L-MBE法生长ZnO薄膜的p型掺杂及分析表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,ZnO由于其良好的激子发光特性而受到众多研究机构的关注。其具有比GaN和ZnSe材料更高的室温激子束缚能,有望实现室温甚至更高温度下运转的低阈值紫外发光器件。目前,阻碍ZnO LED及LD器件实现的主要障碍是ZnO的单极性特性,即难以实现稳定而高浓度的p型掺杂。而要实现ZnO的高浓度p型掺杂,首先需要解决的问题是降低ZnO本征材料的本底电子浓度,以减小ZnO本征缺陷的自补偿效应。同时要实现低阈值、高亮度的ZnO发光器件,则更需要生长出高结晶质量和发光质量的ZnO薄膜。本文首先集中精力进行了高质量ZnO单晶薄膜的生长,获得了低本底电子浓度和缺陷密度、高发光质量的本征ZnO薄膜;其次进行了ZnO薄膜的p型掺杂研究,最终采用离子注入法实现了稳定而高浓度的p型ZnO薄膜,并进一步制作了p-ZnMgO/n-ZnO p-n结原型器件。本工作取得了许多创新性的发现和成果,主要包括:
     采用激光分子束外延法(L-MBE)在c面蓝宝石衬底生长出了低本底电子浓度、高结晶质量和发光质量的ZnO单晶薄膜。其中ZnO(0002)面ω摇摆曲线FWHM为213″,室温N带紫外受激发光阈值为200kW/cm~2,ZnO薄膜的本底电子浓度为4.72×10~(16)cm~(-3),以上结果均是稳定而可重复的。
     利用小角度X射线分析技术(GIXA)成功地测出了蓝宝石衬底上外延的ZnO薄膜以及ZnO/ZnMgO异质结的X射线反射率(XRR)振荡曲线,并将其应用于退火前后的ZnO薄膜表面与界面特性的定量分析之中。
     提出并实现了ZnO超晶格缓冲层结构(SL-buffer)的L-MBE法生长,并在其上成功实现了厚度为300nm的ZnO薄膜的2D逐层生长(layer-by-layer),获得了十分平整的ZnO表面。
     通过对Al_2O_3(0001)衬底上外延ZnO薄膜的两种在面(in-plane)取向的分析结果,提出了基于ZnO六方相结构的应变弛豫模型:即ZnO薄膜中的应变和弛豫状态取决于不同在面取向下的外延层同衬底间的晶格、热膨胀系数失配产生的应变以及本征点缺陷产生的应变这两种应变机制的综合作用结果。
     生长并观察到了ZnO自组织量子点链(QDCs)结构的量子限域现象,并采用飞秒时间分辨测试系统(TRPL)测试到了QDCs的双指数衰减特性,衰减常数分别为t_1=38.21ps及t_2=138.19ps。
ZnO has attracted much attention during recent years, due to its strong excitonic luminescence properties even at very high temperature (550K~850K), which make it an ideal material for the fabrication of UV lighting devices operated at RT and even higher temperature, with much lower excitation threshold than that of GaN and ZnSe. Till now, the main obstacle for the fabrication of ZnO based LEDs and LDs is its unipolarity, which means that it is very difficult to realize reliable and stable p-type ZnO films with high concentration. To solve this problem, one must firstly achieve high-quality undoped ZnO films with low background electron concentration, to eliminate the self-compensation effects of intrinsic point defects (IPD). At the same time, it is indispensable to grow ZnO films with high structural and luminescent qualities, in order to realize ZnO based LEDs and LDs with high performance. Along this vein, much effort was put on the realization of high quality intrinsic ZnO single crystalline films, with relatively lower defect density and electron concentration. And then various attempts were made on the p-type doping of ZnO films, including codoping method, using NH_3 as a dopant and N ion implantation. The reliable and reproducible p type ZnO films were achieved by N ion implantation eventually, the p-ZnMgO/n-ZnO p-n junction diode was also fabricated. The main innovative results are listed as below:
    1) Single crystalline ZnO films were achieved by laser molecular beam epitaxy (L-MBE), with a typical background electron concentration of 4.72×10~(16)cm~(-3). The FWHM of (0002) plane ω rocking curve was 213", and the RT excitation threshold of N-band stimulated emission was 200kW/cm~2. All the results are stable and reproducible.
    2) Glancing-incidence X-ray analysis (GIXA) was used in ZnO films and ZnMgO/ZnO hetero-structures. X-ray reflectivity (XRR) was exploited to provide quantitive evaluation of the surfaces and interfaces of ZnO films before and after annealing process.
    3) ZnO epilayers with ZnMgO/ZnO Superlattice(SL)-buffers were proposed and
引文
1 Yu P, Tang Z. K, Wong G. K. L et al, 23nd Int. Conf. On the Physics of Semicondutor, World Scientific, Singapore. 1996, 1453.
    2 Bagnall D M, Chen Y F, Zhu Z et al, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett, 1997, 70 (17):2230~2232.
    3 Bagnall D M, Chen Y F, Zhu Z et al, High temperature excitonic stimulated emission from ZnO epitaxial layers.Appl. Phys. Lett, 1998, 73(8): 1038~1040.
    4 Shen S J, Liu Y C, Shao C L et al, Structural and Optical Properties of Uniform ZnO Nanosheets. Adv. Mater, 2005, 17(5): 586~590.
    5 Robert F. S, Will UV Lasers Beat the Blues, Science, 1997, 276(9): 895.
    6 Huang M H, Mao S, Feick H et al, Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 2001, 292: 1897~1899.
    7 Cao H, Zhao Y G, Liu X et al, Effect of external feedback on lasing in random media, Appl. Phys. Lett, 1999, 75(9):1213~1215.
    8 Pan Z W, Dai Z R, Wang Z L, Nanobelts of Semiconducting Oxides, Science, 2001, 291:1947~1899.
    9 Kong X Y, Ding Y, Yang R S et al, Single-Crystal Nanorings Formed by Epitaxial Serf-Coiling of Polar Nanobelts, Science, 2004, 303: 1348~1351.
    10 Ng H T, Li J, Smith M K et al, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science, 2003, 300: 1249.
    11 Greyson E C, Babayan Y, Odom T W, Directed Growth of Ordered Arrays of Small-Diameter ZnO Nanowores. Adv. Mater, 2004, 16(15): 1348~1352.
    12 Banerjee D, Lao J Y, Wang D Z, Synthesis and photoluminescence studies on ZnO nanowires. Nanotechnology, 2004, 15: 404~409.
    13 Wang X D, Summers C J, Wang Z L, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Lett, 2004, 4(3): 423~426.
    14 Wang Z, Qian X F, Yin J et al, Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route. Langmuir, 2004, 20: 3441~3448.
