitive Gas Sensors[J].Chem.Mater,2006,18,867-871
    [57] Iqbal Singh.R, K.Bedi. Influence of pH on the synthesis and characterization of CuO powder for thickfilm room-temperature NH3 gas sensor[J].J Mater Sci,2011,46:5568-5580.
    [58] J Y Xiang, J P Tu, J Zhang, D Zhang, J P Cheng. Incorporation of MWCNTs into leaf-like CuOnanoplates for superior reversible Li-ion storage[J]. Electrochemistry Cornmunications,2010,12(8):1103-1107.
    [59] S F Zheng, J S Hu,L S Zhong,W G Song,L J Wan,Y G Guo.Introducing dual FunetionalCNTnetworks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries[J].ChemistryofMaterials,2008,20(11):3617-3622.
    [60] J Morales, L Sanehez, F Martin, J Ramos-Barrado, M Sanchez. Use of Low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells[J]. Thin Solid Films, 2005, 474(l-2):133-140.
    [61] Xinjian Feng, Lin Feng, Meihua Jin, Jin Zhai, Lei Jiang, Daoben Zhu. ReversibleSuper-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films[J].J. Am. Chem.Soc, 2004, 126 (1): 62–63.
    [62] Rykaczewski K, Chinn J, Walker M L, Scott J H J, Chinn A, Jones W. Dynamics of nanoparticleself-assembly into superhydrophobic liquid marbles during water condensation[J]. ACS nano, 2011,5(12):9746-9754.
    [63]李春喜;王子镐.超声技术在制备纳米材料中的应用.化学通报2001;64:268-271.
    [64] Suslick K S, Choe S B, Cichhowlas A A, et al. Sonchemical synthesis of amorphous iron[J].Nature,1991,353:414-416.
    [65] Zhi hao Yuan, Wei Zhou, Yue qin Duan, Li jian Bie. A simple approach for large-area fabrication of Agnanorings[J]. Nanotechnology, 2008,075608.
    [66] Banfield J F, Welch S A, Zhang H Z, Ebert TT, Penn R L. Aggregation-based crystal growth andmicrostructure development in natural iron oxyhydroxide biomineralization products[J]. Science, 2000,289(5480).
    [67] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO:From nanodots to nanorods[J].Angew.Chem.Int.Ed, 2002,41,1188.
    [68]田敬民,李守智.金属氧化物半导体气敏机理探析[J].西安理工大学学报,2002,18(2):144-147.
    [69]常剑,蒋登高,詹自力.半导体金属氧化物气敏材料敏感机理概述[J].传感器世界,2003,8:14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700