MnO_x微纳结构形貌控制合成及其催化动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以MnSO4为锰源,尿素为沉淀剂和十六烷基三甲基溴化铵(Cetyltrimethylammonium bromide, CTAB)为结构导向剂,通过控制合成参数,制备一系列具有不同形貌的MnOx微纳结构材料;同时,用所合成的Mn3O4八面体纳米单晶对亚甲基蓝溶液催化降解性能进行系统研究。
     借助SEM图、TEM图、XRD曲线、]Raman曲线、FT-IR曲线、N2吸附-脱附和TG-DSC等表征手段,研究了MnOx微纳结构材料的晶体形貌和结构、晶型、比表面积、孔径分布和热稳定性。微纳米晶体的尺寸和形貌可通过改变实验参数轻易控制。结果表明:水体积在200 mL时,主体是Mn3O4八面体纳米材料,其平均尺寸与反应时间有关,反应时间在8h、16h和24 h其对应的平均尺寸为151.5:nm、238.3 nm和390 nm;升高温度(150℃)和使用CTAB/PVP混合表面活性剂能相应改善八面体分散程度,而单独使用P123时,晶体结构转换成球形;改变锰源,其形貌由八面体向多面体及纳米棒形貌转变;在600℃焙烧4 h,晶体由Mn3O4转变成Mn2O3;此体系下,缺点是产率较低。水体积在180mL-190 mL时,特别是在180 mL体积水时,在85℃条件下反应,八面体产率接近100%。然而,水体积在50:mL-150 mL时,在120℃条件下反应,其形貌几乎为Mn2O3立方体微米结构。
     以Mn3O4八面体纳米晶体做催化剂,以H2O2为氧化剂,催化降解亚甲基蓝(MB)溶液。系统考察了反应温度、MB初始浓度、H2O2质量分数、催化剂用量和不同形貌Mn3O4对MB降解率的影响。结果表明,反应温度、H2O2质量分数和不同形貌Mn3O4影响最为明显,且在最佳实验条件下其降解率达到99.68%,而MB初始浓度和催化剂用量对其影响并不显著;同时,通过对反应后溶液离子色谱分析可知MB基本上转化成无机盐(SO42-和NH4+离子浓度分别为2.13μmol·L-1和6.94μmol·L-1),FT-IR曲线分析可断定亚甲基蓝中的苯环结构消失。反应结束,将体系溶液与Mn304催化剂分离,对体系溶液蒸干后固体产物的XRD曲线、EDX和SEM图分析,可知此产物为含Mn、P、O、H元素的无机盐,且其形貌随溶液pH不同发生改变。此外,多次循环使用后催化剂仍保持很高的催化活性,其降解率仍达到90%以上,并推测出其可能反应机理。
     通过对MnOx微纳米结构的系统研究,为验证这种方法的普遍性,以相同的方法对其他过渡金属氧化物纳米结构的合成进行了一系列探索性研究。在200 mL溶液体系中,以尿素为沉淀剂,CTAB为结构导向剂,加入金属盐(Co(NO3)2·6H2O,CdCl2·2.5H2O,Cu(NO3)2·3H2O),在85℃下晶化1d,并在一定温度下焙烧获得相应的纳米结构金属氧化物(Co3O4、CdO、CuO),此体系也可以用于FePO4纳米材料的合成;与此同时,采用金属离子与有机物形成金属有机配合物,再将此化合物400℃焙烧得到相应的过渡金属氧化物。
In this thesis, using surfactants as structure-directing agents, urea as precipitator, and manganese sulfate (MnSO4·H2O) as the source of manganese, a serials of micro-and nano-MnOx crystals with different morphologies and structures had been successfully synthesized by controlling synthetic parameters. At the same time, the obtained octahedral Mn3O4 nanocrystals were investigated systematically on the catalytic degradation of methylene blue (MB).
