分等级Zn_2GeO_4微米球催化剂的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术用于环境污染物的处理具有节能、无二次污染等优点。光催化的关键是光催化剂,开发新型高效的催化剂是光催化领域的研究热点之一。Zn2GeO4具有特殊的晶体结构和更分散的能级结构,这使得导带上的光生电子具有很高的流动性,从而能有效地利用光生电子和空穴,且它具有良好的光稳定性,是一种具有研究价值的新型光催化剂。本文以GeO2、Zn(NO3)2·6H2O和尿素为原材料,采用水热法成功制备分等级Zn2GeO4微米球催化剂。利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、氮气吸附脱附法、紫外可见漫反射吸收(DRS)、和傅立叶红外(FTIR)等多种表征技术对所合成样晶的物相、尺寸形貌、表面结构、比表面积和孔径等进行研究。
     锗酸锌催化剂合成条件实验研究表明,水热温度为140℃有利于形成均匀分散的Zn2GeO4微米球,且水热法制备的Zn2GeO4纯度高、结晶度好,晶体粒径小于固相法合成的Zn2GeO4。SEM和FESEM结果表明水热法合成的Zn2GeO4球的直径为5-10μm,球体由长度为0.5-1μm纳米棒组成。TEM则表明组成微米球的纳米棒的宽度为200-500nm。UV-vis DRS分析结果表明Zn2GeO4微米球与普通Zn2GeO4相比,吸收带边发生了蓝移,这有助于提高其光催化活性。尿素投加量实验结果表明尿素的增加促进了Ge02的溶解和Zn2GeO4晶体的生长。通过温度条件实验对Zn2GeO4微米球的生长过程及相关机理进行了探讨,实验结果表明30min时就生成了由纳米束棒组成的Zn2GeO4微米球和Zn2GeO4微米片,随着水热时间的增加,早期形成的Zn2GeO4晶体通过溶解-结晶-自组装最终形成由纳米棒组成的实心微米球,同时部分结晶度不好的微米球在Ostwald熟化机制的作用下形成了空心微米球。
     光催化降解实验表明,在紫外光照射下,与固相法合成的普通Zn2GeO4催化剂相比,Zn2GeO4微米球催化剂对酸性红G、4-硝基酚溶液都具有较好的降解性能。另外,Zn2GeO4微米球催化剂对甲醛气体也具有良好的降解效果。降解循环实验进一步表明该催化剂具有良好的高效性和稳定性。化学荧光分析实验表明,羟基自由基是光催化反应的最主要活性基团,并在此基础上对该光催化体系可能的降解机理进行讨论。
Photocatalysts have been a hot topic in environmental field due to its low energy consumption and no second pollution. The photocatalyst is the key factor of the photocatalytic technology, so the development of new and efficient photocatalyst is the hot topic in the photocatalytic field. Zn2GeO4has the special crystal structure and much dispersed band, thus the photo-generated electrons have high mobility in the CB, and can make full use of the electrons and holes. Besides, the Zn2GeO4photocatalysts is very stable under irradiation of the UV light. So it is a new and excellent photocatalysts. Hierarchical Zn2GeO4microspheres have been successfully synthesized via a simple hydrothermal route, using Zn(NO3)2and GeO2as Zn and Ge sources, respectively. The as-prepared samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm, UV-vis diffuse reflectance spectrum (UV-vis DRS), and fourier transform infrared (FT-IR) spectroscopy.
     The temperature experiment results showed that it was better to form well-dispersed hierarchical Zn2GeO4microspheres at the140℃. Moreover, the obtained samples has no impurity and good crystallinity and the crystalline size of Zn2GeO4microsphere was smaller than that of bulk Zn2GeO4. SEM, FESEM and TEM results showed the hierarchical Zn2GeO4microspheres with diameters ranging from5-10μm were found to be constructed of randomly aggregated nanorods which had dimensions of about0.5-1μm in length and200-500nm in width. From the UV-vis DRS analyses, the obvious blue shift of the optical band gap of the hierarchical Zn2GeO4microspheres can been found, compared with the bulk Zn2GeO4. The experiment results showed the dissolution rate of GeO2will increase with the increasing of the urea dosage, which promoted the growth of the Zn2GeO4crystal. Finally, a formation mechanism of the hierarchical Zn2GeO4microspheres was researched by the time-dependent experiments. The results presented the formation of Zn2GeO4microsheets and microspheres constructed of nanorod bundles for30min. With increasing the time, Zn2GeO4solid microspheres were formed by dissolution-recrystallization-self-assembly. Meanwhile, the hollow Zn2GeO4microspheres were formed through the complicated Ostwald ripening process.
