纳米金属力学性能的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用基于分析型嵌入原子势的分子动力学方法,模拟了体心立方和面心立方两种纳米金属材料在不同外载作用下的力学性能,还同时考虑了应变率、温度和截面尺寸对其力学性能的影响。通过对应力-应变曲线、原子位置变化图、原子能量变化曲线的研究,从微观尺度上解释了纳米材料产生的独特力学性能,拓宽了对纳米材料性能的理解。
     对FCC结构的纳米Al丝的研究表明:在拉伸负载下,应力曲线可以分为弹性变形和塑性变形两个阶段。位错滑移是变形的主要原因,而原子空位的形成和扩展则造成了纳米丝的断裂。在绝对零度下,应变率对应力曲线的弹性变形阶段没有影响,而只影响塑性变形阶段。屈服强度随着应变率的升高而增大,当应变率大于1×108S-1时,纳米丝在断裂过程中出现了局域多重颈缩。温度升高,原子热运动加强,屈服强度和弹性模量降低。由于本征应力的影响,截面越小,弹性模量越低。在压缩负载下,应力曲线出现了应变强化阶段,强化值随着应变率的升高而增大;应变率对应力曲线的弹性阶段也没有影响,弹性模量和屈服强度都保持不变。与拉伸负载相比,压缩负载下的弹性模量和屈服强度要小的多,表现出明显的非对称性。
     对BCC结构的纳米a-Fe的研究表明:纳米铁丝在拉伸过程中出现了滑移带,并沿<010>方向发生了延性断裂;屈服强度和断裂强度随着应变率的升高而增大,而弹性模量基本保持不变;温度的升高则使弹性模量、屈服强度和断裂强度都降低;随着截面尺寸的增大,屈服强度逐渐降低,但弹性模量和断裂强度逐渐增大。在压缩负载下,随着应变率的增大,屈服强度、弹性模量等物理量也随之增大,但相应值远大于拉伸负载。纳米丝在拉伸/压缩负载下的力学性能表现出的这种非对称性,主要是由于变形时不同滑移系发生了滑移。
     纳米铁薄膜在拉伸过程中发生了沿{110}<111>方向的解理断裂。孔洞的存在对薄膜拉伸性能的影响非常明显,弹性模量、屈服强度、断裂强度都随着孔洞原子所占比例的增大而减小。其中,断裂强度降低得最为剧烈,有孔薄膜的断裂强度只是无孔薄膜断裂强度的30%。有孔薄膜的变形破坏均从孔洞处开始,随着应变的增加,孔洞处最先开始破裂,最终导致整个材料的断裂。
     由于表面效应和初始应力的作用,三种结构的纳米铁材料在拉伸过程中表现出不同的变形破坏。纳米丝的变形破坏从表面的颈缩开始,逐步向内部扩展;纳米薄膜则是在表面和内部同时产生空位,互相扩展:纳米块体是从内部产生空位,然后向表面扩展。在纳米薄膜和纳米块体的拉伸过程中,还出现了应力平台,这可能与所施加的边界条件和自由表面有关。
The mechanical properties of two kinds of nano-metal under different external load were studied by molecular dynamics(MD) simulation, it's based on the analytical embedded atom potential, the effect of strain Tate、temperture、cross section size of mechanical properties were studied in detail. It explain the unique mechanical properties of nano-metal in microscopic scale by studing the strain-stress curve, atomic location map, atomic energy cure,it's also develops the insights into properties of nanometer materials.
     The simulation results of face centered nano crystal aluminum wire show that:during the tensile load, dislocation slip is the main cause of the deformation and expansion of atomic vacancies are created nanowire fracture. At absolute zero temperature, the strain rate only effect the plastic deformation, the yield strength increased with the increase of strain rate. When the strain rate is greater than 1×108s-1, there will be a delocalized multiple necking during the breaking process. The yield strength and elastic modulus will decrease with the temperature increased. Due to the intrinsic stress, the smaller cross section size, the lower elastic modulus. In the compression load, the strain rate also did not affect the elastic stage, the elastic modulus and yield strength will remain the same when strain rate increased. The magnitude of the elastic modulus and yield strength is much larger in tension versus compression, it showed a significant asymmetry.