     Scanning electron microscope(SEM), transmission electron microscopy(TEM), X-ray scattering techniques(XRD), Raman, Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption and DSC-TG were used to investigate the structures and morphologies of the synthesized samples, such as crystalline, surface area, pore size distribution and thermal stability. The size and shape of the micro- and nano- crystals were easily controlled by varying the synthetic parameters. The results indicate that the average crystallite size of octahedral Mn3O4 nanocrystals is related to the reaction time in the system of 200 mL water volume, which increased from 151.5 nm to 238.3 nm and to 390 nm corresponded to the reaction times of 8 h,16, and 24 h, respectively. The octahedral Mn3O4 nanocrystals could be gradually dispersed very well by increasing reaction temperature (from 80℃to 150℃) and using CTAB/PVP as a mixture surfactant, while in the presence of P123, the nanocrystals were transformed from octahedron to sphere-like shapes. When the manganese source was changed, the octahedral nanocrystals were altered to polyhedron and nano-rods. The crystals were transformed from Mn3O4 to Mn2O3 by calcinations at 600℃for 4 h, and in our opinion, the defects of the this system is the lower morphology yield. And in the system of 180 mL, the yield of octahedral shapes was almost 100% at 85℃. However, the shapes were almost Mn2O3 micro-cubic structure at 120℃.
     It was presented that octahedral Mn3O4 was H2O2-assisted catalytic degradation of MB, which was synthesized in extremely dilute solution by soft template self-assembly. The influence on degradation of MB at reaction temperature, the initial concentration of MB, H2O2 content, catalytic loading, and different morphologies of Mn3O4 was investigated systematically. The results indicated that the most important factions involved reaction temperature, H2O2 content, and different Mn3O4 morphology. The degradation of MB was 99.68% under the optimum experiment condition, however, the initial concentration of MB and catalyst contents had no obviously influenced on the degradation. Meanwhile, the degradation products of MB dye were analyzed by ion chromatography, which contained 2.13μmol·L-1 SO42- and 6.94μmol·L-1 NH4+, and the benzene structure of MB vanished in the analysis of FT-IR. After separating the catalyst from the solution, the analysis of XRD, EDX, and SEM on solid product coming from the evaporation of reaction solution showed that it contained Mn, P,O and H, and the shapes were changed along with different pH. Moreover, the catalytic activity was still high after multiple circulation use, whose degradation was still above 90%.
     Through the system investigation of MnOx micro- and nano-structure, in order to prove the universality of the method, we have performed a series of explorative research for other transition metal oxides nanostructure in the same sys. In the sys of 200 mL water volume, we used urea as precipitator and surfactants as structure-directing agents, added some metallic salts (Co(NO3)2·6H2O, CdCl2·2.5H2O, Cu(NO3)2·3H2O), reacted at 85℃for 1 d, and obtained conresponded transition metal oxides (Co3O4, CdO, CuO) after a certain calcinations perature, which was suitable for the synthesis of FePO4 nanomaterials. Meanwhile, we used metal ions and organic materials as forming metal-organic ligands, which were calcinated at 400℃in the result of conresponded transition metal oxides.