    15 Chen Z, Shan Z W, Cao M S, Zinc oxide nanotetrapods, Nanotechnology, 2004, 15: 365~369.
    16 TIAN Z R, VOIGT J A, LIU J, Complex and oriented ZnO nanostructures, Nature Materials, 2003, 2: 821~826.
    17 Albrecht J D, Ruden P P, Limpijumong Set al, High field electron transport properties of bulk ZnO, J. Appl. Phys, 1999, 86(12): 6864~6867.
    18 Coskun C, Look D C, Farlow G C et al, Radiation hardness of ZnO at low temperatures, Semicond. Sci. Technol, 2004, 19: 752~754.
    19 Teresa M B, Kyle O, Colin A W, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett, 2005, 86: 112112-1~112112-3.
    20 Look D C, Reynolds D C, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett, 81(10): 1830~1832.
    21 OzgurU, Alivov Y I, Liu C et al, A comprehensive review of ZnO materials and devices. J. Appl. Phys, 2005, 98(4): 041301-1~041301-103.
    22 Zhuhge F, Zhu L P, YE Z Z et al, ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped ZnO. Appl. Phys. Lett, 2005, 87(9): 092103-1~092103-3.
    23 Minegishi K, Koiwai Y, KiKuchi Yet al, Growth of p-type Zinc Oxide films by chemical vapor depiosition. Jpn. J. Appl. Phys, 1997, 36(11A): L1453~L1455.
    24 Tsukazaki A, Ohtomo A, Onuma T et al, Repeated temperature modulation epitaxy for p-type doping and light-emtting diode based on ZnO, Nature Materials, 2005, 4: 42~46.
    25 仲维卓,华素坤,晶体生长形态学.科学出版社,1999.
    26 Wong E M, Searson P C, ZnO quantum particle thin films fabricated by electrophoretic deposition. Appl. Phys. Lett. 1999, 74(20): 2939~2941.
    27 MakinoT, Ysuda T, Segaw Y et al, Strain effects on exciton resonance energies of ZnO epitaxial layers. Appl. Phys. Lett, 2001, 79(9): 1282~1284.
    28 刘博阳,杜国同,杨小天等,MOCVD法氧化锌单晶薄膜生长,液晶与显示,2004,19(2):99~102
    29 Kohan A F, Ceder G, Morgan D et al, First-principles study of native point defects in ZnO, Phys. Rev. B, 2000,61(22):15019~15027.
    30 Van de Walle C. G, Defect analysis and engineering in ZnO. Physica B, 2001, 308-310: 899~903.
    31 Neugebauer J, Van de Walle C G, Gallium vacancies and the yellow luminescence in GaN Appl. Phys. Lett. 1996, 69(4): 503~505.
    32 孙玉明,博士学位论文,中国科学技术大学,2000.
    33 Tsukazaki A, Ohtomo A, Yoshida S et al, Layer-by-layer growth of high-optical-quality ZnO film on atomically smooth and lattice relaxed ZnO buffer layer. Appl. Phys. Lett, 2003, 83(14): 2784-2786.
    34 Ohtomo, A Tamura K, Saikusa K et al, Single crystalline ZnO films grown on latticematched ScAlMgO_4(0001) substrates. Appl. Phys. Lett, 1999, 75(17): 2635-2637.
    35 Bellingeri E, Marre D, Pallecchi I et al, High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer. Appl. Phys. Lett, 2005, 86(1): 012109-1~-3.
    36 Yang H, Li Y, Norton D P et al, Characteristics of unannealed ZnMgO/ZnO p-n junctions on bulk (100)ZnO substrates. Appl. Phys. Lett, 2005, 86(17): 172103-1~-3.
    37 Fons P, lwata K, Niki S et al, Growth of high-quality epitaxial ZnO flms on a-Al_2O_3, J. Crystal Growth, 1999, 201/202: 627~632.
    38 Chen Y F, Ko H J, Hong S K et al, Layer-by-layer growth of ZnO epilayer on Al_2O_3(0001) by using a MgO buffer layer. Appl. Phys. Lett, 2000, 76(5):559~561.
    39 Heying B, Wu X H, Keller Set al, Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett, 1996, 68(5): 643~645.
    40 Zhu Q, Botchkarev A, Kim W et al, Structural properties of GaN films grown on sapphire by molecular beam epitaxy. Appl. Phys. Lett, 1999, 68(8): 1141~1143.
    41 Nause J, Ganesan S, Nemeth B, ZnO Homoepitaxy. Proc. of SPIE(invited paper),2004, 5359: 220~227.
    42 Ying M J, Du X L, Mei Z X et al, Effect of sapphire substrate nitridation on the elimination of rotation domains in ZnO epitaxial films. J. Phys. D: Appl. Phys, 2004, 37: 3058~3062.
    43 Hong S K, Hanada T, Ko H J et al, Control of crystal polarity in a wurtzite crystal: ZnO films grown by plasma-assisted molecular-beam epitaxy on GaN. Phys. Rev. B, 2002, 65(11): 115331-1~-10.
    44 Kato H, Sano M, Miyamoto K et al, MBE growth of Zn-polar ZnO on MOCVD-ZnO templates phys. star. sol. (b), 2004,241(12): 2825~2829.
    45 Chen Y F, Bagnall D, Koh H J et al, Plasma assisted molecular beam epitaxy on c-plane sapphire: growth and characterization. J. Appl. Phys, 1998, 84(7):3912~3918.
    46 Chen Y F, Bagnall D, Yao T, ZnO as a novel photonic material for the UV region. Mat. Sci. Eng. B, 2000, 75: 190~198.
    47 Nakahara K., Takasu H., Fons P, Growth and characterization of undoped ZnO films for single crystal based device use by radical source molecular beam epitaxy (RS-MBE). J. Crystal Growth, 2001, 227/228: 3912~3918.
    48 Zeuner A, Aires H., Hofmann D. M et al, Structural and optical properties of epitaxial and bulk ZnO. Appl. Phys. Lett, 80(12): 2078~2080.
    49 Kato H, Sano M, Miyamoto K, Effects of slight misorientation of GaN templates on molecular beam epitaxy growth of ZnO. J. Appl. Phys, 2002, 92(4): 1960~1963.
    50 Kaidashev E. M, Lorenz M, Wenckstern H. V et al, igh electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett, 2003, 82(22): 3901~3903.
    51 Kim I S, Jeong S H, Kim S S et al, Magnetron sputtering growth and characterization of high quality single crystal ZnO thin films on sapphire substrates. Semicond. Sci. Technol, 2004, 19: L29~L31
    52 Bellingeri E, Marre D, Pallecchi I et al, High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer. Appl. Phys. Lett, 2005, 86(1): 012109-1~-3.
    53 Murphy T. E., Chen D. Y, Cagin E et al, Electronic properties of ZnO epilayers grown on c-plane sapphire by plasma-assisted molecular beam epitaxy. J. Vac. Sci. technol. B, 2005, 23(3): 1277~1280.
