几种新型荧光分子探针的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究分为两个阶段。第一阶段是在湖南大学“985”专项基金项目平台下重点研究了有机荧光分子探针的设计合成及性能研究;第二阶段是在国家留学基金委高水平大学研究生联合培养项目平台下重点研究了纳米荧光探针的合成、性能研究及在生物医学上的应用。
     第一部分:几种基于DPA基团的有机荧光分子探针的设计、合成及性能研究
     在第一部分中,首先概述了荧光探针研究的历史、现状和最新进展,探讨了这类电子转移反应的实际应用。分子荧光具有许多特殊性质,比如灵敏度高、响应快、可以在单分子水平上和远距离监测、易于实现人-分子之间的联系等等。同其它材料相比,有机分子有更好的可设计性和可裁接性,因此新型有机分子荧光探针的开发研究已成为人们关注的热点,设计、合成性能优异的有机分子是开发研究中的重要组成部分。我们不仅充分探讨了设计荧光分子探针时所遵循的原则性,而且更进一步强调了合成的简便性和易于向多种领域衍生的可能性。鉴于目前人们生活中对金属离子检测的迫切需要,由此本论文确定的研究目标是发展高量子产率的荧光分子探针并探讨它在多个领域的应用。本部分主要通过有机偶联的方法设计合成了几种化学荧光探针,研究了它们对不同金属离子检测的选择性以及检测的灵敏度。
     (1)芘是一种具有强荧光活性的芳香烃有机物,荧光特性和光敏感性在光化学反应中起着重要作用。同时它易于合成多种衍生物,通过胺化还原反应连接DPA基团,有助于整个荧光分子探针的亲水性质。对于一个荧光分子探针而言,DPA基团的链状敞开式结构使它能够快速与金属离子络合,保证检测的实时性。不仅便于分子在水溶液中的应用,而且为分子探针的进一步衍生和固载提供了反应活性基团,将有可能固载于聚酯、聚醚、烯烃共聚物上做成传感器器件。设计合成了一种基于PET过程作用原理的芘型DPA荧光分子探针。作为表征介质极性的荧光探针,能够快速与金属离子络合,保证检测的实时性。在300 nM的检测水平上,对于荧光探针分子Zn2+和Cd2+明显要优于其它金属离子溶液,在Zn2+为0~0.40μM范围内的检测限达到0.26μg/L,并对Zn2+拥有良好的单一选择性响应。同时该荧光分子探针对pH值的不敏感性,可避免生物体受到外界刺激后引起pH值变化,有应用于生物体系的发展前景。
     (2)二苯乙烯由于具有较好的平面性、共轭性而成为常见的共轭桥,根据其特点设计的荧光分子探针将具备分子相对较小,既有亲脂性又有亲水性,有在各种不同环境检测中进行测定的可能。通过设计期望这种探针分子能够克服传统有机荧光分子探针水溶性不好、工作光谱不在可见光区、选择性不高的缺点。设计合成了一种基于ICT过程的二苯乙烯型DPA荧光探针分子。斯托克斯位移较大(74-130 nm),可避免吸收光谱干扰发射光谱,从而提高测试的灵敏度与准确性。在DMSO/H2O(10/90,v/v)和MeCN/H2O(10/90,v/v)体系中Cu2+和Cu+表现了对该荧光探针分子优良的灵敏度,在Cu2+为0~0.50μM范围检测限达到25nM,并对铜离子拥有良好的单一选择性响应,使荧光分子传感与检测真正成为一类常规的水质检测技术。
     (3)含有杂原子的苯并噻唑作为一类电致发光材料显示了独特的优势,同时其结构易于调整,可以通过引入双键、苯环等不饱和基团、以及各种生色团来改变共轭程度。改变材料的发光波长,其发光波长可以覆盖整个可见光范围,从而能衍生出更多的荧光分子探针结构来。设计合成了一种基于ICT过程的苯并噻唑型DPA荧光探针分子。在MeCN/H2O(10/90,v/v)体系中Sn2+和Fe3+表现了对该荧光探针分子优良的荧光猝灭效果,在Sn2+为0~0.50μM范围内检测限达到134 nM,并对Sn2+拥有良好的单一选择性响应。这种荧光分子探针的开发具有较好的应用价值和发展前景。