引文
[1]张立德,牟羡季.纳米材料学[M].沈阳:辽宁科学技术出版社,1997:2-3
    [2]Lee H, Purdon A M, Chu V, et al. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Letters,2004,4(5): 995-998
    [3]Chen W J, Tsai P J, Chen Y C. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small,2008,4(4):485-491
    [4]Gao J H, Zhang W, Huang P B, et al. Intracellular spatial control of fluorescent magnetic nanoparticles. Journal of the American Chemical Society,2008,130(12): 3710-3711
    [5]Tang C C, Bando Y, Ding X X, et al. Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. Journal of the American Chemical Society,2002,124(49): 14550-14551
    [6]Mpourmpakis G, Froudakis G E. SiC nanotubes:a novel material for hydrogen storage. Nano Letters,2006,6(8):1581-1583
    [7]Takenaka S, Nomura K, Hanaizumi N, et al. Storage and formation of pure hydrogen mediated by the redox of modified iron oxides. Applied Catalysis A:General,2005, 282(1-2):333-341
    [8]Lachawiec A J, Jr, Yang R T. Isotope tracer study of hydrogen spillover on carbon-based adsorbents for hydrogen storage. Langmuir,2008,24(12):6159-6165
    [9]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews,2009,38(1):253-278
    [10]Diegelmann S R, Gorham J M, Tovar J D. One-dimensional optoelectronic nanostructures derived from the aqueous self-assembly of π-conjugated oligopeptides. Journal of the American Chemical Society,2008,130(42):13840-13841
    [11]Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature,2009,459(7245):410-413
    [12]Li Y G, Wu Y Y. Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Research,2009,2(1):54-60
    [13]Hu H, Shao M W, Zhang W, et al. Synthesis of layer-deposited silicon nanowires, modification with Pd nanoparticles, and their excellent catalytic activity and stability in the reduction of methylene blue. The Journal of Physical Chemistry C,2007,111(8): 3467-3470
    [14]Wang J, Jiang Z, Zhang Z H, et al. Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation. Ultrasonics Sonochemistry,2008,15(5):768-774
    [15]Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B,2005,109(47):22432-22439
    [16]钟顺和,陈崧哲,辛秀兰.激光促进乙烯在磷酸铁上的表面反应[J].应用化学,2002,19(1):15-17
    [17]Davies T E, Garcia T, Solsona B, et al. Nanocrystalline cobalt oxide:a catalyst for selective alkane oxidation under ambient conditions. Chemical Communications,2006, 29(32):3417-3419
    [18]Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials,2006, 18(18):2426-2431
    [19]He C, Lin Z H, He Z, et al. Metal-tunable nanocages as artificial chemosensors. Angewandte Chemie International Edition,2008,47(5):877-881
    [20]Tian B Z, Zheng X L, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449(7164):885-889
    [21]Sun Y K, Myung S T, Park B C, et al. High-energy cathode material for long-life and safe lithium batteries. Nature Materials,2009,8(4):320-324
    [22]Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature,2009, 458(7235):190-193
    [23]Nam K T, Kim D W, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science,2006,312(5775):885-888
    [24]Meduri P, Pendyala C, Kumar V, et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Letters,2009,9(2):612-616
    [25]Du N, Zhang H, Chen B D, et al. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:a highly efficient material for Li-battery applications. Advanced Materials,2007,19(24):4505-4509
    [26]Chen C, Chen W, Lu J, et al. Transition-metal phosphate colloidal spheres. Angewandte Chemie International Edition,2009,48(1):1-5
    [27]Luo Z Z, Zhang Z Z, Hu L T, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Advanced Materials,2008,20(5):970-974
    [28]Peng H L, Zhang X F, Twesten R D, et al. Vacancy ordering and lithium insertion in III2VI3 nanowires. Nano Research,2009,2(4):327-335
    [29]Wang L Y, Li P, Zhuang J, et al. Carboxylic acid enriched nanospheres of sem iconductor Nanorods for cell imaging. Angewandte Chemie International Edition,2008, 47(6):1054-1057