     The research result of the body centered of the a-Fe nano crystals indicate that:shear band was observed and the ductile fracture was taken place along<010> direction during the stretching agenda. The yield strength and fracture strength will increases with increasing strain rate, while the elastic modulus remained unchanged; with the increasing of temperature, the elastic modulus, yield strength and fracture strength decreases; As the cross section size increased, the yield strength will decrease, the Young's modulus and fracture strength will increase correspondingly, In the compression load, with the strain rate increases, the yield strength, elastic modulus and fracture strength also increased, but much larger than the corresponding tensile load value. This asymmetry of mechanical properties is primarily due to different slip system occurred during the tension and compression yielding.
     Nano-films shown a cleavage fracture during the stretching process which occurred along the {110}<111> direction. The tensile properties of nano-films is very sensitive to the presence of holes, the elastic modulus, yield strength and fracture strength decreased with the increase of the void volume fraction, especially for the fracture strength, which reduced 70%. The deformation and destruction process were occurred from the hole of the nano-iron films with a hole. As the strain increases, the holes ruptured, which resulted in the material fracture.
     Due to the initial stress and surface effects, three kinds of iron nanometer materials showed different deformation mechanism during the tensile process. Nanowires deformation started from the surface of the neck, and gradually extended to the interior; nano-films is also occurred void in the surface and interior space, each extension; nano-block is generated from within the space, and then extended to the surface. In the nano-films and nano-block of the drawing process, there was even a stress plateau, which may be imposed by the boundary and free surface.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].第一版.北京:科学出版社,2001:1-19.
    [2]王中林主编,曹茂盛,李金刚译.纳米材料表征[M].第一版.北京:化学工业出版社,2005:1-7.
    [3]李玲,向航.功能材料与纳米技术[M].第一版.北京:化学工业出版社,2002,1-17.
    [4]Feynman R. There's plenty of room at the bottom[J]. Caltech's Engineering and Science,1960, (23):22.
    [5]Kubo R. Generalized Cumulant Expansion Method[J]. Journal of the Physical Society of Japan, 1962,17(7):1100-1120.
    [6]Benjamin J S. Dispersion strengthened superalloy by mechanical alloying[J].Metallurgical and Materials Transaction B,1970,1(10):2943-2951.
    [7]Gleiter R. On the structure of grain boundaries in metals[J]. Material Science and Engineering, 1982,52(2):91-131.
    [8]张邦维.纳米材料物理基础[M].第一版.北京:化学工业出版社,2009:4-8,151-157.
    [9]白春礼.纳米科技及其发展前景[J].科学通报,2001,46(2):89-92.
    [10]徐云龙,赵崇军,钱秀珍.纳米材料学概论[M].第一版.上海:华东理工大学出版社,2008,15-20,185-197.
    [11]Meyers M A. Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Progress in Materials Science,2006,51(4):427-556.
    [12]黄丹.纳米金属单晶力学行为和力学性能及其尺度效应的分子动力学研究[D].杭州:浙江大学博士学位论文,2005:5-12,64-66.
    [13]杨吉新,张宝魁,左生容.纳米力学问题与计算方法[J].武汉理工大学(交通科学与工程版),2004,28(4):504-507.
    [14]杨卫,马新玲,王洪涛等.纳米力学进展[J].力学进展,2002,32(2):161-173.
    [15]张田忠,郭万林.纳米力学的数值模拟方法[J].力学进展,2002,32(2):175-188.
    [16]Kim H S, Bush M B. THE EFFECTS OF GRAIN SIZE AND POROSITY ON THE ELASTIC MODULUS OF NANOCRYSTALLINE MATERIALS[J], NanoStructured Materials,1999, 11(3):361-367.
    [17]Schwaiger R, Moser B, Dao M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J]. Acta Materialia,2003,51(17):5159-5172.
    [18]Sharma.P, Ganti.S. On the grain-size-dependent elastic modulus of nanocrystalline materials with and without grain-boundary sliding[J]. Journal of Material Research,2003,18(8):1823-1826.
    [19]Eim.J.Y, Greer J R.. Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale[J]. Acta Mater,2009,5(17):5425-5253.
    [20]Stephane Cuenot, Christian Fretigny, Sophie Demoustier-Champagne,et. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy [J].
    Physical Review B,2004,69(14):165410(5).
    [21]Lu L, Sui M, Lu K. Superplastic Extensibility of Nanocrystalline Copper at Room Temperature [J]. Science,2000,287(5457):1463-1466.
    [22]Rapaport D. The Art of Molecular Dynamics Simulation[M]. Second Edition. New York: Cambridge University Press,2004:1-10
    [23]张跃,谷景华,尚家香.等.计算材料学基础.[M].第一版.北京:北京航空航天大学出版社,2007:83-103,114-117,186.