     (4)异维A酸是一种含芳香环的单双键交替的π共轭体系药物分子,存在着单双键交替结构的异变性,但是该分子的缺点是共轭的萜烯链结构末端缺少荧光团的存在,同时分子的共平面性和共轭程度也不甚理想。另外,传统的炔键形成往往要涉及到羧基保护与脱保护步骤,而研究出一种新型无铜Sonogashira偶联方法用于直接偶联卤代芳香羧酸与端炔分子,将能大大简化反应流程,提高合成效率。通过不同底物的选择,拓展了在无铜Sonogashira反应条件下将卤代芳香羧酸与端炔的直接偶联。具有操作简单、产率高的优点,同时反应后处理方便,产物的分离和纯化也简单易行。并将反应底物进一步得以拓展,实现了乙炔型维A酸类药物分子和乙炔型DPA荧光分子探针的合成,表现出该体系良好的应用前景。同时设计合成了以异维A酸结构为底物,连接DPA分子形成一个类似PET过程的结构分子,考察结构特点对荧光探针分子的影响。其较强的紫外吸收能力得以保留,但金属离子的加入也不能引起化合物发生电子跃迁,同时紫外吸收波长保持稳定,通过吸收光谱的检测无法来识别金属离子。合成过程中得到了一个化合物单晶,并通过了X射线单晶衍射解析。
     第二部分:量子点的合成与纳米荧光探针的研究
     在第二部分中,量子点作为一种新型荧光探针,与传统荧光染料相比,具有许多优良的光学性质,已在分子生物学、细胞生物学、医学等研究领域获得广泛应用。相对于传统的有机荧光染料,大小均匀的半导体量子点发射光谱窄且具有尺寸调谐特性、用单个波长即可激发不同的量子点、荧光量子产率高、稳定性好和具有很好的生物相容性等优点。针对当前有机溶剂中合成量子点仍然存在反应条件苛刻反应温度高、原料金属有机化合物易燃、易爆、毒性大和溶剂昂贵等缺点采用改进的绿色化学合成方法制备出了高荧光产率的分散性好的半导体量子点,研究了反应时间反应温度以及反应溶剂对量子点生长情况及性能的影响。与传统的有机荧光探针相比,表面充分钝化的量子点具有激发光谱宽,发射光谱窄且对称分布,最大发射波长位置可调,不易光解的特点,因此可以作为荧光探针对生物样品和细胞进行成功染色。若表面未加充分钝化,则量子点的荧光特性对周围环境的变化非常敏感,这是此类荧光探针检测无机离子、蛋白质、DNA的理论基础。
     (5)微波辐射法由于快速、简便、高效、绿色等优点,近年来被广泛的应用于有机合成的加速反应和无机纳米材料的合成。采用微波辐射法,在低温条件下(50℃~140℃,以甘油作为良好传热介质,柴油作为溶剂,油酸作为配体,没有使用有剧毒的TOPO作为配体,快速合成了CdSe量子点。考察了在不同温度、不同反应时间、不同配比、不同微波功率条件下量子点光学性能的变化规律。所合成的量子点具有良好的光学性能,量子产率最高可达70%,发射峰半峰宽最小在28nm。该方法进一步降低了原料成本,简化了实验工艺,实现了环境友好绿色合成,进一步促进了CdSe量子点合成工艺的发展和生物上的应用。
     (6)利用羧基与Cu2+离子之间的配位作用,合成了基于聚合物Mao-mPEG包覆的水溶性CdSe/CdS型核壳量子点作为荧光探针。在其它金属离子共存的情况下能高选择性的定量测定Cu2+,在Cu2+为0-0.5μM范围内得出量子点荧光探针的检测限达到16nM,建立了荧光猝灭效应测定Cu2+离子的新方法,并从机理上阐释了量子点荧光猝灭的原因。选择发射波长为595 nm的量子点探针作为研究对象,可以有效的消除潜在的生物应用上的干扰,使生物样品和细胞实体分析成为可能。
This dissertation is divided into two stages.The first part of the studies are on the design, synthesis and properties of several DPA-type organic fluorescent molecule probes under the Hunan University"985" special fund project; and the second part of the studies are on the synthesis,properties and biomedical applications of quantum dots under the State Scholarship Fund in the United States as a joint PhD student.