    [30]Zheng Q, Zhou B X, Bai J, et al. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Advanced Materials,2008,20(5): 1044-1049
    [31]Liu B, Zeng H C. Direct growth of enclosed ZnO nanotubes. Nano Research,2009,2(3): 201-209
    [32]Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry-A European Journal,2005,11(2):440-452
    [33]Yuan B, Xing L L, Zhang Y D, et al. Self-assembly of highly oriented lamellar nanoparticle-phospholipid nanocomposites on solid surfaces. Journal of the American Chemical Society,2007,129(37):11332-11333
    [34]Matsusaki M, Kadowaki K, Nakahara Y, et al. Fabrication of cellular multilayers with nanometer-sized extracellular matrix films. Angewandte Chemie International Edition, 2007,46(25):4689-4692
    [35]Zhan Y G, Cai B X, Wang B, et al. Silica cages with controllable frameworks:synthesis, structure-tailoring, and formation mechanism. Journal of Materials Chemistry,2008, 18(48):5967-5973
    [36]Oaki Y, Imai H. One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angewandte Chemie International Edition,2007,46(26):4951-4955
    [37]Cheng F Y, Chen J, Gou X L, et al. High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic Zinc powder. Advanced Materials,2005, 17(22):2753-2756
    [38]Chern G, Horng L, Lin M Z, et al. Structural and magnetic characterization of Fe3O4/Mn3O4 superlattices. Journal of Magnetism and Magnetic Materials,2000, 209(1-3):138-141
    [39]Ozkaya T, Baykal A, Kavas H, et al. A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation. Physica B,2008,403(19-20):3760-3764
    [40]郭玉刚,田庆华,郭学益.Mn3O4制备研究进展[J].金属材料与冶金工程,2008,36(2):60-64
    [41]Vazquez-Olmos A, Redon R, Rodriguez-Gattorno G, et al. One-step synthesis of Mn3O4 nanoparticles:structural and magnetic study. Journal of Colloid and Interface Science, 2005,291(1):175-180
    [42]Gillot B, Guendouzi M E, Laarj M. Particle size effects on the oxidation-reduction behavior of Mn3O4 hausmannite. Materials Chemistry Physics,2001,70(1):54-60
    [43]Gorbenkoa O Y, Graboya I E, Amelichev V A, et al. The structure and properties of Mn3O4 thin films grown by MOCVD. Solid State Communications,2002,124(1-2): 15-20
    [44]Wang W Z, Ao L. Synthesis and optical properties of Mn3O4 nanowires by decomposing MnCO3 nanoparticles in flux. Crystal Growth Design,2008,8(1): 358-362
    [45]Sinha A K, Suzuki K, Takahara M et al. Preparation and characterization of mesostructured y-manganese oxide and its application to VOCs elimination. The Journal of Physical Chemistry C,2008,112(41):16028-1603
    [46]Haq I U, Matijevic E, Akhtar K, et al. Preparation and properties of uniform coated inorganic colloidal particles.11. nickel and its compounds on manganese compounds. Chemistry of Materials,1997,9(12):2659-2665
    [47]Gibot P, Laffont L. Hydrophilic and hydrophobic nano-sized Mn3O4 particles. Journal of Solid State Chemistry,2007,180(2):695-701
    [48]Zhang W X, Yang Z H, Wang X, et al. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catalysis Communications,2006,7(6):408-412
    [49]Chen Z W, Lai J K L, Shek C H. Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 nanocrystals. Scripta Materials,2006,55(8):735-738
    [50]Wang X, Li Y D. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. Journal of the American Chemical Society,2002,124(12): 2880-2881
    [51]Zheng D S, Sun S X, Fan W L, et al. One-step preparation of single-crystalline β-MnO2 nanotubes. The Journal of Physical Chemistry B,2005,109(34):16439-16443
    [52]Portehault D, Cassaignon S, Nassif N, et al. A core-corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angewandte Chemie International Edition,2008,47(34):6441-6444
    [53]Fei J B, Cui Y, Yan X H, et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials,2008, 20(3):452-456
    [54]Tao L, Sun C G, Fan M L, et al. A redox-assisted supramolecular assembly of manganese oxide nanotube. Materials Research Bulletin,2006,41(11):2035-2040