     The Zn2GeO4microspheres exhibited high photocatalytic properties and excellent stability for the degradation of ARG and4-NP as compared to the Zn2GeO4prepared by the solid-state reaction. Besides, the HCHO gas can be effective degradated by the microspheres. The hydroxyl radicals (·OH) were measured by TAPL for the photocatalysis. Based on the experimental results, we have discussed the possible mechanism of the photocatalysis over the Zn2GeO4
引文
[1]Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode [J]. Nature,1972,238 (5358):37-38.
    [2]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem Rev.,1995,95 (1):69-96.
    [3]施利毅,古宏晨,李春忠,等.Sn02-TiO2复合光催化剂的制备和性能[J].催化学报,1999,20(3):338-342.
    [4]Iwasaki M, Hara M, Kawada H, et al. Cobalt ion-doped TiO2 photocatalyst response to visible light [J]. J. Colloid Interface Sci.,2000,224 (1):202-204.
    [5]汪瑾徽.二氧化钛空心球的制备以光催化性能[D].大连:大连理工大学,2009.
    [6]Kato H, Kobayashi H, Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the perovskite structure [J]. J. Phys. Chem. B, 2002,106(48):12441-12447.
    [7]Chen R, Bi J H, Wu L, et al. Orthorhombic Bi2Ge05 nanobelts:synthesis, characterization, and photocatalytic properties [J]. Cryst. Growth Des.2009,9 (4):1775-1779.
    [8]Liu Y Y, Huang B B, Dai Y, et al. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst [J]. Catalysis Communications,2009, 11 (3):210-213.
    [9]Kato H, Kobayashi H, Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M:Ta and Nb) with the perovskite structure [J]. J. Phys. Chem. B, 2002,106(48):12441-12447.
    [10]Abe R, Higashi M, Sayama K, et al. Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2 [J]. J. Phys. Chem. B,2006,110 (5): 2219-2226.
    [11]Shang M, Wang W Z, Sun S M, et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible light [J]. J. Phys. Chem. C,2008,112 (28):10407-10411.
    [12]Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst [J]. Chem. Mater.,2008,20 (9):2937-2941.
    [13]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95 (1):69-96.
    [14]Han X G, He H Z, Kuang Q, et al. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites [J]. J. Phys. Chem. C,2009,113 (2): 584-589.
    [15]Li H X, Bian Z F, Zhu J, et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity [J]. J. Am. Chem. Soc.,2007,129 (27):8406-8407.
    [16]Muruganandham M, Amutha R, Abdel Wahed M S M, et al. Controlled fabrication of a-GaOOH and α-Ga2O3 self-assembly and its superior photocatalytic activity [J]. J. Phys. Chem. C 2012,116 (1):44-53.
    [17]Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett nanorod assembly [J]. J. Am. Chem. Soc.,2001,123 (18):4360-4361.
    [18]Yu S H, Antonietti M, Colfen H, et al. Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer-controlled mineralization reactions [J]. J. Nano Lett.,2003,3 (3):379-382.
    [15]Lin K L, Chang J, Zhu Y J, et al. A facile one-step surfactant-free and low-temperature hydrothermal method to prepare uniform 3D structured carbonated apatite flowers [J]. Cryst Growth Des.,2009,9 (1),177-181.
    [19]Vayssieres L, Keis K, Hagfeldt A, et al. Three-dimensional array of highly oriented crystalline ZnO microtubes [J]. Chem. Mater.,2001,13 (12):4395-4398.
    [20]Zhang J, Elsanousi A, Lin J, et al. Aerosol-assisted self-assembly of aluminum borate (Al18B4O33) nanowires into three dimensional hollow spherical architectures [J]. Cryst. Growth Des.,2007,7 (12):2764-2767.
    [21]Xia J X, Yin S, Li H M, et al. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid [J]. Langmuir,2011,27 (3):1200-1206.
    [22]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline system [J]. Chem. Rev.,1995,95(1):49-68.
    [23]Fujii M, Kawai T, Kawai S. Photocatalytic activity and the energy levels of electrons in a semiconductor particle under irradiation [J]. Chem. Phys. Lett.,1984,106 (6):517-522.
