SnO_2纳米线的制备及其晶体管应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有体相材料所不具备的新奇的物理与化学性质引起了人们广泛的研究和关注。本文报道采用基于气-液-固(Vapor-Liquid-Solid)生长机理的气相输运法制备单晶SnO_2纳米线,结合原位调控掺杂思想,制备了Sb掺杂SnO_2纳米线。用高分辨率透射透射电子显微镜进行结构表征发现SnO_2纳米线有很好的单晶性。研究发现SnO_2纳米线的电学特性通过掺杂能够得到很好的调控。纯SnO_2纳米线与Ti/Au电极之间表现出明显的肖特基接触,适合用作紫外光探测;轻掺杂的SnO_2纳米线适合用于晶体管的沟道,器件表现出优越的晶体管特性;重掺杂的SnO_2纳米线是一种良好的透明导体。
     本论文发展金丝掩模法制备Sb轻掺杂的SnO_2纳米线场效应晶体管。在没有热退火和表面修饰的前提下,纳米线的表面损伤能够很好的避免,这种方法适合于一维无机纳米材料的电学以及光电子学的研究。电学测量表明制备的晶体管具有高性能n型晶体管特性,在转移曲线中没有回滞现象。单根纳米线晶体管的开关比为106,亚阈值斜率为240mV/decade,迁移率为12.4cm~2/Vs。与传统的一维纳米材料场效应晶体管制备技术相比有如下优点:a.简单。不需要任何光刻工具,所需设备和操作过程相对传统微纳加工技术简单。b.有效。电极制备过程中没有辐射损伤和有机污染(电子束曝光和光刻都要用光刻胶,聚焦离子束存在有机污染),也没有物理接触,有利于获得高性能器件。c.选择性好。制备过程中可以先选择感兴趣的纳米线,然后在感兴趣的纳米线的合适区域制备器件。d.灵活。制备器件的构型(如对称电极结构或非对称电极结构)和沟道长度可调。
     与传统的硅基薄膜晶体管相比,纳米线薄膜晶体管的主要优点在于器件制作过程与半导体沟道材料生长过程的分离,不需要考虑器件的衬底承受温度而获得单晶沟道材料。本论文利用金丝掩模法制备了Sb轻掺杂的SnO_2纳米线薄膜晶体管,该器件表现出较好的晶体管特性,开关比达到10~5,亚阈值摆幅为2.3V/decade。
Nano-materials have gained a tremendous amount of attention due to their novel physical and chemical properties which are different from their corresponding bulk materials. The thesis reports fabrication of undoped SnO_2 nanowire and in-situ doping of Sb element into SnO_2 nanowires via Chemical Vapor Deposition (CVD) method with Vapor-Liquid-Solid (VLS) technique. High Resolution Transimission Electron Microscopy (HRTEM) was applied to characterize the structure of one-dimensional SnO_2 nanostructures, and good crystallinity was proved by HRTEM. The electrical characteristics of SnO_2 nanowires can be reasonable controlled through doping. The undoped SnO_2 nanowires show Schottky contact to Ti/Au electrodes in air and are suitable for the detection of UV light. Lightly Sb-doped nanowires are promising as high-performance nanowires transistors, and degenerately Sb-doped SnO_2 nanowires are transparent metallic conductors.
     A gold microwire mask method is developed for the fabrication of transistors (FETs) based on single lightly Sb-doped SnO_2 nanowires. Damage and disadvantage touch of the nanowire’s surface can be avoided without any thermal annealing and surface modification, which is very convenient for the fundamental electrical and photoelectric characterization of one-dimensional inorganic nanomaterials. Transport measurements of the individual SnO_2 nanowire device demonstrate the high-performance n-type field effect transistor characteristics without significant hysteresis in the transfer curves. The current on/off ratio and the subthreshold swing of the nanowire transistors are found to be 106 and 240mV/decade, respectively. Compared to traditional 1D inorganic nanomaterials FETs fabrication techniques, the advantages of our fabrication method have been listed as follows: a) No lithographic tools are used, it is very appropriate to fundamental research because the entire process of fabrication method is very simple and little equipment is needed. b) In the process of the electrode deposition without radiation damage, which benefit to improve the device performance. c) Any nanowire can be flexibly selected and used for fabricating functional devices in specific area which we are interested in. d) The configuration of the nanodevice (such as symmetrical or asymmetrical source/drain electrodes) and the length of active channels can be effectively adjusted.