    [55]Zheng Y H, Cheng Y, Bao F, et al. Multiple branched α-MnO2 nanofibers:a two-step epitaxial growth. Journal of Crystal Growth,2006,286(1):156-161
    [56]Zhang Y C, Qiao T, Hu X Y. Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires. Journal of Solid State Chemistry,2004, 177(11):4093-4097
    [57]Li W N, Yuan J K, Shen X F et al. Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Advanced Functional Materials,2006,16(9):1247-1253
    [58]Ding Y S, Shen X F, Gomez S, et al. Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures. Advanced Functional Materials,2006, 16(9):549-555
    [59]Cheng F Y, Zhao J Z, Song W N, et al. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorganic Chemistry, 2006,45(5):2038-2044
    [60]Yue G H, Yana P X, Yan D, et al. Solvothermal route synthesis of single-crystallinea-MnO2 nanowires. Journal of Crystal Growth,2006,294(2):385-388
    [61]Tian Z R, Tong W, Wang J Y, et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science,1997,276(5314):926-930
    [62]Malik A S, Duncan M J, Bruce P G. Mesostructured iron and manganese oxides. Journal of Materials Chemistry,2003,13(9):2123-2126
    [63]Du C S, Yun J D, Dumas R K, et al. Three-dimensionally intercrossing Mn3O4 nanowires. Acta Materialia,2008,56(14):3516-3522
    [64]Wang Y G, Cheng L, Li F, et al. High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chemistry of Materials,2007,19(8):2095-2101
    [65]Wang N, Gao Y, Gong J, et al. Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres. European Journal of Inorganic Chemistry,2008, 2008(24):3827-3832
    [66]Han Y F, Chen F X, Zhong Z Y, et al. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J. Phys. Chem. B,2006,110(48):24450-24456
    [67]Jiao F, Harrison A, Hill A H, et al. Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Advanced Materials,2007,19(22):4063-4066
    [68]Luo J Y, Zhang J J, Xia Y Y. Highly electrochemical reaction of lithium in the ordered mesoporosus α-MnO2. Chemistry of Materials,2006,18(23):5618-5623
    [69]Rockenberger J, Scher E C, Alivisatos A P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. Journal of the American Chemical Society,1999,121(49):11595-11596
    [70]Salazar-Alvarez G, Sort J, Surinach S, et al. Synthesis and size-dependent exchange bias in inverted core-shell MnO/Mn3O4 nanoparticles. Journal of the American Chemical Society,2007,129(29):9102-9108
    [71]Seo W S, Jo H H, Lee K, et al. Size-dependent magnetic properties of colloidal and MnO nanoparticles. Angewandte Chemie International Edition,2004,43(9): 1115-1115
    [72]Jiao F, Harrison A, Bruce P G. Ordered three-dimensional arrays of monodispersed Mn3O4 nanoparticles with a core-shell structure and spin-glass behavior. Angewandte Chemie International Edition,2007,46(21):3946-3950
    [73]Bilecka I, Djerdj I, Niederberger M. One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chemical Communications,2008, (7):886-888
    [74]Zhao N N, Nie W, Liu X B, et al. Shape- and size-controlled synthesis and dependent magnetic properties of nearly monodisperse Mn3O4 nanocrystals. Small,2008,4(1): 77-81
    [75]Wang D S, Xie T, Peng Q, et al. Direct termal dcomposition of mtal ntrates in otadecylamine to mtal oide nnocrystals. Chemistry-A European Journal,2008,14(8): 2507-2513
    [76]Sun X, Zhang Y W, Si R, et al. Metal (Mn, Co, and Cu) oide nnocrystals from smple formate pecursors. Small,2005,1(1):1081-1086
    [77]Nicolas-Tolentino E, Tian Z R, Zhou H, et al. Effects of Cu2+ ions on the structure and reactivity of todorokite- and cryptomelane-type manganese oxide octahedral molecular sieves. Chemistry of Materials,1999,11(7):1733-1741
    [78]Brock S L, Sanabria M, Nair J, et al. Tetraalkylammonium manganese oxide gels: preparation, structure, and ion-exchange properties. The Journal of Physical Chemistry B,2001,105(23):5404-5410
    [79]Ching S, Roark J L, Duan N G et al. Sol-gel Route to the tunneled manganese oxide cryptomelane. Chemistry of Materials,1997,9(3):750-754