    54 Dai J N, Su H B, Wang L et al, Properties of ZnO films grown on (0001) sapphire substrate using H_2O and N_2O as O precursors by atmospheric pressure MOCVD. J. Crystal. Growth, 2006, 290: 426~430.
    55 Yamamoto T, Yoshida H K, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys, 1999, 38(2B): L166~L169.
    56 Joseph M, Tabata H, Kawai T, p-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys, 1999, 38(11A): L2505~L2507.
    57 Joseph M, Tabata H, Saeki H, Fabrication of the low-resistive p-type ZnOby codoping method Physica B, 2001, 302-303: 140~148.
    58 Chen L L, Lu J G, Ye Z Z et al, p-type behavior in In-N codoped ZnO thin films. Appl. Phys. Lett. 2005, 87(25): 252106-1~-3.
    59 Zhang C Y, Li X M, Bian J M et al, Structural and electrical properties of nitrogen and aluminum codoped p-type ZnO films, Solid. State. Commun, 2004, 32: 75~78
    60 Bian J M, Li X M, Gao X D et al, Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis. Appl. Phys. Lett, 2004, 84(4): 541~543.
    61 Ohshima T, Ikegami T, Ebihara K et al, Synthesis of p-type ZnO thin films using co-doping techniques based on KrF excimer laser deposition. Thin Solid Films, 2003,435:49-55
    62 Nakahara K, Takasu H, Fons P et al, Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy. J. Crystal Growth, 2002, 237/239: 503~508.
    63 Miyakawa M, Ueda K, Hosono H. Carrier control in transparent semiconducting oxide thin films by ion implantation: MgIn_2O_4 and ZnO. Nuclear Instruments and Methods in Physics Research B, 2002, 191: 173~177.
    64 Gopalakrishnan N., Shin B. C, Lim H. S et al, Comparison of ZnO:GaN films on Si(111) and Si(100) substrates by pulsed laser deposition. Physica B, 2006,376/377: 756~759.
    65 Wei S Hand S. B. Zhang, heroical trends of defect formation and doping limit in Ⅱ-Ⅵ semiconductors: The case of CdTe. Phys. Rev. B, 2002, 66(15): 155211-1~-10.
    66 Zhang S B, Wei S H, Yan Y F, The thermodynamics of codoping: how does it work? Physica B, 2001, 302/303: 135~139
    67 Tsukazaki A, H Saito, Tamura K et al, Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N. Appl. Phys. Lett, 2002, 82(2): 235~237
    68 Yan Y F, Zhang S B, Pantelides S T, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO. Phys. Rev. Lett, 2001, 86(25): 5723~5726.
    69 Iwata K, Forts P, Yamada A Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE. J. Crystal. Growth, 2000, 209: 526~531.
    70 Perkins C L, Lee S H, Li X N et al, Identification of nitrogen chemical states in N-doped ZnO Via x-ray photoelectron spectroscopy. J. Appl. Phys, 2005, 97(3): 034907-1~-7.
    71 Matsui H, Saeki H, Kawai T et al, N doping using N_2O and NO sources: From the viewpoint of ZnO. J. Appl. Phys, 2004, 95(10): 5882~5884.
    72 Barnes T M., Olson K, Wolden C A, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett, 2005, 86(11): 112112-1~-3.
    73 Barnes T M, Leaf J, Hand S et al, A comparison of plasma-activated N_2/O_2 and N_2O/O_2 mixtures for use in ZnO:N synthesis by chemical vapor deposition. J. Appl. Phys, 2004, 96(12): 7036~7044.
    74 Lee E C, Kim Y S, Jin Y G et al, Compensation mechanism for N accepters in ZnO. Phys. Rev. B, 2001, 64(8): 085120-1~-5.
    75 Yan Y F, Zhang S B, Pantelides S T, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO. Phys. Rev. Lett, 2001, 86(25): 5723~5726.
    76 Limpijumnong S, Li X N, Wei S H et al, Substitutional diatomic molecules NO, NC, CO, N_2, and O_2: Their vibrational frequencies and effects on p doping of ZnO. Appl. Phys. Lett, 2005, 86(21): 211910-1~-3.
    77 Kohan A F, Ceder G., Morgan D et al, First-principles study of native point defects in ZnO. Phys. Rev. B, 2000, 61(22):15019~15027.
    78 Zhang S B, Wei S H, Zunger A, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B, 2001, 63(7): 075205-1~-7.
    79 Wang L G, Zunger A, Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-Type ZnO. Phys. Rev. Lett, 2003, 90(25): 256401-1~-4.
    80 Gunde S, Faschinger W, First-principles calculation of p-type doping of ZnSe using nitrogen Phys. Rev. B, 2002, 65(3): 035208-1~-15.
    81 C. G. Van deWalle, Hydrogen as a Cause of Doping in Zinc Oxide. Phys. Rev. Lett, 2000, 85(5): 1012~1015.
    82 Barnes T M., Olson K, Wolden C A, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Appl. Phys. Lett, 2005, 86(11): 112112-1~-3.
    83 Aoki T, Shimizu Y, Miyake A et at, Phys. p-Type ZnO Layer Formation by Excimer Laser doping. Physica. Status. Solidi (b), 2002, 229(2): 911~914.
    84 Ryu Y R, Zhu S, 1, Look D C et al, Synthesis of p-type ZnO films. J. Crystal. Growth, 2000, 216: 330~334.
    85 Bang K H, Hwang D K, Sang-Wook Lim, Effects of growth temperature on the properties of ZnO/GaAs prepared by metalorganic chemical vapor deposition. J. Crystal. Growth, 2003, 250: 437~443.
    86 Lee W, Hwang D K, Jeon M C et at, Fabrication and properties of As-doped ZnO films grown on GaAs(001) substrates by radio frequency (rf) magnetron sputtering. Appl. Surf. Sci, 2004, 221: 32~37
    87 Ryu M K, Lee S H, Jang M Set al, Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique. J. Appl. Phys, 2002, 92(1): 154~158.
    88 Aoki T, Hatanaka Y, Look D C, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett, 2000, 76(22): 3257~3258.
    89 Kim K K, Kim H S, Hwang D K et al, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Appl. Phys. Lett, 2003, 83(1): 63~65.
    90 Limpijumnong S, Zhang S B, Wei S H et at, Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic or Antimony-Doped p-Type Zinc Oxide. Phys. Rev. Lett, 2004, 92(5): 155504-1~-4.
    91 Park C H, Zhang S B, Wei S H, Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B, 2002, 66(7):073202-1~-3.
    92 Kanai Y, Admittance spectroscopy of ZnO crystal containing Ag. Jpn. J. Appl. Phys, 1991, 30(9A): 2021~2022.
    93 Kanai Y, Adimittance spectroscopy of ZnO crystals. Jpn. J. Appl. Phys, 1990, 29(8): 1426~1430.
    94 Kanai Y, Adimittance spectroscopy of Cu-doped ZnO crystals. Jpn. J. Appl. Phys, 1991, 30(4): 703~707.
    1 杨传铮,薄膜、多层膜和一维超点阵材料的X射线分析新进展.物理学进展,1996,19(12):183~216.