     Section One
     In the first section, we reviewed the research history and recent development of the fluorescence probes, and focused on the application of this kind photo-introduced electron transfer reactions.Molecular fluorescence has many remarkable advantages, such as high sensitivity of detection down to the single molecule, rapid "on-off' response, feasibility studies of human-molecule communication, subnanometer spatial resolution with submicron visualization and submillisecond temporal resolution. Compared to other materials, organic materials have the advantage of being designed and modified easily, and the investigation of new organic materials has attracted a lot of attention due to their potential application in chemical fluorescence probes.The design, synthesis and characterization of organic molecules have become an active and interesting subject. Highly developed organic chemistry, deep understanding of molecular recognition and increasing skills on molecular design provided the solid foundation for our research works herein.Except following the general rules of designing a new fluorescent molecular, we also emphasized the volatilities of preparation and derivation, especially. Then, the research goal of this dissertation is determined to develop fluorescent molecule probes with high quantum yield and investigate their application in many fields.Thus,in this section, several kinds of fluorescence probes based on chemical sensors,in which different metal ions was detected, were designed and synthesized by the organic coupling method. The selectivity and sensitivity of the new probes to the target ions were carefully studied.
     (1)Pyrene is an aromatics organism with strong fluorescence activity. The fluorescence properties and photosensitive of Pyrene plays an important role in the photochemical reaction.Moreover, it is easy to synthesis of various derivatives,such as the hydrophilic of fluorescent molecule probe is increased by the reductive amination reaction with connecting DPA group.The open structure of DPA group can rapidly complex with metal ions and ensure the real-time detection.Not only facilitate molecules in aqueous solution, but also provide the reactive groups on the application of molecular probe for further derivative and load.There may be fixed on polyester, polyether, and olefins copolymer on the sensors device.Based on the principle of PET process,a kind of pyrene-DPA fluorescent molecule probe is designed and synthesized. As the polarity medium of fluorescent probe, it is rapidly complex ability of metal ions and protected the real-time detection.Zn2+ and Cd2+ are obviously superior to the other metal ions in the 300 nM level detection.The detection limit is 0.26μg/L in the range of 0~0.40μM, and it is good single selective response for Zn2+.The affect of the pH value is not sensitivity, so this fluorescent molecule probe can avoid the external stimuli and have the development prospects for the biological system.
     (2)Stilbene is a common conjugate bridge for its good planar and conjugation. The fluorescent molecule probe of this structure has relatively smaller molecules,both the lipophilic and hydrophilic character, and the determination possibility in different environment. Based on the principle of ICT process,a kind of stilbene-DPA fluorescent molecule probe is designed and synthesized.The stokes shifts is 74-130 nm, so the emission spectrum can avoid the jamming of absorption spectrum.Then, the detection sensitivity and accuracy is improved.Cu2+ and Cu+ express an excellent sensitivity for this fluorescent probe molecular in the system of DMSO/H2O (10/90, v/v) and MeCN/H2O (10/90,v/v). The detection limit is 25 nM in the range of 0-0.50μM, and it is good single selective response for copper ion.It prompts the fluorescent molecular sensors and detection becoming truly a kind of technology for the conventional water detection.
     (3) As a series of electroluminescent materials, benzothiazoles shows unique advantage for containing heteroatomic.Its structure is easy to adjust and the conjugate degree can be changed by the unsaturated groups and various fluorophores.Change the light wavelengths of the materials,and the range can cover the whole of visible light. So, it can derive more structure of fluorescent molecular probes. Based on the principle of ICT process,a kind of benzothiazole-DPA fluorescent molecule probe is designed and synthesized.Sn2+ and Fe3+ express good Fluorescence quenches for this fluorescent probe molecular in the system of MeCN/H2O (10/90,v/v). The detection limit is 134 nM in the range of 0~0.50μM,and it is good single selective response for Sn2+.This kind of fluorescent molecule probe has good application value and prospect for development.
     (4)Retinoids is a kind of alternating single drug molecule with the aromatic ring andπconjugate system. There exist is the degeneration for the alternating single structure.But the molecular conjugate shortcoming is lack the existence fluorophores on the terminal of terpene chain structure.Moreover, the total plane and molecular conjugate level is not very ideal.In addition, the classic alkynyl forming reaction tends to involve carboxyl protection and deprotection reactions.A directly copper-free Sonogashira coupling between halogenated aromatic acid and termial alkynyl molecules was developed so as to simplify the reaction procedure and improve the synthetic efficiency.