    [80]Ching S, Welch E J, Hughes S M, et al. Nonaqueous sol-gel syntheses of microporous manganese oxides. Chemistry of Materials,2002,14(3):1292-1299
    [81]Ching S, Petrovay D J, Jorgensen M L, et al. Sol-gel Synthesis of layered birnessite-type manganese oxides. Inorganic Chemistry,1997,36(5):883-890
    [82]Djerdj I, Arcon D, Jaglicic Z, et al. Nonaqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties. The Journal of Physical Chemistry C,2007,111(9):3614-3623
    [83]Therese G H A, Kamath P V. Electrochemical synthesis of metal oxides and hydroxides. Chemistry of Materials,2000,12(5):1195-1204
    [84]Li Q G, Olson J B, Penner R M. Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chemistry of Materials,2004,16(18):3402-3405
    [85]Liu R, Lee S B. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. Journal of the American Chemical Society,2008,130(10):2942-2943
    [86]El-Deab M S, Ohsaka T. Manganese Oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction. Angewandte Chemie International Edition,2006,45(36):6109-6112
    [87]Zhu S M, Zhang D, Li Z Q, et al. Precision replication of hierarchical biological structures by metal oxides using a sonochemical method. Langmuir,2008,24(12): 6292-6299
    [88]Zhu S M, Zhou H S, Hibino M, et al. Synthesis of MnO2 nanoparticals confined in ordered mesoporous carbon using a sonochemical method. Advanced Functional Materials,2005,15(3):381-386
    [89]Kumar V G, Aurbuch D, Gedanken A. A comparison between hot-hydrolysis and sonolysis of various Mn(Ⅱ) salts. Ultrasonic Sonochemistry,2003,10(1):17-23
    [90]Lei S J, Tang K B, Fang Z, et al. Ultrasonic-assisted synthesis of colloidal Mn3O4 nanoparticles at normal temperature and pressure. Crystal Growth Design,2006,6(8): 1757-1760
    [91]Edwards H W, Harrison R M. Catalysis of NO decomposition by Mn3O4. Environmental Science Technology,1979,13(6):673-676
    [92]Kang M, Park E D, Kim J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A:General,2007,327(2):261-269
    [93]Marban G, Valdes-Solis T, Fuertes A B. Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4 Role of surface NH3 species:SCR mechanism. Journal of Catalysis,2004,226(1):138-155
    [94]Rudnev V S, Vasilyeva M S, Kondrikov N B, et al. Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Applied Surface Science,2005,252(5):1211-1220
    [95]Zhang Y J, Hu Q X, Hu B, et al. Preparation, characterization and application of a new kind of mesoporous composite. Materials Chemistry and Physics,2006,96(1):16-21
    [96]Baldi M, Finocchio E, Milella F, et al. Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4 Applied Catalysis B:Environmental,1998,16(1):43-51
    [97]Baldi M, Milella F, Gianguido Ramis et al. An FT-IR and flow reactor study of the selective catalytic oxy-dehydrogenation on of C3 alcohols on Mn3O4. Applied Catalysis A:General,1998,166(1):75-88
    [98]Espinal L, Suib S L, Rusling J F. Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2. Journal of the American Chemical Society, 2004,126 (24):7676-7682
    [99]Perner A, Holl K, Ilic D, et al. A new MnOx cathode material for rechargeable lithium batteries. European Journal of Inorganic Chemistry,2002,2002(5):1108-1114
    [100]Wang Y G, Wu W, Cheng L, et al. A polyaniline-intercalated layered manganese oxide nanocomposite prepared by an inorganic/organic interface reaction and its high electrochemical performance for Li storage. Advanced Materials,2008,20(11): 2166-2170
    [101]Luo J Y, Zhang J Y, Xia Y Y. Highly electrochemical reaction of lithium in the ordered mesoporosus β-MnO2. Chemistry of Materials,2006,18(23):5618-5623
    [102]张国昀,姜长印,万春荣等.以Mn3O4为前驱体的LiMn2O4及其电化学性能[J].无机材料学报,2001,16(4):667-671
    [103]孙柯,陆海纬,李达等.静电纺丝法制备氧化锰纳米丝电极及其电化学性能[J].无机材料学报,2009,24(2):357-360
    [104]Pasero D, Reeves N, West A R. Co-doped Mn3O4: a possible anode material for lithium batteries. J. Power Sources,2005,141(1):156-158
    [105]黄河宁,吕东平,黄行康等.层状二氧化锰的离子注入改性及其电化学性能的研究[J].电化学,2007,13(4):436-440