    [24]Kamat P V, Dimitrijevic N M. Colloidal semiconductors as photocatalysts for solar energy conversion [J]. Solar Energy,1990,44 (2):83-98.
    [25]Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties [J]. J. Am. Chem. Soc., 1999,121 (49):11459-11467.
    [26]Nosoka Y, Fox M A. Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen:dependence of the quantum yield on incident pulse width [J]. Phys. Chem.,1988 (7):1983-1897.
    [27]Linsebigler A L, Lu G Q, et al. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev.,1995,95 (3):735-758.
    [28]Gerisher H, Heller A. Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water [J]. J. Electrochem. Soc.,1992 (139):113-121.
    [29]Noda H, Oikawa K, Kamada H. ESR spin-trapping study of active oxygen radicals from photoexcited semiconductors in aqueous H2O2 solutions [J]. Bull. Chem. Soc. Jpn.,1993 (66):455-458.
    [30]李长青.Bi203和Bi2Sn207粉体的微乳液法制备、表征及其性质的研究[D].福建:福州大学物理化学系,2004.
    [31]肖信.碘氧化铋分级微纳结构的合成、表征和可见光光催化活性研究[D].广州:华南理工大学化学与化工学院,2011.
    [32]Salvador P, Garcia M L, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium (IV) oxide rutile [J]. J Phys Chem,1992,96 (25): 1034-1035.
    [33]岳林海,水森,徐铸德.二氧化钛微晶结构和光催化性能关联研究[J].无机学报,1999,57:1219-1225.
    [34]刘忠范,朱涛,张锦.纳米化学[J].大学化学,2001,16(5):1-10.
    [35]李新勇,李树本.纳米半导体研究进展[J].化学进展,1996,8(3):231-238.
    [36]Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chem. Rev.,2005,105 (4):1025-1102.
    [37]Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev.,1989,89 (8):1861-1873.
    [38]Denton R, Muhlschlegel B, Scalapino D J. Electronic heat capacity and susceptibility of small metal particles [J]. Phys. Rev. Lett.,1971,26 (12):707-711.
    [39]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [40]Yoshimura M, Byrappa K. Hydrothermal processing of materials:past, present and future [J]. J. Mater. Sci.,2008,43 (7):2085-2103.
    [41]Demazeau G. Solvothermal reactions:an original route for the synthesis of novel materials [J]. J. Mater. Sci.,2008,43 (7):2104-2114.
    [42]Zhang X Y, Zhang L D, Chen W, et al. Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays [J]. Chem. Mater.,2001,13 (8):2511-2515.
    [43]Zhu K K, Wang D H, Liu J. Self-assembled materials for catalysis [J]. Nano Res.,2009,2 (1):1-29.
    [44]Yu J G, Liu W, Yu H G A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity [J]. Cryst. Growth Des.,2008,8 (3): 930-934.
    [45]Zhou H, Sabio E M, Townsend T K, et al. Assembly of core-shell structures for photocatalytic hydrogen [J]. Chem. Mater.,2010,22:3362-3368.
    [46]Sun X M, Li Y D. Ga2O3 and GaN semiconductor hollow spheres [J]. Angew. Chem. Int. Ed.,2004,43 (29):3827-3831.
    [47]Yu J G, Yu X X. Hydrothermal synthesis and photocatalytic of zinc oxide hollow spheres [J]. Environ. Sci. Technol.,2008,42 (13):4902-4907.
    [48]Shen W H, Zhu Y F, Dong X P, et al. A new strategy to synthesize TiO2-hollow spheres using carbon spheres as template [J]. Chem. Lett.,2005,34 (6):840-841.
    [49]Qian H S, Lin G F, Zhang Y X, et al. A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation [J]. Nanotechnology,2007,18 (35): 355602.
    [50]Jagadeesan D, Mansoori U, Mandal P, et al. Hollow spheres to nanocups: tuning the morphology and magnetic properties of single-crystalline a-Fe2O3 nanostructures [J]. Angew. Chem. Int. Ed.,2008,47 (40):7685-768.
    [51]Guo C Y, Hu P, Yu L J, et al. Synthesis and characterization of ZrO2 hollow spheres. Mater. Lett.,2009,63 (12):1013-1015.
    [52]Shang M, Wang W Z, Xu H L. New Bi2WO6 nanocages with high visible-light-driven, photocatalytic activities prepared in refluxing EG [J]. Cryst. Growth Des.,2009,9 (2): 991-996.