     This directly copper-free Sonogashira coupling is expand by the choice of several substrates.The advantages of this method are simple operation, high yield, processing convenience and the products are easy to separate and purify. By using this method, the acetylene-type retinoids drug molecule and acetylene-type DPA fluorescent molecule probe are synthesized.This method shows a good application prospect. Moveover, the novel retinoids-DPA molecule is designed and obtained, and the structurely characteristic of fluorescent molecule probes is studied. The strong ultraviolet absorption ability is preserved, but the compound is not happened the electronic warp by the detected of the absorption spectra and can not identify the metal ions.A crystal is obtained in the synthetic process,and the structure is determined by the X-ray diffraction analysis.
     Section Two
     In the second section, QDs as novel fluorescence probes have many excellent optical properties.Compared with traditional fluorescence dyes,QDs play more and more important roles in the fields of molecular biology, cell biology and medicine, et al.QDs are novel semiconductor nanocrystals with the significant advantages of narrow, size-tunable,highly stable photoluminescence, biocompatibility and QDs with different sizes can be excited at single wavelength over organic fluorephores.The preparation of QDs with high quantum yield and good monodispersity through improved'Green Chemistry'in organic system.The influence of reaction time, temperature,and solvent on the growth and performance of QDs is discussed. Compared to conventional organic dyes,sufficiently passivated QDs appeare to be less susceptible to photobleaching with much narrower emission spectra and tunable maximum emission wavelength, which have been sucessfully used as fluorescent QWss in imaging of biological samples and cells. If not well passivated, the luminescence of the QDs becomes very sensitive to their local environment, and detections of some inorganic ions,proteins,DNA conformations were developed based on this property.
     (5) The advantages of microwave irradiation technology are not only for faster reaction time, but also higher product yields, cleaner reactions,more green reactions. So microwave irradiation technology has been extensive applied in synthesis of organic and inorganic nanomaterials in recent years.CdSe semiconductor photoluminescent QDs are rapidly synthesized via microwave irradiation technology at controllable temperature (50℃~140℃), where glycerin served as heating medium, diesel oil as the resolver, oleic acid as the ligand, and whithout taking violently poisonous TOPO as Ligand. Different amount of reaction temperature, reaction time, molar ratio and microwave power are employed to investigate the relationship of photophysical properties in different reaction conditions.The as-prepared CdSe QDs exhibit excellent photophysical properties.Their quantum yields are up to 70% and FWHM of the photoluminescent emission specturm peck is only 28 nm.This method reduces the cost of materials,simplifies the experimental process, and realizes the environmentally green synthesis.These QDs would benefite for the synthetic technology of quantum dot CdSe and biological applications.
     (6) Using the coordination of the carboxyl group and Cu2+ion, the water-soluble polymer Mao-mPEG coated CdSe/CdS core-shell quantum dots as fluorescent probe is synthesized. Cu2+ion shows the high selectivity of quantitative determination in the other metal ions coexistence.The detection limit is 16 nM in the range of 0~0.50μM, and it is good single selective response for Cu2+. The quench of quantum dot fluorescence is analysis from the mechanism.Without the interference of blood components that largely emission light at 595 nm,the quantum dot fluorescence with better emission signals offer an attractive alternative to fluorescent particles containing organic fluorophors and luminescent QDs to analyze in biological samples and cells.