    2 Subramanayam T K, Naidu B S, Uthanna S, Effect of substrate temperature on the physical properties of DC reactive magnetron sputtered ZnO films. Optical Materials, 1999, 13: 239.
    3 祁景玉,X射线结构分析.同济大学出版社2003.4.
    4 Makino T, Yasuda T, Segawa Y et al, Strain effects on exciton resonance energies of ZnO epitaxial layers. Appl. Phys. Lett, 2001, 79(9): 1282~1284.
    5 Mollwo E, in Semiconductors: Physics of Ⅱ-Ⅵ and Ⅰ-Ⅶ Compounds, Semimagnetic Semiconductors, Vol. 17 of Landolt-Bornstein New Series, edited by Madelung O, Schulz M, and Weiss H (Springer, Berlin, 1982) p. 35.
    6 Bang K H, Hwang D K, Jeong M C et al, comparative studies on structural and optical properties of ZnO films grown on c-plane sapphire and GaAs (001) by MOCVD. Solid State Communications, 2003, 126: 623~627.
    7 李晓峰,第三代像增强器研究.中科院西安光学精密机械研究所博士学位论文.2001.
    8 陈汉鸿,吕建国,叶志镇等,反应磁控溅射ZnO薄膜的高温退火研究.真空科学与技术2002,22(6):467~470.
    9 Gorla C R, Properties of ZnO thin films grown on R-plane Al_2O_3 by metal organic chemical vapor deposition,国外博士论文, USA, 1999.
    10 Ohkubo I, Ohtomo A, Ohnishi T et al, In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire. Surface Science, 1999, 443: L1043-L1048.
    11 Rhan H, Grazing incidence X-ray diffraction study of the IaAs/GaAs interface. Physica B, 1996,221:226~229.
    12 姜晓明,掠入射X射线衍射和散射实验技术及其应用.物理1996,25(10):623~627.
    13 杨传铮,薄膜、多层膜和一维超点阵材料的X射线分析新进展.物理学进展,1999,19(2):183~216.
    14 Zhuang Y, Pietsch U, Stangl J et al, In-plane strain and shape analysis of Si/SiGe nanostructures by grazing incidence diffraction, Physica B, 2000, 283: 130~134.
    15 杜晓松,杨邦朝,外延薄膜X射线表征方法的新进展.功能材料2005,36(1)1~5.
    16 Boullea A, Canaleb L, Guinebr etie'rea R et al, Defect structure of pulsed laser deposited LiNbO_3/Al_2O_3 layers determined by X-ray diffraction reciprocal space mapping. Thin Solid Films, 2003, 429 (1-2): 55~62
    17 刘晓.飞秒激光诱导叶绿素、类胡萝卜素分子在光系统Ⅱ中能量传递研究.中国科学院西安光学精密机械研究所博士学位论文,2004.
    18 Chen S J, Liu Y C, Zhang J Y et al, Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films J. Phys.: Condens. Matter, 2003, 15: 1975~1981
    19 林碧霞,傅竹西,贾云波等,非掺杂ZnO薄膜中紫外与绿色发光中心,物理学报2001,50(11):2208~2211
    20 Varshni Y P, Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34(1): 149~154.
    21 Citrin D S, Coherent transport of excitons in quantum-dot chains: role of retardation. OPTICS LETTERS, 1995, 20(8): 901~903.
    22 Hong S, Joo T, Park W Ⅱ et al, Time-resolved photoluminescence of the size-controlled ZnO nanorods. Appl. Phys. Lett, 2003, 83(20): 4157~4159.
    23 Bagnall D M, Chen Y F, Shen M Y et al, Room temperature excitonic stimulated emission form Zinc Oxide epilayers grown by plasma-assisted MBE. J. Crystal.Growth, 1998, 184/185: 605~609.
    24 Guo B, Qin Z R, Wong K S, Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon. Appl. Phys. Lett, 2003, 82(14): 2290~2292.
    25 Chen Y F, Bagnall D M, Yao T, ZnO as a novel photonic material for the UV region. Mat. Sci. Eng. B, 2000, 75: 190~198.
    26 Yu H, Li J, Loomis R A et al, Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nature Materials, 2003, 2(8): 517~520.
    27 Yoffe A D, Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems.Adv. Phys, 1993, 42: 173~266.
    28 Efros AL, Rosen M, The electronic structure of semiconductor nanocrystals. Annu. Bey. Mater. Sci, 2000, 30: 475~521.
    29 Kim S W, Fujita S, Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition. Appl. Phys. Lett, 2002, 81(26): 5036~5038.
    30 Kim K K, Koguchi N, Ok Y W et al, Fabrication of ZnO quantum dots embedded in an amorphous oxide layer.Appl. Phys.lett, 2004, 84(19): 3810~3812.
    31 沈学初,半导体光谱和光学性质(第二版).科学出版社,北京,2002.
    32 Wong E M, Searson P C, ZnO quantum particle thin films fabricated by electrophoretic deposition. Appl. Phys. Lett. 1999, 74(20): 2939~2941.
    33 Wang Z. M, Zhang L, Holme K, Selective etching of InGaAs/GaAs(100) multilayers of quantum-dot chains. Appl. Phys. Lett, 2005, 86(14): 143106~143108.
    34 Grigodev D, Schmidbauer M, Schafer P, Three-dimensional self-ordering in an InGaAs/ GaAs multilayered quantum dot structure investigated by x-ray diffuse scattering. J. Phys. D: Appl. Phys, 2005, 38: A154~A159.
    35 Zhang B P, Wang W X, T Yasuda et al, Spontaneous formation and photoluminescence of ZnSe dot arrays.Appl. Phys. Lett. 1997, 71 (23): 3370~3372.
    36 Mane R S, Han S. H, Growth of limited quantum dot chains of cadmium hydroxide thin films by chemical route. Electrochemistry Communications, 2005 (7):205~208.
    37 朱静,纳米材料和器件.清华大学出版社,北京,2002.7.
    38 郑子尧,用原子力显微镜研究TiO_2等电子材料表面结构.武汉大学硕士学位论文,2005.5.
    39 Mazur Y I, Ma W Q, Wang X et al, InGaAs/GaAs three-dimensionally-ordered array of quantum dots. Appl. Phys. Lett, 2003, 83(5): 987~989.
    40 Tersoff J, Tromp R M, Shape Transition in Growth of Strained Islands: Spontaneous Formation of Ouantum Wires. Phys. Rev. Lett, 1993, 70(18): 2782~2785.
    41 Hou T N, Li J, Smith M K, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science, 2003, 300: 1249.
    42 Dam B, Rector JH, Johansson J et al, Appl. Surf. Sci, 1996, 679: 96~98.
    43 张克从,《晶体生长科学与技术》,(下册)1997.