     The key advantage of the nanowires thin film transistors (TFTs) approach compared to conventional TFT techniques is the clear separation of the device fabrication stage from the material growth stage, such that there is no longer need to be concerned with compatibility with the device substrate during growth, and high growth temperature can be used to obtain crystalline materials. The gold microwire mask method was also employed for the fabrication of SnO_2 nanowires TFT, this device shows high-performance, the current on/off ratio and subthreshold are found to be 10~5, and 2.3V/decade.
引文
[1] Feynman R P. There's plenty of room at the bottom. California: Engineering and Science, 1960:12-29
    [2]张立德,牟季美著.纳米材料和纳米结构.北京:科学出版社,2001:52-63
    [3]薛增泉,刘惟敏.纳米电子学.北京:电子工业出版,2003:9-27
    [4]赵于文.低温等离子体在化学合成中的应用.现代化工,1991, 9(12):48-52
    [5] Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier J C. Root-growth mechanism for single-wall carbon nanotubes. Physical Review Letters, 2001, 87(27):27504-27507
    [6] Hirata T, Satake N, Jeong G H, Kato T, Hatakeyama R, Motomiya K, Tohji K. Magnetron-type radio frequency plasma control yielding vertically well-aligned carbon nanotube growth. Applied Physics Letters, 2003, 83(6):1119-1121
    [7] Zhu L B, Xu J W, Xiu Y H, Sun Y Y, Hess D W, Wong C P. Electrowetting of aligned carbon nanotube films. The journal of Physics Chemistry B, 2006, 110(32):15945-15950
    [8] Zheng M J, Zhang L D, Li G H, Zhang X Y, Wang X F. Ordered indium-oxide nanowire arrays and their photoluminescence properties. Applied Physics Letters, 2001, 79(6):839-841
    [9] Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P D. Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials, 2001, 13(2):113-116
    [10] Pan Z W, Dai Z, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510):1947-1949
    [11] Holmes J D, Johnstin K P, Doty R C. Control of thickness and orientation of solution grown silicon nanowires. Science, 2000, 287(5457):1471—1473
    [12] Coleman N R B, Ryan K M. The formation of dimensionally ordered germanium nanowires within mesoporous silica. Chemical Physics Letters, 2001, 343(1-2):1-6
    [13] Puntes V F, Krishnan K M, Alivisatos A P. Colloidal nanoerystal shape and size control:The case of cobalt. Science, 2001, 291(5511):2115—2117
    [14] Qin D H, Cao L.Fine magnetic properties obtained in FeCo alloy nanowirearrays. Chemical Physics Letters, 2002, 358(5-6):484-488
    [15] Lee J S, Kanga M L. Growth of zinc oxide nanowires by thermal evaporation on vicinal Si(100)substrate. Journal of Crystal Growth, 2003, 249(1-2):201-207
    [16] Zhang H Z, Kong Y C. Ga203 nanowires prepared by physical evaporation. Solid State Communications, 1999, 109(11):677-682
    [17] Peng H Y, Wang N. Control of growth orientation of GaN nanowires. Chemical Physics Letters, 2002, 359(3-4): 241-245
    [18] Karine S W, Comua D. Direct synthesis ofβ-SiC and h-BN coatedβ-SiC nanowires. Solid State Communications, 2002, 124(4):157—161
    [19]蔡晔.金属氧化物半导体气敏传感器的研究和开发进展.化工生产与技术, 1997, 2(9):29-34
    [20]彭国贤.彩色PDP显示电极的制造工艺.真空电子技术, 2005, 1(7):28-33
    [21] Zhang Y, Kolmakov A, Lilach Y, Moskovits M. Electronic Control of Chemistry and Catalysis at the Surface of an Individual Tin Oxide Nanowire. Journal of Physics Chemistry B, 2005, 109(5):1923-1929
    [22] Dattoli E N, Wan Q, Lu W. Fully Transparent Thin-Film Transistor Devices Based on SnO_2 Nanowires. Nano Letters, 2007, 7(8): 2463 -2469
    [23] Ba J H, Polleux J, Antonietti M, Niederberger M. Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Advanced Materials, 2005, 17(20):2509-2512