引文
[1]Lehmann M,Riedel K, Adler K, et al.Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosensors and bioelectronics,2000,15(3-4):211-219
    [2]Janata J, Bezegh A. Chemical sensors.Analytical Chemistry,1988,60(12): 62R-74R
    [3]De Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al.Signaling recognition events with fluorescent sensors and switches.Chemical Reviews,1997,97(5): 1515-1566
    [4]Valeur B.Molecular fluorescence:principles and applications.Wiley-VCH Verlag GmbH,2001,273
    [5]Chae M Y, Czarnik A W. Fluorometric chemodosimetry. Mercury(Ⅱ) and Silver(Ⅰ) indication in water via enhanced fluorescence signaling.Journal of the American Chemical Society,1992,114(24):9704-9705
    [6]Yoon J, Ohler N E, Vance D H, et al.A fluorescent chemosensor signalling only Hg(Ⅱ) and Cu(Ⅱ) in water. Tetrahedron Letters,1997,38(22):3845-3848
    [7]Martinez R, Espinosa A, Tarraga A, et al.New Hg2+ and Cu2+ selective chromo-and fluoroionophore based on a bichromophoric azine.Organic Letters,2005, 7(26):5869-5872
    [8]Feng L,Chen Z.Screening Mercury (Ⅱ) with selective fluorescent chemosensor. Sensors and Actuators B:Chemical,2007,122(2):600-604
    [9]Kolosov D, Adamovich V, Djurovich P, et al.1,8-naphthalimides in phosphorescent organic LEDs:the interplay between dopant, exciplex, and host emission. Journal of the American Chemical Society,2002,124(33):9945-9954
    [10]Wang P,Xie Z,Tong S,et al.A novel neutral red derivative for applications in high-performance red-emitting electroluminescent devices.Chemistry of Materials,2003,15(9):1913-1917
    [11]Xu Z C,Xiao Y, Qian X H, et al.Ratiometric and selective fluorescent sensor for Cu11 based on internal charge transfer (ICT).Organic Letters,2005,7(5): 889-892
    [12]Xu Z C,Qian X H, Cui J N, et al.Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission. Tetrahedron,2006,62(43):10117-10122
    [13]Gunnlaugsson T, Kruger P E,Lee T C,et al.Dual responsive chemosensors for anions:the combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule.Tetrahedron Letters,2003, 44(35):6575-6578
    [14]Mishra A, Behera R K, Behera P K, et al.Cyanines during the 1990s:A review. Chemical Reviews,2000,100(6):1973-2012
    [15]Yarmoluk S M, Kryvorotenko D B,Kovalska V B,et al.,Interaction of cyanine dyes with nucleic acids,XX:new methods for the preparation of fluorescent probes based on benzotiazol-4-[2,6-dimethylpyridinium]cyanine dyes, Dyes and Pigments,2001,48(3):165-172
    [16]Tang B,Huang H, Xu K, et al.Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells.Chemical Communications,2006,(34):3609-3611
    [17]Gadjev N I, Deligeorgiev T G,Kim S H.Preparation of monomethine cyanine dyes as noncovalent labels for nucleic acids.Dyes and Pigments,1999,40(2-3): 181-186
    [18]Bickar D,Reid P D.A high-affinity protein stain for western blots,tissue prints, and electrophoretic gels.Analytical Biochemistry,1992,203(1):109-115
    [19]Balaz M, De Napoli M, Holmes A E, et al. A cationic zinc porphyrin as a chiroptical probe for z-DNA.Angewandte Chemie International Edition,2005, 44(26):4006-4009
    [20]Abkowitz M, Monahan A R. ESR and electronic spectral investigation of the self-association of phthalocyanine dyes in solution. Journal of Chemical Physics, 1973,58(6):2281-2287
    [21]Haugland R P. Handbook of fluorescent probes and research products.9th ed., Eugene:Molecular Probes Inc.2002,830-833
    [22]Jose M A,Luis B,Eva T, et al.Fluorescein excited-state proton exchange reaction:nanosecond emission kinetics and correlation with steady-state fluorescence intensity. Journal of Physical Chemistry A,2001,105(26): 6320-6332
    [23]Song L,Varma C A G, Verhoeven J W, et al.Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophysical Journal, 1996,70(6):2959-2968
    [24]Ueda M, Sawai Y, Yamamura S.Syntheses of fluorescence-labeled artificial leaf-opening substances,fluorescent probe compounds useful for bioorganic studies of nyctinasty. Tetrahedron Letters,2000,41(19):3433-3436
    [25]Jacobsen C N, Rasmussen J, Jakobsen M.Viability staining and flow cytometic detection of listeria monocytogenes.Journal of Microbiological Methods,1997, 28(1):35-39