    1 Kanai M, Kawai T, Kawai S et al, Low-temperature formation of multilayered Bi(Pb)-Sr-Ca-Cu-O thin films by successive deposition using laser ablation, Appl. Phys. Lett, 1989, 54(18): 1802~1804.
    2 张克从,《晶体生长科学与技术》,(下册)1997.
    3 V. Cracium, D. Cracium, M. C. Bunescu et al, Scanning electron microscopy investigation of laser ablated oxide targets. J. Phys D: Appl Phys, 1999, 32: 1306-1312.
    4 贺永宁.ZnO基宽带隙半导体薄膜的L-MBE制备和相关纳米结构的研究.西安交通大学博士学位论文,2005.
    5 徐庆安.ZnO薄膜光电特性及紫外探测器.中国科学院研究生院博士学位论文,2005.
    6 赵智彪.GaN AlGaN-GaN RFP-MBE生长及其特性研究.中科院上海微系统与信自技术研究所博士论文,2002.
    7 Jung Y S, No Y S, Kim J S et al, The effect of ZnO homo-buffer layer on ZnO thin films grown on c-Al_2O_3(0001) by plasma assisted molecular beam epitaxy. J. Crystal. Growth, 2004, 267: 85~91.
    8 Bellingeri E, Mane D, Pallecchi I et al, High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer. Appl. Phys. Lett, 2005, 86(1): 012109-1~012109-3.
    9 熊传兵,方文卿,蒲勇等,衬底温度对常压MOCVD生长的ZnO单晶薄膜的性能影响.半导体学报,2004.25(12):1628~1423.
    10 薛增泉,吴全德,李洁,《薄膜物理》,电子工业出版社.1991.
    11 Bagnall D M, Chen Y F, Zhu Z et al, High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett, 1998, 73(8):1038~1040.
    12 Tsukazaki A, Ohtomo A, Onuma T et al, Repeated temperature modulation epitaxy for p-type doping and light-emtting diode based on ZnO, Nature Materials, 2005, 4: 42~46.
    13 Ying M J, Du X L, Liu Y Z, Interface engineering for lattice-matched epitaxy of ZnO on (La, Sr)(Al,Ta)O_3(111) substrate. Appl. Phys. Lett, 2005, 87(20): 202107-1~202107-3.
    14 Koyama T, Chichibu S F, Importance of lattice matching and surface arrangement for the helicon-wave-excited-plasma sputtering epitaxy of ZnO. J. Appl. Phys, 2004, 95(12):7856~7861.
    15 Kim K K, Sung J H, Jung H J, Photoluminescence and heteroepitaxy of ZnO on sapphire substrate(0001) grown by rf magnetron sputtering. J. Vac. Sci. Technol. A, 2000, 18(6):2864~2868
    16 Vispute R D, Talyansky V, Trajanovic Z, High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for Ⅲ-Ⅴ nitrides. Appl. Phys. Lett,1997, 70(20): 2375~2377
    17 OzgurU, Alivov Y I., Liu C et al, A comprehensive review of ZnO materials and devices, J. Appl. Phys, 2005, 98(4):041301-1~-041301-103.
    18 Studenikin S A, Cociucra M, Kellner W, Band-edge photoluminescence in polycrystalline ZnO films at 1.7K. J. Lumin, 2000, 91: 223~232.
    19 Vanheusden K, Seager C H, Warren W L, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett, 1996, 68 (3): 403~405.
    20 Hahn D, Nink R, Physik Cond. Mater. 1965, 3: 311.
    21 Lin M, Kitai A H, Mascher P, J. Lumin. 1992, 54:35.
    22 Kohan A F, Ceder G, Morgan D et al, First-principles study of native point defects in ZnO, Phys. Rev. B, 2000, 61(22):15019~15027.
    23 Egelhaaf H J, Oelkrug D, luminescence and nonradiative deactivation of excited dtates including Oxygen defect centers in polycrystalline ZnO. J. Crystal. Growth, 1996, 161: 190~194
    24 Reynolds D C, Look D C, Jogai B, Fine structure on the green band in ZnO. J. Appl. Phys, 2001, 89(11): 6189~6191.
    25 Jina B J, Im S, Lee S Y, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin solid film, 2000, 366: 107~110.
    26 Bellingeri E, Marre D, Pallecchi I et al, High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer. Appl. Phys. Lett, 2005, 86(1):012109-1~012109-3.
    27 Nanse J, Ganesan S, Nemeth B, ZnO Homoepitaxy. Proc. of SPIE (Invited paper), 2004, 5395: 220~228.
    28 Kaldashev E M, Lorenz M, Wenckstern H V et al, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett, 2003, 82(22): 3901~3903.
    29 Zeuner A, Alves H, Hofmann D M et al, Structural and optical properties of epitaxial and bulk ZnO. Appl. Phys. Lett, 2002, 80(12): 2078~2080.
    30 Chen Y F, Ko H J, Hong S K et al, Layer-by-layer growth of ZnO epilayer on Al_2O_3(0001) by using a MgO buffer layer. Appl. Phys. Lett, 2000, 76(5): 559~561.
    31 Chen Y F, Bagnall D, Yao T, ZnO as a novel photonic material for the UV region. Mat. Sci. Eng. B, 2000, 75: 190~198.
    32 Rahman M M, Tambo T, Tatsuyama C et al, Atomic H-mediated (Si_(14)/Ge_1)_(20) superlattice buffers for the growth of Si_(0.75)Ge_(0.25) alloy layers with low residual strain. Thin Solid Films, 2004, 464-465: 85~89.
    33 Zhang J P, Wang H M, Gaevski M E et al, Crack-frce thick AIGaN grown on sapphire using AIN/AIGaN superlattices for strain management. Appl. Phys. Lett, 2002, 80(19): 3542~3544.
    34 Ohtomo A, Kawasaki M, Koida T, Mg_xZn_(1-x)O as a Ⅱ-Ⅵ widegap semiconductor alloy. Appl. Phys. Lett, 1998, 72(19): 2466~2468.
    1 Chen Y F, Bagnall D M, Yao T, ZnO as a novel photonic material for the UV region. Mat Sci Eng B, 2000, 75: 190~198
    2 李小换,朱满康,候育冬等,衬底温度对ZnO薄膜氧缺陷的影响.压电与声光,2004,26(4):318~320
    3 吕建国,叶志镇,黄靖云等,退火处理对于ZnO薄膜结晶性能的影响.半导体学报,2003,24(7):729~736.
    4 支壮志,王博,肇常胜,退火温度对等离子体增强化学气相沉积方法生长的ZnO薄膜质量的影响.真空科学与技术,2004,24(3):187~190.
    5 Ohkubo I, Ohtomo A, Ohnishi T et al, In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire. Surface Science, 1999, 443: L1043-L1048.