    [24]陈舜麟.计算材料科学[M].第一版.北京:化学工业出版社,2005:69-71,105-110,125-131,177-188.
    [25]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].第一版.北京:化学工业出版社,2007,69-74,79-84.
    [26]Shifang Xiao, Wangyu Hu. Molecular dynamics simulation of grain growth of nanocrystalline Ag[J]. Journal of Crystal Growth,2006(286):512-517.
    [27]Yu-Hua Wen, Zi-Zhong Zhu, Ruzeng Zhu,et. Size effects on the melting of nickel nanowirs:a molecular dynamics study[J]. Physica E,2004(25):47-54
    [28]Harold S.Park, Ken Gall, Jonathan A.Zimmerman. Deformation of FCC nanowires by twinning and slip[J]. Journal of the Mechanical and Physical of Solids,2006(54):1862-1881.
    [29]李霆,杨小震.多嵌段高分子的溶解性与分子形状的蒙特卡罗模拟[J].高分子学报,1999(5):581-587.
    [30]佟铭明,莫春利,李殿中,等.纯铜动态再结晶的Monte Carlo法模拟[J].金属学报,2002,38(7):745-749.
    [31]Karin Lin, Chrzan D C. Kinetic Monte Carlo simulation of dislocation dynamics[J]. Physical Review B,1999,60(6):3799-3805
    [32]Peifeng Zhang, Xiaoping Zheng,Suoping Wu, et al. Kinetic Monte Carlo simulation of Cu thin film growth[J]. Vacuum,2004(72):405-410.
    [33]Daw M S, Baskes M I. Embedded atom method derivation and application to impurities, surface, and other defects in metals[J]. Physical Review B,1994,29(12):8486-8495.
    [34]Finnis M W, Sinclair J E. A simple empirical n-body potential for transition-metals[J]. Philosophic Magazine A,1984,50(1):45-55.
    [35]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用[M].第一版.湖南:湖南大学出版社,2003:70-83,243-255.
    [36]Johnson.R.A. Analytic nearest-neighbor model for fcc metals[J].Physical Review B,1988,37(8): 3924-3931.
    [37]Baskes.M.I, Application of the Embedded-Atom Method to Covalent Materials:A Semiempirical Potential for Silicon[J].Physical Review Letter,1987,59(23):2666.
    [38]Wangyu Hu, Bangwei Zhang, Gao F,et al. Analytic modified embedded atom potential for HCP metals[J] Journal of Physics:Condensed Matter,2001,13(6):1193-1213.
    [39]胡望宇,张邦维,黄伯云.分析型EAM模型的发展现状与展望[J].稀有金属材料与工程,1999,28(1):1-4.
    [40]肖时芳.纳米结构金属及合金热力学性质的原子模拟[D].湖南:湖南大学博士学位论文,2007:11-12.
    [41]汤剑峰.B2-FeAl低指数表面动力学性质的分子动力学模拟[D].湖南:湖南大学硕士论文,2008:10-12.
    [42]Verlet L. Computer 'experiment' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review,1967,159:98-103.
    [43]Swope W C, Anderson H C, Berens P H, et al. A computer simulation method for the formation of physical clusters of molecules:application to small water cluster[J]. Journal of Chemical Physical,1982,76(1):637-649.
    [44]M.P.Allen, D.J.Tildesley. Computer Simulation of Liquids[M].First Edition. New York:Oxford University Press,1989:73-78.
    [45][德]D.罗伯.项金钟,吴兴惠.译.计算材料学[M].第一版.北京:化学工业出版社,2002:127.
    [46]樊康旗,贾建援.经典分子动力学模拟的主要技术[J].微纳电子技术,2005(3):133-138.
    [47]文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73.
    [48]Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. Journal of Chemical Physics,1984,81:511-519.
    [49]Hoover W G. Canonical dynamics:Equilibrium phase-space distribution[J].Physical Review A,1985,31:1695-1702.
    [50]Anderson H C. Molecular dynamics simulations at constant press and/or temperature[J]. The Journal of Chemical Physics,1980,72:2384-2393.
    [51]Parrinello M, Rahman A. Polymprphic transitions in single crystals:Anew molecular dynamics method[J]. Journal of Applied Physics,1981,52(12):7182-7190.