    [53]张明轩,霍冀川,赫桂军,等.CTAB软模板发碳酸锶纳米棒制备[J].2008,14(2):14-17.
    [54]Ota J, Roy P, Srivastava S K, et al. Morphology evolution of Sb2S3 under hydrothermal conditions: flowerlike structure to nanorods [J]. Cryst. Growth Des.,2008,8 (6): 2019-2023.
    [55]An T C, Liu J K, Li G Y, et al. Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2[J]. Applied Catalysis A:General,2008,350 (2): 237-243.
    [56]Wang D B, Song C X, Zhao Y H, et al. Synthesis and characterization of monodisperse iron oxides microspheres [J]. J. Phys. Chem. C,2008,112 (33):12710-12715.
    [57]Xu H L, Wang W Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall [J]. Angew. Chem. Int. Ed.,2007,46 (9):1489-1492.
    [58]Xiong Y J, Wiley B, Chen J Y, et al. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties [J]. Angew. Chem. Int. Ed., 2005,44 (48):7913-7917.
    [59]Xu Y Y, Chen D R, Jiao X L, et al. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells [J]. J. Phys. Chem. C,2007,111 (44):16284-16289.
    [60]Dai X J, Luo Y S, Zhang W D, et al. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area [J]. Dalton Trans.,2010,39 (14):3426-3432.
    [61]Liu Q, Zhou Y, Kou J H, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel [J]. J. Am. Chem. Soc.,2010,132 (41):14385-14387.
    [62]Duan X L, Yuan D R, Cheng X F, et al. Preparation of Co2+-doped MgGa2O4 nanocrystals by citrate sol-gel method [J]. J. Alloys Compd.,2007,439 (1-2):355-357.
    [63]Zhao W, Song X Y, Chen G Z, et al. Hydrothermal synthesis of PbWO4 uniform hierarchieal microspheres [J]. Mater. Lett.,2009,63 (2):285-288.
    [64]Xu S, Li Z H, Wang Q, et al. A novel one-step method to synthesize nano/micron-sized ZnO sphere [J]. J. Alloys Compd.,2008,465 (1-2):56-60.
    [65]Wang X J, Wan F Q, Liu J, et al. Synthesis and characterization of CU3P hollow spheres by a facile soft-template process [J]. J. Alloys Compd.,2009,474 (1-2):233-236.
    [66]Li J, Zeng H C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening [J]. J. Am. Chem. Soc.,2007,129(51):15839-15847.
    [67]Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening [J]. J. Phys. Chem. B,2004,108 (11):3492-3495.
    [68]Xu H L, Wang W Z, Zhu W, et al. Hierarchical-oriented attachment: from one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves [J]. Cryst. Growth Des.,2007,7 (12):2720-2724.
    [69]Lee, E J H, Ribeiro C, Longo E, et al. Oriented attachment:an effective mechanism in the formation of anisotropic nanocrystals [J]. J. Phys. Chem. B,2005,109 (44):20842-20846.
    [70]Wang W S, Zhen L, Xu C Y, et al. Aqueous solution synthesis of CaF2 hollow microspheres via the Ostwald ripening process at room temperature [J]. Appl Mater Interfaces,2009,1 (4): 780-788.
    [71]Yang Z J, Wei J J, Yang H X, et al. Mesoporous CeO2 hollow spheres prepared by Ostwald ripening and their environmental applications [J]. Eur. J. Inorg. Chem.,2010 (21): 3354-3359.
    [72]Zhang L H, Yang H Q, Xie X L, et al. Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening [J]. J. Alloys Compd.,2009,473 (1-2):65-70.
    [73]Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons:formation of "dandelions" [J]. J. Am. Chem. Soc.,2004,126 (26):8124-8125.
    [74]Ho S Y, Wong A S W, Ho G W. Controllable porosity of monodispersed tin oxide nanospheres via an additive-free chemical route [J]. Cryst. Growth Des.,2009,9 (2): 732-736.
    [75]施尔畏,陈之战,袁如林等.水热结晶学[M].北京:科学出版社,2004,10-80.
    [76]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001,128-131.
    [77]黄昀防.可见光响应的光催化K2La2Ti3010纳米复合材料研究[D].泉州:华侨大学,2008.
    [78]Yu H G, Yu J G, Liu S W, et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres [J]. Chem. Mater.,2007,19 (17):4327-4334.