    6 Vispute R D, Talyansky V, Trajanovic Z et al, High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for Ⅲ-Ⅴ nitrides. Appl Phys Lett, 1997, 70(20): 2735~2737.
    7 Kim K K, Song J H, Jung H Jet al, Photoluminescence and heteroepitaxy of ZnO on sapphire sbustrate(0001) grown by rf magnetron sputtering. J. Vac. Sci. Technol. A, 2000, 18(6): 2864~2868.
    8 Bellingeri E, Marre D, Palest I et al, High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation. Appl. Phys. Lett 2005, 86: 012109-1~-012109-3.
    9 孙玉明,博士学位论文,中国科学技术大学,2000.
    10 Yang X D, Zhang J W, Bi Z et al, Glancing-incidence X-ray analysis of ZnO thin films and ZnO/ZnMgO heterostructures grown by laser-MBE. J. Crystal Growth, 2005, 284 (1-2): 123~128.
    11 Philips, PC-GIXA: Grazing incidence X-ray analysis, Philips electronic instruments company, Mahwah, NJ 07430
    12 Sun H D, Makino T, Tuan N T et al, Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells. Appl. Phys. Lett, 2000, 77(26): 4250~4252.
    13 Zhang X Q, Suemune I, Kumano H et al, Surface-emitting stimulated emission in high-quality ZnO thin films. J. Appl. Phys, 2004, 96(7): 3733~3736.
    14 Bagnall B M, Chen Y F, Zhu Z et al, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett, 1997, 70(17): 2230~2232.
    15 Ko H J, Chen Y F, Zhu Z et al, Photoluminescence properties of ZnO epilayers grown on CaF_2(111) by plasma assisted molecular beam epitaxy.Appl. Phys. Lett, 2000, 76(4): 1905~1907.
    16 Tang Z K, Wong G K L, Yu P et al, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett, 1998, 72(25):3270~3272.
    17 Ozgu U, Teke A, Liu C, Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films. Appl.Phys. Lett, 2004, 84(17): 3223-3225.
    1 D. K. G. de Boer, Leenaers A J G, W W van den Hoogenhof, Glancing-incidence X-ray analysis of thin-layered materials; a review. PHILIPS RESEARCH MATERIALS ANALYSIS, 1996, 3: 3~20.
    2 Compton AH, Phil. Mag, 1923, 45: 1121.
    3 Kiessig H, Ann. Der Physik (Leipzig), 1931, 10: 769.
    4 Dumond J, Youtz J P, An X-Ray Method of Determining Rates of Diffusion in the Solid State. J. Appl. Phys, 1940, 11(5): 357~365.
    5 Parratt L G, Surface Studies of Solids by Total Reflection of X-Rays. Phys. Rev, 1954, 95(2): 359~369.
    6 Nevot L, Croce P, Revue. Phys. Appl, 1980, 15: 761; Croce P, Nevot L, Revue. Phys. Appl, 1976, 11: 113.
    7 Yoneda Y, Anomalous Surface Reflection of X Rays. Phys. Rev, 1963, 131(5): 2010~2013.
    8 Croce P, Nevot L, Pardo B, C R. Acad. Sc. Paris, 1972, 274: 803~855.
    9 Sinha S K, Sirota E B, Garoff Set al, X-ray and neutron scattering from rough surfaces. Phys. Rev. B, 1988, 38(4): 2297~2311.
    10 Holy V, Kubena J, Ohilidal I et al, X-ray reflection from rough layered systems. Phys. Rev. B, 1993, 47(23): 15896~15903.
    11 Horiuchi T, Spectrochimica Acta Part B, 1993, 48: 129.
    12 Yoneda Y, Horiuchi T, Rev. Sci. Instrum, 1971, 42: 1069.
    13 Aiginger H, Wobrauschek P, Nucl. Instr. Meth, 1974, 114: 157; Wobranschek P, Aiginger H, Anal. Chem, 1975, 47: 852
    14 Konth J, Schwenke H, Fresenius Z. Anal. Chem, 1978, 291: 200; Schewenke H, Knoth J, Nucl. Instr. Meth, 1982, 193: 239.
    15 Becket R S, Golovchenko J A, Patel J R, X-Ray Evanescent-Wave Absorption and Emission. Phys. Rev. Lett, 1983, 50(3):153~156.
    16 Weisbrod U, Gutschke R, Konth J et al, Appl. Phys.A, 1991, 53:449.
    17 D.K. G. de Boer, Glancing-incidence x-ray fluorescence of layered materials. Phys. Rev. B, 1991, 44(2): 498~511.
    18 W W van den Hoogenhof, D. K. G. de Boer, Spectrochimica Acta Part B, 1993, 48: 277.
    19 Marra W C, Eisenberger P, Cho A Y, X-ray total-external-reflection-Bragg diffraction: A structural study of the GaAs-Al interface. J. Appl. Lett, 1979, 50(11): 6927~6933.
    20 杜晓松,杨邦朝,外延薄膜X射线表征方法的新进展.功能材料,2005,36(1):1~5.
    21 Banerjee S, Ferrari S, Chateigner D et al, Recent advances in characterization of ultra-thin films using specular X-ray reflectivity technique. Thin Solid Films, 2004, 450: 23~28.
    22 Leenaers A J G., D. K. G. de Boer Applications of Glancing Incidence X-Ray Analysiss X-RAY SPECTROMETRY, 1997, (26): 115~121.
    23 Sloutskin E, Gang O, Kraack H et al, Demixing Transition in a quasi-Two-dimensional Surface-Frozen layers. Phys Rev Lett. 2002, 89 (6): 065501~065504.
    24 Stoev K N, Sakurai K, Review on grazing incidence X-Ray spectrometry and reflectometry. Spectrochimica Acta Part B, 1999, 54: 41~82.
    25 Zhong Z Y, Ambacher O, Link H A et al, Influence of GaN domain size on the electron mobility of two-dimensional electron gases in AlGaN/GaN heterostructures determined by X-ray refelectivity and diffraction. Appl Phys Lett, 2002, 80(19): 3521~3523.
    26 Poschenrieder M, Schulze F, Biasing J et al, Bright blue to orange photoluminescence emission from high-quality InGaN/GaN multiple-quantum-wells on Si(111) substrates. Appl. Phys. Lett, 2002, 81(9): 1591~1593.
    27 Torabi A, Ericson P, Yarranton E J et al, Surface and interface characterization of GaN/AlGaN high electron mobility transistor structures by x-ray and atomic force microscopy. J. Vac. Sci. Technol. B, 2002, 20(3): 1234~1237.
    28 Ohotomo A, Kawasaki M, Sakurai Y et al, Fabrication of alloys and supedattices based on ZnO towards ultraviolet laser, Mater. Sci. Eng. B, 1998, 56: 263~266.