    [24] Peng X S, Zhang L D, Meng G W. Micro-Raman and infrared properties of SnO_2 nanobelts synthesized from Sn and SiO2 powers. Journal of Applied Physics, 2003, 93(3):1760-1763
    [25] Liu Z Q, Zhang D H, Han S, Li C, Tang T, Jin W, Liu X L, Lei B, Zhou C W. Laser ablation synthesis and electron transport studies of tin oxide nanowires. Advanced Materials, 2003, 15(20):1754-1757
    [26] Hu J Q, Ma X L, Shang N G. Large scale rapid oxidation synthesis of SnO_2 nanoribbons. The Journal of Physics Chemistry B, 2002, 106(15):3823-3826
    [27] Liu Y, Dong J, Liu M. Well-Aligned“Nano-box-beams”of SnO_2. Advanced Materials, 2004, 16(4):353-356
    [28] Zheng M J, Li G H, Zhang X Y. Fabrication and structural characterization of large scale uniform SnO_2 nanowire array embedded in anodic alumina membrane. Chemistry of Materials, 2001, 13(11):3859-3861
    [29] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystalgrowth. Applied Physics Letters, 1964, 4(5):89-90
    [30] Liu Y, Liu M. Growth of aligned square-shaped SnO_2 tube arrays. Advanced Functional Materials, 2005, 15(1):57-62
    [31]丁秉钧.纳米材料.北京:机械工业出版社,2003: 55-57
    [32] Liu C H, Yiu W C, Au F C K, Ding J X, Lee C S, Lee S T. Electrical properties of zinc oxide nanowires and intramolecular p-n junctions. Applied Physics Letters, 2003, 83(15):3168-3170
    [33] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279(5348):208-211
    [34] Shi W S, Zheng Y F, Wang N, et al. A general synthetic route toⅢ-Ⅴcompound semiconductor nanowires. Advanced Matericals, 2001, 13(8):591-594
    [35] Yu D P, Bai Z G, Wang J J, Zou Y H, Qian W, Fu J S, Zhang H Z, Ding Y, Xiong G C, You L P, Xu J, Feng S Q. Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires. Physics Review B, 1999, 59(1):2498-2501
    [36] Moore G E, Gramming more components onto integrated circuits. Proceeding of the IEEE, 1998, 86(7):82-88
    [37] Lieber C M. Nanowires take the prize. Acta Metallurgica, 1995, 3(3):367-371
    [38] Lilienfeld J E. Method and apparatus for controlling electric current. US Parent, 1930, 16(2): 1745175
    [39] Shockley W, Pearson G L. Modulation of conductance of thin film of semi-conductors by surface charges. Physics Review, 1948, 74(5):232-233
    [40] Dacey G C, Ross I M. Unipolar field effect transistor, Proceedings IRE, 1953, 41(2):970-972
    [41] Moon T H, Jeong M C, Oh B Y, Ham M H, Jeun M H, Lee Y W, Myoung J M. Chemical surface passivation of HfO2 films in a ZnO nanowires transistors. Nanotechnology, 2006, 17(9):2116-2121
    [42] Cha H Y, Wu H Q, Chandrashekhar M, Choi Y C, Chae S, Koley G, Spencer M G. Fabrication and characterization of pre-aligned gallium nitride nanowire filed effect transistors. Nanotechnology, 2006, 17(5):1264-1271
    [43] Cha H Y, Wu H Q, Chae S D, Spencer M G. Gallium nitride nanowire nonvolatile memory device. Journal of Applied Physics, 2006, 100(2):024307-1-3
    [44] Gnani E, Marchi A, Reggiani S, Rudan M, Baccarani G. Quantum mechanicalanalysis of the electrostatics in silicon nanowire and carbon nanotube FETs. Solid-State Electroncis, 2006, 50(4):709-715
    [45] Lauhon L J, Gudiksen M S, Wang D, Lieber C M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature, 2002, 420(6911):57-61
    [46] Min B, Lee J S, Cho K, Hwang J W, Kim H. Semiconductor nanowires surrounded by cylindrical Al2O3 shells. Journal of Electronic Materials, 2003, 32(11):1344-1348
    [47] Guo J, Wang J, Polizzi E, Datta S, Lundstrom M. Electrostatics of nanowire transistors. IEEE transaction on nanotechnology, 2003, 2(4):329-334
    [48] Huang Y, Duan X F, Cui Y, Lauhon L J, Kim K H, Lieber C M. Logic gates and computation from assembled nanowire building blocks. Science, 2001, 294(5545):1313-1317