    [52]Wong E W, SheeHan P E, Lieber C M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes[J]. Science,1997,277:1971-1975.
    [53]宋丽,宋美荣,李庆华,等.纳米铝微粒制备的研究进展[J].化学研究,2008,19(2):102-105.
    [54]Lin Yuan, Debin Shan, Bin Quo. Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum[J]. Journal of Material Processing Technology.2007(184):1-5.
    [55]Y.T.Zhu, X.Z.Liao, X.L.Wu. Deformation Twinning in Bulk Nanocrystalline Metals Experimental Observations[J]. Twinning in Nano-metals.2008(9):60-64.
    [56]GBilalbegovic, Metallic nanowires:multi-shelled or filled[J].Computational Materials Science, 2000, (18):333-338.
    [57]周国荣,李蓓琪,耿浩然,等.Al纳米线凝固过程的分子动力学模拟[J].物理化学学报,2007,23(7):1071-7074.
    [58]黄丹,章青,卓家寿.典型纳米单晶铝构件损伤破坏的原子模拟[J].机械强度,2008,30(4):582-585.
    [59]黄丹,陶伟明,郭乙木.分子动力学模拟单晶纳米铝丝的拉伸破坏[J].兵器材料科学与工程,2005,28(3):1-3.
    [60]Zhang WX, Wang T. J, Chen X. Effect of surface stress on the asymmetric yield strength of metal nanowires[J].Applied Physiccs,2008,103(12).
    [61]吴恒安,王秀喜,梁海戈,等.金属纳米丝力学行为研究进展[J].金属学报,2002,38(9):903-907.
    [62]梁海戈.纳米铜力学行为的分子动力学模拟[D].合肥:中国科学技术大学博士学位论文,2001:68-70.
    [63]徐州,王秀喜,梁海戈.纳米丝应变率效应的分子动力学模拟[J].固体力学学报,2003,24(2):229-234.
    [64]刘洋.纳米丝拉伸及纳米薄膜沉积过程的分子动力学模拟[D].甘肃:兰州大学硕士学位论文,2007:31-32.
    [65]Koh.S.J.A, Lee H P. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires[J]. Nonotechnology,2006(17):3451-3467.
    [66]梁海戈,王秀喜,吴恒安,等.纳米铜丝尺寸效应的分子动力学模拟[J].力学学报,2002,34(2):208-215.
    [67]程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展[J].化学进展,2006,18(1):93-99.
    [68]陈芳艳,陆敏,唐玉斌.纳米铁在水污染控制中的应用研究进展[J].工业安全与环保,2007,33(2):18-20.
    [69]Harmon D.Nine. Asymmetry of slip in fatigue of iron single crystals[J]. Scripta Metallurgica, 1970,4(11):887-891.
    [70]D.S Tomalin, C.J.McMaho Jr. On the plastic asymmetry in iron crystals[J]. Acta Metallurgica, 1973,21(9):1189-1193.
    [71]Hu S Y, Ludwig M, Kizler P, et al. Atomistic simulations of deformation and fracture of a-Fe[J]. Modelling simulation of Material Science of Engineering,1998(6):576-586.
    [72]Jia D, Ramesh K T, Ma E. Failure mode and dynamic behavior nanophase iron under compression[J]. Scripta Materialia,2000(42):73-78.
    [73]Q Wei, Jia D, Ramesh K T.,et al.Evolution and microstructure of shear band in nanostructured Fe[J]. Applied Physics letters,2002,81(7):1240-1242.
    [74]石德珂.材料科学基础[M].第一版.北京:机械工业出版社,2003:236-240.
    [75]李永军,刘春艳.有序纳米结构薄膜材料[M].第一版.北京:化学工业出版社,2006:5-8.
    [76]K.J.Zhao,C.Q.Chen,Y.P.Shen. Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper[J]. Computational Materials Science,2009(46): 749-754.
    [77]刘光勇.有孔纳米单晶铜薄膜拉伸断裂特性的分子动力学模拟[J].机械强度,2004(26):84-86.
    [78]刘光勇.纳米单晶铜中孔洞拉伸变形的分子动力学模拟[J].原子与分子物理学报(增刊), 2004(4):377-379.
    [79]赵艳红,李英俊,杨志安,等.带孔洞的金属拉伸的分子动力学[J].计算物理,2006,23(3):343-349.
    [80]田春霞.金属纳米块体材料制备加工技术和应用[J].材料科学与工程,2001,19(4):127-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700