    29 Chen Y F, Bagnall D M, Yao T, ZnO as a novel photonic material for the UV region. Mat. Sci. Eng. B, 2000, 75:190~198.
    30 Bagnall D M, Chen Y F, Zhu Z, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett, 1997, 70 (17):2230~2232.
    1 Wan Q, Li Q H, Chen Y J, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors Appl. Phys. Lett., 2004, 84(18): 3654~3656.
    2 赵佰军,杨洪军,王新强等,MOCVD法生长SAWF用znO/Diamond/Si多层结构.发光学报,2004,25(3):313~316.
    3 Gorla C R, Properties of ZnO thin films grown on r-plane Al_2O_3 by metal organic chemical vapor deposition,国外博士论文, USA, 1999.
    4 Xu Q A, Zhang J W, Ju K R et al, ZnO thin film photoconductive ultraviolet detector with fast photoresponse. J. Crystal. Growth, 2006, 289:44~47.
    5 Liang S, Sheng H, Liu Y, ZnO Schottky ultraviolet photodetectors. J. Crystal. Growth, 2001, 225: 110~113.
    6 Zhu Y W, Zhang H Z, Sun X C et al, Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett, 2003, 83(1):144~146.
    7 Wan Q, Yu K, Wang T H et al, Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation.Appl. Phys. Lett, 2003, 83(11):2253~2255.
    8 Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Fully transparent ZnO thin-film transistor produced at room temperature, Adv. Mater, 2005, 17(5): 590~594.
    9 Ohta H, Orita M, Hirano M et al, Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO. J. Appl. Phys, 2001, 89(10): 5720~5725.
    10 Jayaraj M K, Draeseke A D, Tare J, Transparent p-n Heterojunction Thin Film Diodes. Mat. Res. Soc. Symp. Proc, 2001, 666: F41.1~F4.1.9.
    11 AlivovY I, Nostrand J E V, Look D C et al, Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett, 2003, 83(14):2943~2945.
    12 Alivov Y I, Kalinina E V, Cherenkov A E et al, Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett, 2003, 83(23):4719~4721.
    13 Ohta H, Mizoguchi H, Hirano M et al, Fabrication and characterization of heteroepitaxial p-n junction diode composed of wide-gap oxide semiconductors p-ZnRh_2O_2/n-ZnO. Appl. Phys. Lett, 2003, 82(5): 823~825.
    14 Ryu YR, Kim W J, White H W, Fabrication of homostructural ZnO p-n junctions. J. Crystal. Growth, 2000, 219: 419~422.
    15 Aoki T, Hatanaka Y, Look D C, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett, 2000, 76(22): 3257~3258.
    16 Bang K H, Hwang D K, Park M C et al, Formation of p-type ZnO film on InP substrate by phosphor doping. Appl. Sruf. Sci, 2003, 210: 177~182.
    17 Ryu Y R, Lee T S, Leem J H, Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO. Appl. Phys. Lett, 2003, 83(19): 4032~4035.
    18 Hwang D K, Bang K H, Jeong M C et al, Effects of RF power variation on properties of ZnO thin films and electrical properties of p-n homojunction. J. Crytal. Growth, 2003, 254: 449~455.
    19 Jeong T S, Han M S, Youn C J et al, Raman scattering and photoluminescence of As ion-implanted ZnO single crystal. J. Appl. Phys, 2004, 96(1):175~179.
    20 许小亮,杨晓杰,谢家纯等,以硅为衬底的ZnO p-n结的制备即其结构、光学和电学特性.发光学报,2004,25(3):295~298.
    21 Zhuge F, Zhu L P, Ye Z Z et al, ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO.Appl. Phys. Lett, 2005, 87(9):092103-1~-3.
    22 Jiao S J, Zhang Z Z, Lu Y M et al, ZnO p-n junction fight-emitting diodes fabricated on sapphire substrates. Appl. Phys. Lett, 2006, 88(3): 031911-1~-3.
    23 Yang H, Li Y, Norton D P et al, Characteristics of unannealed ZnMgO/ZnO p-n junctions on bulk (100) ZnO substrates. Appl. Phys. Lett, 2005, 86(17):172103-1~-3.
    24 Heo Y W, Kwon Y W, Li Y et al, p-type behavior in phosphorus-doped (Zn,Mg)O device structures. Appl. Phys. Len, 2004, 84(18): 3474~3476.
    25 Ip K, Heo Y W, Norton D Pet al, Zn0.9Mg0.1O/ZnO p-n junctions grown by pulsed-laser deposition. Appl. Phys. Lett, 2004, 85(7): 1169~1171.
    26 Tsukazaki A, Ohtomo A, Onuma T et al, Repeated temperature modulation epitaxy for p-type doping and light-emtting diode based on ZnO, Nature Materials, 2005, 4: 42~46.
    27 叶志镇,徐伟中,曾昱嘉等,MOCVD法制备ZnO同质发光二极管.半导体学报,2005,(11):2264~2266.
    28 Liu W, Gu S L, Ye J D et al, Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Appl. Phys. Lett, 2006, 88(9): 092101-1~-3.
    29 Zhang S B, Wei S H, Zunger A, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B, 2001, 63(7): 075205-1~075205-7.
    30 Look D C, Hemsky J W, Sizelove J R, Residual Native Shallow Donor in ZnO. Phys. Rev. Lett, 1999, 82(12): 2552~2555.
    31 许小亮,杨晓杰,付竹西,P型ZnO和ZnO同质p-n结的研究进展。功能材料.2003,2(34):121~125
    32 徐毓龙,氧化物于化合物半导体基础.西安:西安电子科技大学出版社,1991.
    33 谢孟贤,刘诺,化合物半导体材料与器件.成都:电子科技大学出版社,2000.9.
    34 T. uzemen S, Xiong G, Wilkinson J et al, Production and properties of p-n junctions in reactively sputtered ZnO. Physica B, 2001, 308-310: 1197~1200.
    35 贺永宁,ZnO基宽带隙半导体薄膜的L-MBE制备和相关纳米结构的研究.西安交通大学博十学位论文,2005.10.
    36 Park C H, Zhang S B, Wei S H, Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B, 2002, 66(7): 073202-1~-073202-3.
    37 Kanai Y, Admittance spectroscopy of ZnO crystal containing Ag. Jpn. J. Appl. Phys, 1991, 30(9A): 2021~2022.
    38 Kanai Y, Adimittance spectroscopy of ZnO crystals. Jpn. J. Appl. Phys, 1990, 29(8): 1426~1430.
    39 Kanai Y, Adimittance spectroscopy of Cu-doped ZnO crystals. Jpn. J. Appl. Phys, 1991, 30(4): 703~707..
    40 Look D C, Reynolds D C, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett, 2002, 81(10):1830~1832.
    41 Guo X L, Tabata H, Kawai T, Pulsed laser reactive deposition of p-type ZnO by an electron cyclotron resonance source. J. Crystal. Growth, 2001, 223: 135~139.