    [49] Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545):1317-1320
    [50] Lieber C M. The incredible shrinking circuits. Scientific American, 2001, 285(9):50-58
    [51] Huang Y, Duan X F, Cui Y. Gallium nitride nanowire nanodevices. Nano Letters, 2002, 2(2):101-104
    [52] Park W L, Kim J S, Yi G C, Lee, H J. ZnO nanorods logic circuits. Advanced Materials, 2005, 17(11):1393-1397
    [53] Cui Y, Zhong Z, Wang D, Wang W U, Lieber C M. High performance silicon nanowire field effect transistors. Nano Letters, 2003, 3(2):149-152
    [54] Wang D, Wang Q, Javey A, Tu R, Dai H. Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielectrics. Applied Physics Letters, 2003, 83(12):2432-2434
    [55] Cheng Y, Xionga P, Fields L et al. Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors. Applied Physics Letters, 2006, 89(9): 093114-1-3.
    [56] Keem K, Jeong D Y, Kim S. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. Nano Letters, 2006, 6(7):1454-1458
    [57] Ju S, Janes D B, Lu G, Facchetti A, Marks T J. Effects of bias stress on ZnO nanowire field-effect transistors fabricated with organic gate nanodielectrics. Applied Physics Letters, 2006, 89(19):193506-1-3
    [58] Ng H T, Han J, Yamada T, Nguyen P, Chen Y P, Meyyappan. Single crystalnanowire vertical surround-gate field-effect transistor. Nano Letters, 2004, 4(7):1274-1252
    [59] Li Y, Xiang J, Qian F, Gradecak S, Wu Y, Yan H, Blom D A, Lieber C M. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Letters, 2006, 6(7):1468-1473
    [60] Zhang L, Tu R, Dai H. Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field effect transistors. Nano Letters, 2006, 6(12):2785-2789
    [61] Lind E, Persson A I, Samuelson L, Wernersson L E. Improved substhreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Letters, 2006, 6(9):1842-1846
    [62] Liu Y, Liu M L. Growth of aligned square-shaped SnO_2 tube arrays. Advanced Functional Materials, 2005, 15(1):57-62
    [63] Dai Z R, Pan Z W, Wang Z L. Growth and structure evolution of novel tin oxide diskettes. Journal of the American Chemical Society, 2002, 124(29):8673-8680
    [64] Cheng B, Russell J M, Shi W S, Zhang L, Samulski E T. Large scale, solution phase growth of single crystalline SnO_2 nanorods. Journal of the American Chemical Society, 2004, 126(19):5972-5973
    [65] Huang J, Lu A, Zhao B, Wan Q. Branched growth of degenerately Sb-doped SnO_2 nanowires. Applied Physics Letters, 2007, 91(7):073102-1-3
    [66] Wan Q, Dattoli E N, Lu W. Transparent metallic Sb-doped SnO_2 nanowires. Applied Physics Letters, 2007, 90(22):222107-1-3
    [67] Wan Q, Huang J, Xie Z, Wang T, Dattoli E N, Lu Wei. Branched SnO_2 nanowires on metallic nanowire backbones for ethanol sensors application. Applied Physics Letters, 2008, 92(10):102101-1-3
    [68] Wan Q, Dattoli E, Lu W. Doping-dependent electrical characteristics of SnO_2 nanowires. Small, 2008, 4(4):451-454
    [69] Sun J, Tang Q, Lu A, Jiang X, Wan Q. Individual SnO_2 nanowire transistors fabricated by the gold microwire mask method. Nanotechnology, 2009, 20(25):255202-1-4
    [70] Kim D, Kim Y K, Park S C, Ha J S, Huh J, Na J, Kim G T. Photoconductance of aligned SnO_2 nanowire field effect transistors. Applied Physics Letters, 2009, 95(4):043107-1-3
    [71] Duan X, Lieber C M. Laser-assisted catalytic growth of single crystal GaNnanowires. Journal of American Chemistry Society, 2000, 122(1):188-189
    [72] Duan X, Lieber C M. General synthesis of compound semiconductor nanowires. Advanced Materials, 2000, 12(4):298-302