    [79]Wang W J, Bi J H, Wu L, et al. Hydrothermal synthesis and catalytic performances of a new photocatalyst CaSnO3 with microcube morphology [J]. Scripta Mater.,2009,60 (3): 186-189.
    [80]He Z, Sun C, Yang S G, et al. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway [J]. J. Hazard. Mater.,2009,162 (2-3):1477-1486.
    [81]Cao C Y, Cui Z M, Chen C Q, et al. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis [J]. J. Phys. Chem. C,2010,114 (21):9865-9870.
    [82]Shao H F, Qian X F, Zhu Z K. The synthesis of ZnS hollow nanospheres with nanoporous shell [J]. J. Solid State Chem.,2005,178 (11):3522-3528.
    [83]Sato J, Kobayashi H, Ikarashi K, et al. Photocatalytic activity for water decomposition of RuO2-dispersed Zn2Ge04 with d10 Configuration [J]. J. Phys. Chem. B,2004,108 (14): 4369-4375.
    [84]Huang J H, Ding K N, Hou Y D, et al. Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water [J]. ChemSusChem,2008,1: 1011-1019.
    [85]Huang J H, Wang X C, Hou Y D, et al. Degradation of benzene over a Zinc Germanate photocatalyst under ambient conditions [J]. Environ. Sci. Technol.,2008,42 (19): 7387-7391.
    [86]李玲.纳米氧化物的气相合成、结构表征和发光性能的研究[D].合肥:材料科学与工程学院,2011.
    [87]Su Y, Meng X, Chen Y Q, et al. Synthesis and photoluminescence properties of aligned Zn2GeO4 coated ZnO nanorods and Ge doped ZnO nanocombs [J]. Mater. Res. Bull.,2008, 43(7):1865-1871.
    [88]Jumidali M M, Sulieman K M, Hashim M R. Structural, optical and electrical properties of ZnO/Zn2GeO4 porous-like thin film and wires [J]. Appl. Surf. Sci.,2011,257 (11): 4890-4895.
    [89]Yoon K H, Kim J H. Structural analysis and luminescent study of thin film zinc germanate doped with manganese [J]. Thin Solid Films,2010,519 (5):1583-1586.
    [90]Stevens R, Woodfield B F, Boerio-Goates J, et al. Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion material Zn2Ge04 from T= (0 to 400) K [J]. J. Chem. Thermodynamics,2004,36 (5):349-357.
    [91]Sato J, Kobayashi H, Ikarashi K, et al. Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration [J]. J. Phys. Chem. B,2004,108 (14): 12441-12447.
    [92]Ma B J, Wen F Y, Jiang H F, et al. The synergistic effects of two co-catalysts on Zn2GeO4 on photocatalytic water splitting [J]. Catal. Lett.,2010 134 (1-2):78-86.
    [93]Zhang N, Quyang S X, Li P, et al. Ion-exchange synthesis of a micro/mesoporous Zn2Ge04 photocatalyst at room temperature for photoreduction of CO2 [J]. Chem. Commun.,2011, 47 (7):2041-2043.
    [94]Yan S C, Wan L J, Li Z S, et al. Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2 [J]. Chem. Commun.,2011,47 (19): 5632-5634.
    [95]王幸宜.催化剂表征[M].广州:华东理工大学出版社,2008,23-143.
    [96]奚旦立,孙裕生,刘秀英.环境监测(第三版)[M].北京:高等教育出版社,2005,67.
    [97]王中林.纳米材料表征[M].北京:化学工业出版社,2005:10-156.
    [98]方惠群.仪器分析[M].北京:科学出版社,2002:1-251.
    [99]曾元儿,张凌主.仪器分析[M].北京:科学出版社,2007:10-312.
    [100]Bu X Z, Zhang G K, Gao Y Y, et al. Preparation and photocatalytic properties of visible light responsive N-doped TiO2-rectorite composites [J]. Microporous Mesoporous Mater., 2010,136(1-3):132-137.
    [101]Liu Z S, Jing X P, Wang L X. Luminescence of native defects in Zn2GeO4 [J]. J. Electrochem. Soc.,2007,154 (6):H500-H506.
    [102]王立明,韦志仁,吴峰.水热条件下影响晶体生长的因素[J].河北大学学报,2002,22(4):345-350.
    [103]Neira I S, Kolen'ko Y V, Lebedev O I, et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis [J]. Cryst. Growth Des.,2009,9 (1): 466-474.