    42 Rommelue J F, Svob L, Jomard F et al, Electrical activity of nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett 2003, 83(2): 287~289.
    43 Yoshida H. K, T. Yamamoto, Materials Design of the Codoping for the Fabrication of Low-Resistivity p-Type ZnSe and GaN by ab-initio Electronic Structure Calculation, phys. stat. sol. (b), 1997, 202: 763~773.
    44 Yamamoto T, Yoshida H K, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys, 1999, 38(2B):L166~L169.
    45 Joseph M, Tabata H, Kawai T, p-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys, 1999, 38(11A): L2505~L2507.
    46 Joseph M, Tabata H, Saeki H, Fabrication of the low-resistive p-type ZnO by codoping method Physica B, 2001, 302-303: 140~148.
    47 Butkhuzi T V, Sharvashidze M M, Gamkrelidze N M et al, The regulation of defect concentrations by means of separation layer in wide-band Ⅱ-Ⅵ compounds. Semicond. Sci. Technol, 2001, 16(7):575~580.
    48 Minegishi K, Koiwai Y, KiKuchi Y et al, Growth of p-type Zinc Oxide films by chemical vapor depiosition. Jpn. J. Appl. Phys, 1997, 36(11A): L1453~L1455.
    49 Nakahara K, Takasu H, Fons P et al, Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy. J. Crystal Growth, 2002, 237/239: 503~508.
    50 Miyakawa M, Ueda K, Hosono H. Carder control in transparent semiconducting oxide thin films by ion implantation: MgIn_2O_4 and ZnO. Nuclear Instruments and Methods in Physics Research B,2002, 191: 173~177.
    51 Tsukazaki A, H Saito, Tamura K et al, Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N. Appl. Phys. Lett, 2002, 82(2): 235~237.
    52 Yah Y F, Zhang S B, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO. Phys. Rev. Lett. 2001, 86(25): 5723-5726
    53 Wei S H, Zhang S B, Chemical trends of defect formation and doping limit in Ⅱ-Ⅵ semiconductors: The case of CdTe. Phys. Rev. B, 2002, 66(15): 155211-1~075205-10.
    54 Yuan G. D, Ye Z Z, Qian Q et al, P-type ZnO thin films fabricated by Al-N co-doping method at different substrate temperature. J. Crystal. Growth, 2005, 273: 451~457.
    55 Chen L L, Lu J G., Ye Z Z et al, P-type behavior in In-N codoped ZnO thin films. Appl. Phys. Lett, 2005, 87(25): 252106~252108.
    56 Lu J G, Ye Z Z, Zhug F e et al, P-type conduction in N-Al co-doped ZnO thin films, Appl. Phys. Lett, 2004, 85(15): 3134~3136.
    57 Bian J M, L,i X M, Gao X D et al, Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis.Appl. Phys. Lett, 2004, 84(4): 541~543.
    58 Zhang C Y, Li X M, Bian J M et al, Structural and electrical properties of nitrogen and aluminum codoped p-type ZnO films, Solid. State. Comraun, 2004, 32: 75~78
    59 Bian J M, Li X M, Zhang C Y et al, Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis. Appl. Phys. Lett, 2004, 84(19): 3783~3785
    60 OzgurU, Alivov Y I, Liu C et al, A comprehensive review of ZnO materials and devices. J. Appl. Phys, 2005, 98(4): 041301-1~041301-103.
    61 Matsui H, Saeki H, Kawai T et al, N doping using N_2O and NO sources: From the viewpoint of ZnO. J. Appl. Phys, 2004, 59(10): 5882~5888.
    62 叶志镇,张银珠,徐伟中等,ZnO薄膜的p型掺杂的研究进展.无机材料学报,2003,18(1):11~18.
    63 陈汉鸿,吕建国,叶志镇等,反应磁控溅射ZnO薄膜的高温退火研究.真空科学与技术,2002,22(6):467~470.
    64 Gunde S, Faschinger W, First-principles calculation of p-type doping of ZnSe using nitrogen Phys. Rev. B, 2002, 65(3): 035208-1~-15.
    1 Look D C, Reynolds D C, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett, 2002, 81(10): 1830~1832.
    2 许小亮,杨晓杰,付竹西,P型ZnO和ZnO同质p-n结的研究进展.功能材料.2003,2(34):121~125
    3 Yang H, Li Y, Norton D P et al, Characteristics of unannealed ZnMgO/ZnO p-n junctions on bulk (100) ZnO substrates. Appl. Phys. Lett, 2005, 86(17): 172103-1~-3.
    4 Ryu Y R, Lee T S, Leem J H, Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO. Appl. Phys. Lett, 2003, 83(19):4032~4035.
    5 Tsukazaki A, Ohtomo A, Onuma T et al, Repeated temperature modulation epitaxy for p-type doping and light-emtting diode based on ZnO, Nature Materials, 2005, 4: 42~46.
    6 Ryu YR, Kim W J, White H W, Fabrication of homostructural ZnO p-n junctions. J. Crystal. Growth, 2000, 219: 419~422.
    7 Jeong T S, Han M S, Youn C J et al, Raman scattering and photoluminescence of As ion-implanted ZnO single crystal. J. Appl. Phys, 2004, 96(1): 175~179.
    8 Aoki T, Hatanaka Y, Look D C, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett, 2000, 76(22): 3257~3258.
    9 Ip K, Heo Y W, Norton D P et al, Zn0.9Mg0.1O/ZnO p-n junctions grown by pulsed-laser deposition. Appl. Phys. Lett, 2004, 85(7): 1169~1171.
    10 Zhuge F, Zhu L P, Ye Z Z et al, ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO. Appl. Phys. Lett, 2005, 87(9): 092103-1~-3.
    11 Bang K H, Hwang D K, Park M C et al, Formation of p-type ZnO film on InP substrate by phosphor doping. Appl. Sruf. Sci, 2003, 210: 177~182.
    12 Hwang D K, Bang K H, Jeong M C et al, Effects of RF power variation on properties of ZnO thin films and electrical properties of p-n homojunction. J. Crytal. Growth, 2003, 254: 449~455.
    13 Vaudo R P, Goepfert I D, Mous T D et al, Characteristics of light-emitting diodes based on GaN p-n junctions grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys, 1996, 79 (5): 2779~2783.
    14 Piprek J, Katon T, DenBaars S P et al, 3D Simulation and Analysis of AlGaN/GaN Ultraviolet Light Emitting Diodes. Proceedings of SPIE, 2004, 5366: 127~136.
    15 Jeon H, Ding J, Patterson W et al, Blue-Green injection laser diodes in In(Za,Cd)Se/ZnSe quantum wells. Appl. Phys. Lett, 1991, 59(27): 3619~3621.
    16 Heo Y W, Kwon Y W, Li Y et al, p-type behavior in phosphorus-doped (Zn,Mg)O device structures. Appl. Phys. Lett, 2004, 84(18): 3474~3476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700