    [106]Kim T W, Park D H, Lim S T, et al. Direct soft-chemical synthesis of chalcogen-doped manganese oxide 1D nanostructures:influence of chalcogen doping on electrode performance. Small,2008,4(4):507-514
    [107]Zhang W X, Yang Z H, Wang X, et al. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catalysis Communications,2006,7(6):408-412
    [108]蔡冬呜,任南琪.不同晶型锰氧化物去除水中亚甲基蓝染料的研究[J].环境科学学报,2006,26(12):1971-1976
    [109]马子川,蒋兰宏,董丽丽等.新生二氧化锰吸附法去除水中直接大红染料[J].化工环保,2002,22(1):38-41
    [110]郭子峰,王林江,吴群英.有机废水氧化催化剂氧化铁-二氧化锰-二氧化钛/γ-氧化铝的研究[J].无机盐工业,2009,41(5):33-35
    [111]梁慧锋.⊿-MnO2的制备及其对水中Cd2+的吸附.化工环保,2007,27(3):222-226
    [112]马子川,李燕,于化江等.用Mn3O4吸附水中Cr(Ⅲ)的试验研究[J].金属矿山,2007,12(12):119-121
    [113]金圣圣,贺纪正,郑袁明等.生物氧化锰矿物对几种重金属的吸附作用[J].环境科学学报,2009,29(1):132-139
    [114]Fischer A E, Pettigrew K A, Rolison D R, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:implications for electrochemical capacitors. Nano Letters,2007,7(2): 281-286
    [115]Long J W, Rhodes C P, Young A L, et al. Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates:making mesoporous MnO2 nanoarchitectures stable in acid electrolytes. Nano Letters,2003,3(8):1155-1161
    [116]韩恩山,张小平,许寒.纳米二氧化锰超级电容器电极材料的制备及改性[J].无机盐工业,2008,40(6):34-36
    [117]Majid K, Awasthi S, Singla M L. Low temperature sensing capability of polyaniline and Mn3O4 composite as NTC material. Sensors and Actuator A,2007,135(1):113-118
    [118]Singla M L, Awasthi S, Srivastava A, et al. Effect of doping of organic and inorganic acids on polyaniline/Mn3O4 composite for NTC and conductivity behaviour. Sensors and Actuator A,2007,136(2):604-612
    [119]Singla M L, Awasthi S, Srivastava A. Humidity sensing; using polyaniline/Mn3O4 composite doped with organic/inorganic acids. Sensors and Actuator B,2007,127(2): 580-585
    [120]Xu J J, Zhao W, Luo X L, et al. A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chemical Communications,2005, (6):792-794
    [121]Li X Q, Zhou L P, Gao J, et al. Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation. Powder Technology,2009,190(3):324-326
    [122]Konstantinov K, Tournayre Y, Liu H K. In-situ fabrication and characterisation of nanostructured Mn3O4 powders for electronic and electrochemical applications. Materials Letters,2007,61(14-15):3189-3192
    [123]Ahmad T, Ramanujachary K V, Lofland S E, et al. Nanorods of manganese oxalate:a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry,2004,14(23):3406-3410
    [124]Salavati-Niasari M, Davar F, Mazaheri M. Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(Ⅱ)] complex. Polyhedron,2008, 27(17):3467-3471
    [125]Folch B, Larionova J, Guari Y, et al. Synthesis of MnOOH nanorods by cluster growth route from [Mn12O12(RCOO)16(H2O)n] (R=CH3, C2H5). Rational conversion of MnOOH into Mn3O4 or MnO2 nanorods. Journal of Solid State Chemistry,2005,178(7): 2368-2375
    [126]Yu T, Moon J, Park J, et al. Various-shaped uniform Mn3O4 nanocrystals synthesized at low temperature in air atmosphere. Chemistry of Materials,2009,21(11):2272-2279
    [127]Xu H Y, Xu S L, Li X D, et al. Chemical bath deposition of hausmannite Mn3O4 thin films. Applied Surface Science,2006,252(12):4091-4096
    [128]Apte S K, Naik S D, Sonawane R S, et al. Nanosize Mn3O4 (Hausmannite) by microwave irradiation method. Materials Research Bulletin,2006,41(3):647-654
    [129]Hu Y, Chen J F, Xue X, et al. Synthesis of monodispersed single-crystal compass-shaped Mn3O4 via gamma-ray irradiation. Materials Letters,2006,60(3): 383-385
    [130]Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. Advanced Functional Materials,2003,13(2):101-107
    [131]Shao C L, Guan H Y, Liu Y C, et al. Preparation of Mn2O3 and Mn3O4 nanofibers via an electrospinning technique. Journal of Solid State Chemistry,2004,177(7):2628-2631
    [132]An K, Lee N, Park J, et al. Synthesis, characterization, and self-assembly of pencil-shaped CoO nanorods. Journal of the American Chemical Society,2006,128(30): 9753-9760.