    [104]Gayer K H, Zajicek O T. The solubility of germanium (IV) oxide in aqueous NaOH solutions at 25 ℃ [J]. J. Inorg. Nucl. Chem.,1964,26 (6):951-954.
    [105]Zheng Y H, Cheng Y, Wang Y S, et al. Metastable γ-MnS hierarchical architectures: synthesis, characterization, and growth mechanism [J]. J. Phys. Chem. B,2006,110 (16): 8284-8288.
    [106]Wang W S, Zhen L, Xu C Y, et al. Controlled synthesis of calcium tungstate hollow microspheres via Ostwald ripening and their photoluminescence property [J] J. Phys. Chem. C,2008,112 (49):19390-19398.
    [107]Zissi U, Lyberatos G. Azo-dye biodegradation under anoxic condations [J]. Water Sci. Technol.,1996,34 (5-6):495-500.
    [108]Forqacs E, Cserhati T, Oros G. Removal of synthetic dyes from wastewaters:a review [J]. Environ. Int.,2004,30 (7):953-971.
    [109]王珺婷.K2Ta4011与K6Ta10.8030的制备及其光催化性能研究[D].武汉:武汉理工大学,2007.
    [110]胡艳君.K6Nb10.8030的软化学制备及其光催化性能研究[D].武汉:武汉理工大学,2007.
    [111]周瑾.Sr10Bi60(24-y)与Sr6Bi2O(12-y)的制备、掺Ni改性及其光催化降解酸性红G的研究[D].武汉:武汉理工大学,2007.
    [112]Niederberger M, Pinna N, Polleux J, et al. A general soft chemistry route to perovskites and related materials:synthesis of BaTiO3, BaZrO3 and LiNbO3 [J]. Angew. Chem., Int. Ed., 2004,43 (17):2270-2273.
    [113]Zhang S M, Zhang G K, Yu S J, et al. Efficient photocatalytic removal of contaminant by Bi3NbxTa1-xO7 nanoparticles under visible light irradiation [J]. J. Phys. Chem. C,2009, 113 (46):20029-20035.
    [114]Daneshvar N, Behnajady M A, Asghar Y Z. Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: influence of operational parameters and reaction mechanism [J]. J. Hazard. Mater.,2007,139 (2):275-279.
    [115]Cao J, Luo B D, Lin H L, et al. Synthesis, characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst [J]. J. Mol. Catal. A. Chem.2011,344 (1-2): 138-144.
    [116]Wang W J, Zhang L Z, An T C, et al. Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species [J]. Appl. Catal. B: Environ.,2011 (108-109):108-116.
    [117]Yamazaki I, Piette H. EPR pin-tripping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide [J]. J. Am. Chem. Soc.,1991,113 (20): 7588-7593.
    [118]Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment [J]. Chem. Rev.,1993,93 (2):671-698.
    [119]Pignatello J J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide [J]. Environ. Sci. Technol.,1992,26 (5):944-951.
    [120]Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique [J]. Electrochem. Commun.,2000,2 (3): 207-210.
    [121]Barreto J C, Smith G S, Strobel N H P, et al. Terephthalic acid: a desimeter for the detection of hydroxyl radicals in vitro [J]. Life Sci.,1994,56 (4):PL89-PL96.
    [122]Tryba B, Toyoda M, Morawski A W, et al. Photocatalytic activity and OH radical formation on TiO2 in the relation to crystallinity [J]. Appl. Catal. B:Environ.,2007,71 (3-4): 163-168.
    [123]Yamaguchi O, Hidaka J, Hirota K. Formation and characterization of alkoxy-derived Zn2Ge04 [J]. J. Mater. Sci. Lett.,1991,10 (24):1471-1474.
    [124]Pei L Z, Yang Y, Yang L J, et al. Large-scale synthesis and the roles of growth conditions on the formation of Zn2GeO4 nanorods [J]. Solid State Commun.,2011,151 (14-15): 1036-1041.
    [125]Zhang G K, Li M, Yu S J, et al. Synthesis of nanometer-size Bi3TaO7 and its visible-light photocatalytic activity for the degradation of a 4BS dye [J]. J. Colloid Interface Sci.,2010, 345 (2):467-473.
    [126]Evans J V, Whateley T L. Infra-red study of adsorption of carbon dioxide and water on magnesium oxide [J]. Trans. Faraday Soc.,1967,63:2769-2777.
    [127]Tsuneoka H, Teramura K, Shishido T, et al. Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2 [J]. J. Phys. Chem. C,2010,114(19):8892-8898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700