    [73] Francis T K, Ueda A, Aga R. Annealing effects on the photoluminescence and morphology of ZnO nanowires. Physica Status Solid Current Topics in Solid State Physics, 2006, 3(8):3573-3576
    [74] Prokes S M, Park H D, Glembochi O J. Growth and characterization of single crystal InAs nanowire arrays and their application to plasmonics. Nanomaterials Synthesis and Integration for Sensors, Electronics, Photonics, and ElectroOptics, 2006, 6370(34):87-96
    [75] Chan S K, Liu N, Cai Y. Molecular beam epitaxy grown ZnSe nanowires. Journal of Electronic Materials, 2006, 35(6):1246-1250
    [76] Cimalla V, Foerster C, Cengher D. Growth of AlN nanowires by metal organic chemical vapour deposition. Physica Status Solidi Basic Solid State Physics, 2006, 243(7):1476-1480
    [77] Ng D K, Tan L S, Hong M H. Synthesis of GaN nanowires on gold-coated substrates by pulsed laser ablation. Current Applied Physics, 2006, 6(3):403-406
    [78] Taraci J L, Clement T, Dailey J W. Ion beam analysis of VLS grown Ge nanostructures on Si. Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials and Atoms, 2006, 242(12):205-208
    [79] Wang B, Yang Y H, Xu N S, Yang G W. Mechanisms of size-dependent shape evolution of one-dimensional nanosturucture growth. Physical Review B, 2006, 74(23):235305-1-6
    [80] Lo N R, Malandrino G, Fiorenza P et al. Template-free and seedless growth of Pt nanocolumns-Imaging and probing their nanoelectrical properties. Acs Nano, 2007, 1(3): 183-190.
    [81] Durkan C, Welland M E. Nanometer scale electrical characterization of artificial mesostrctures. Critical reviews in Solid State and Materials Science, 2000, 25(1):1-28
    [82] Lao C S, Liu J, Gao P X, Zhang L Y, Davidovic D, Tummala R, Wang Z L. ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Letters, 2006, 6(2):263-266
    [83] Huang Y, Duan X, Wei Q, Lieber C M. Directed assembly of one dimensionalnanostuctures into functional networks. Science, 2001, 291(5504):630-633
    [84] Cai L T, Skulason H, Kushmerick, Pollack S K, Naciri J, Shashidhar R, Allara D L, Mallouk T E, Mayer T S. Nanowire-based molecular monolayer junctions: synthesis, assembly, and electrical characterization. The Journal of Physical Chemistry b, 2004, 108(9):2827-2832
    [85] Keem K, Kang J, Yoon C, Yeom D, Jeong D Y, Moon B M, Kim S. A fabrication technique for top gate ZnO nanowire field-effect transistors by a photolithography process. Microelectronic Engineering, 2007, 84(5-8):1622-1626
    [86] Tang Q, Li L, Song Y, Liu Y, Li H, Xu W, Liu Y, Hu W, Zhu D. Photoswitches and phototransistors from organic single crystalline sub-micro/nanometer ribbons. Advanced Materials, 2007, 19(18):2624-2628
    [87] Tang Q, Tong Y, Li H, Li Z, Li L, Hu W, Liu Y, Zhu D. High-performance air-stable bipolar field-effect transistors of organic single-crystalline ribbons with an air-gap dielectric. Advanced Materials, 2008, 20(8):1511-1515
    [88] Tang Q, Jiang L, Tong Y, Li H, Liu Y, Wang Z, Hu W, Liu Y, Zhu D. Micrometer-and nanometer-sized organic single-crystalline transistors. Advanced Materials, 2008, 20(15):2974-2951
    [89] Tang Q, Tong Y, Li H, Hu W. Air/vacuum dielectric organic single crystalline transistors of copper-hexadecafluorophthalocyanine ribbons. Applied Physics Letters, 2008, 92(8):083309-1-3
    [90] Tang Q, Li H, Liu Y, Hu W. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. The Journal of American Chemical Society, 2006, 128(45):14634-14639
    [91] Tang Q, Li H, Song Y, Xu W, Hu W, Jiang L, Liu Y, Wang X, Zhu D. In situ patterning of organic single-crystalline nanoribbons on a SiO2 surface for the fabrication of various architectures and high-quality transistors. Advanced Materials, 2006, 18(22):3010-3014