    [133]Gorbenkoa O Y, Graboya I E, Amelicheva V A, et al. The structure and properties of Mn3O4 thin films grown by MOCVD. Solid State Communications,2002,124(1-2): 15-20
    [134]Jia C J, Sun L D, Luo F, et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. Journal of the American Chemical Society,2008,130(50): 16968-16977
    [135]Lu X F, Zhao Y Y, Wang C. Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. Advanced Materials,2005,17(20):2485-2488
    [136]Biener J, Nyce G W, Hodge A M, et al. Nanoporous plasmonic metamaterials. Advanced Materials,2008,20(6):1211-1217
    [137]Liu B, Zeng H C. Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small,2005,1(5):566-571
    [138]Hameed B H, Ahmad A A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. Journal of Hazardous Materials,2009, 164(2-3):870-875
    [139]Deng H, Yang L, Tao G H, et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-Application in methylene blue adsorption from aqueous solution. Journal of Hazardous Materials,2009,166(2-3): 1514-1521
    [140]Zhang T Y, Oyama T, Horikoshi S, et al. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Solar Energy Materials and Solar Cells,2002,73(3):287-303
    [141]Yang S J, He H P, Wu D Q, et al. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3-xTixO4 (0≤x≤0.78) at neutral pH values. Applied Catalysis B: Environmental,2009,89(3-4):527-535
    [142]Zhang X W, Pan J H, Du A J, et al. Room-temperature fabrication of anatase TiO2 submicrospheres with nanothornlike shell for photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology A:Chemistry,2009,204(2-3): 154-160
    [143]Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of Rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B,2005,109(47):22432-22439
    [144]Hallock A J, Berman E S F, Zare R N. Ultratrace Kinetic Measurements of the Reduction of methylene blue. Journal of the American Chemical Society,2003,125(5): 1158-1159
    [145]郭玉刚,田庆华,郭学益.Mn3O4制备研究进展[J].金属材料与冶金工程,2008,36(2):60-64
    [146]Konstantinou I K, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations. Applied Catalysis B: Environmental,2004,49(1):1-14
    [147]Zhang W X, Yang Z H, Wang X, et al. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. Catalysis Communications,2006,7(6):408-412
    [148]Tang J W, Zou Z G, Ye J H. Effects of Substituting Sr2+ and Ba2+ for Ca2+ on the Structural Properties and Photocatalytic Behaviors of CaIn2O4. Chemistry of Materials, 2004,16(9):1644-1649
    [149]Houas A, Lachheb H, Ksibi M, et al. Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis B:Environmental,2001,31(2):145-157
    [150]Zhang P Q, Zhan Y G, Cai B X, et al. Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue. Nano Research,2010,3(4): 235-243
    [151]Taylor K M L., Rieter W J, Lin W B. Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging. Journal of the American Chemical Society,2008,130(44):14358-14359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700