    [92] Ma R M, Dai L, Huo H B, Yang W Q, Qin G G, Tan P H, Huang C H, Zheng J. Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices. Applied Physics Letters, 2006, 89(20):203102-1-3
    [93] Zhou X, Dayeh S A, Aplin D et al. Direct observation of ballistic and drift carrier transport regimes in InAs nanowires. Applied Physics Letters, 2006, 89(53): 53113-1-3
    [94] Arnold M S, Avouris P, Pan Z W, Wang Z L. Field-effect transistors based on single semiconducting oxide nanobelts. The Journal of Physical Chemistry B, 2003, 107(3):659-663
    [95] Chang P C, Fan Z, Chien C J, Stichtenoth D, Ronning C. High-performance ZnO nanowire field-effect transistors. Applied Physics Letters, 2007, 89(13):133113-1-3
    [96] Ju S, Lee K, Janes B, Yoon M H, Facchetti A, Marks T J. Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assemble organic gate nanodielectrics. Nano Letters, 2005, 5(11):2281-2286
    [97] Moon T H, Jeong M C, Oh B Y, Ham M H, Jeun M H, Lee W Y, Myoung J M. Chemical surface passivation of HfO2 films in a ZnO nanowires transistor. Nanotechnology, 2006, 17(9):2116-2121
    [98] Kwon Y, Li Y, Heo Y W, Jones M, Holloway P H, Norton D P. Enhancement-mode thin-film transistor using phosphorus-doped (Zn, Mg)O channel. Applied Physics Letters, 2004, 84(14):2685-2687
    [99] Centurioni E, Lencinella D. Role of front contact work function on amorphous silicon/crystalline silicon heterojunction solar cell performance.IEEE Electron Device Letters, 2003, 24(3):177-179
    [100] Reuss R H et al. Macroelectronics: Perspectives on technology and application. Proceedings of the IEEE, 2005, 93(7):1239-1256
    [101] Shur M S, Wilson P, Urban D. Electronics on unconventional substrates-Electrotextiles and gaint-area flexible circuits. Material Research Society, 2002, 736(2):7-15
    [102] Ucjikoga S. Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays. Material Research Society Bulletin, 2002, 27(11):881-886
    [103] Rogers J A et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proceeding of the National Academy of Sciences, 2001, 98(9):7835-4840
    [104] Duan X, Huang Y, Cui Y, Lieber C M. Nanowire nanoelectronics assembled from the bottom-up. American Scientific Publishers, 2003,52(8) 199-227
    [105] Jiang X, Xiong Q, Nam S, Qian F, Li Y, Lieber C M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Letters, 2007, 7(10):3214-3218
    [106] Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen P L. Highperformance electrolyte gated carbon nanotube transistors. Nano Letters, 2002, 2(8):869-872
    [107] Duan X, Huang Y, Wang J, Cui Y, Lieber C M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic device. Nature, 2001, 409(6816):66-69
    [108] Huang Y, Duan X, Wei Q, Lieber C M. Directed assembly of one-dimensional nanostructures into functional networks. Science, 2001, 291(5504):630-633
    [109] Tao A et al. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy. Nano Letters, 2003, 3(9):1229-1233
    [110] Whang D, Jin S, Wu Y, Lieber C M. Large-scale hieearchical doctor nanowires and nanoribbons. Nature, 2003, 3(9):1255-1259
    [111] Duan X. Nanowire thin-film transistors: A new avenue to high-performance macroelectronics. IEEE Transactions on Electron Devices, 2008, 55(11):3056-3061
    [112] Suh D I, Lee S Y, Hyung J H, Kim T H, Lee S K. Mutiple ZnO nanowires field-effect transistors. The Journal of Physical Chemistry C, 2008, 112(4):1276-1281
    [113] Fan Z, Ho J C, Jacobson Z A, Yerushalmi R, Alley R L, Razavi H, Javey. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Letters, 2008, 8(1):20-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700