    [26]Rotman A, Israel R. New fluorescein derivatives-used for obtaining fluorescent living cells with a stable level of fluorescence.US,4609740,1986
    [27]Turfan B,Akkaya E U.Modulation of boradiazaindacene emission by cation-mediated oxidative PET. Organic Letters,2002,4(17):2857-2859
    [28]Wu Y, Peng X, Guo B,et al. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells.Organic & Biomolecular Chemistry,2005,(8):1387-1392
    [29]Moon S Y, Cha N R, Kim Y H, et al. New Hg2+-selective chromo- and fluoroionophore based upon 8-Hydroxyquinoline.Journal of Organic Chemistry, 2004,69(1):181-183
    [30]Jiang P, Chen L, Lin J, et al.Novel zinc fluorescent probe bearing dansyl and aminoquinoline groups.Chemical Communications,2002,(13):1424-1425
    [31]Perkovic M W. Allosteric manipulation of photoexcited state relaxation in (bpy)2RuⅡ (binicotinic acid).Inorganic Chemistry,2000,39(21):4962-4968
    [32]Shen Y, Sullivan B P. A versatile preparative route to 5-substituted-1,10-phenanthroline ligands via 1,10-phenanthroline-5,6-epoxide.Inorganic Chemistry,1995,34(25):6235-6236
    [33]Gokel G W, Leevy W M, Weber M E.Crown ethers:sensors for ions and molecular scaffolds for materials and biological models.Chemical Reviews, 2004,104(5):2723-2750
    [34]Chen C T, Huang W P. A highly selective fluorescent chemosensor for lead ions. Journal of the American Chemical Society,2002,124(22):6246-6247
    [35]Ertas N, Akkaya E U, Ataman O Y. Simultaneous determination of cadmium and zinc using a fiber optic device and fluorescence spectrometry. Talanta,2000, 51(4):693-699
    [36]Charles S,Dubois F, Yunus S,et al.Determination by fluorescence spectroscopy of cadmium at the subnanomolar level:application to seawater. Journal of Fluorescence,2000,10(2):99-105
    [37]Kollmannsberger M, Rurack K, Resch-Genger U, et al.Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation:a new design concept for highly sensitive fluorescent probes.The Journal of Physical Chemistry A,1998,102(50):10211-10220
    [38]Arsian P, Di Virgillio F, Beltrame M, et al.Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas.A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. Journal of Biological Chemistry,1985,260:2719-2727
    [39]Bhattacharya S,Mandal S S.3,4-Bis(trimethylsilyl)-1H-pyrrole:A versatile building block for unsymmetrically 3,4-disubstituted pyrroles.Chemical Communications,1996,(13):1515-1516
    [40]Burdette S C,Frederickson C J, Bu W, et al.ZP4, an improved neuronal Zn2+ sensor of the zinpyr family. Journal of the American Chemical Society,2003, 125(7):1778-1787
    [41]Gee K R, Zhou Z L, Ton-That D, et al.Measuring zinc in living cells:A new generation of sensitive and selective fluorescent probes, Cell Calcium,2002, 31(5):245-251
    [42]Peng X, Du J, Fan J, et al.A selective fluorescent sensor for imaging Cd2+ in living cells.Journal of the American Chemical Society,2007,129(6):1500-1501
    [43]Xu Z, Xiao Y, Qian X, et al.Ratiometric and selective fluorescent sensor for CuⅡ based on internal charge transfer (ICT).Organic Letters,2005,7(5):889-892
    [44]Charier S,Ruel O,Baudin J B,et al.An efficient fluorescent probe for ratiometric pH measurements in aqueous solutions.Angewandte Chemie International Edition,2004,43(36):4785-4788
    [45]Zhang M, Li M Y, Li F Y, et al.A novel Y-type, two-photon active fluorophore: Synthesis and application in ratiometric fluorescent sensor for fluoride anion. Dyes and Pigments,2008,77(2):408-414
    [46]Lim M H,Xu D,Lippard S J.Visualization of nitric oxide in living cells by a copper-based fluorescent probe.Nature Chemical Biology,2006,2(7):375-380
    [47]Suzuki I, Ui M, Yamauchi A.Pyrene-appended a-Cyclodextrin as a fluorescent pH probe responding to a wide range.Analytical Sciences,2006,22(5):655-657
    [48]Liu Y, You C C,Li B.Synthesis and molecular recognition of novel oligo (ethylenediamino) bridged bis(β-cyclodextrin)s and their Copper(Ⅱ) complexes: Enhanced molecular binding ability and selectivity by multiple recognition. Chemistry-A European Journal,2001,7(6):1281-1288
    [49]Casnati A, Pochini A, Ungaro R, et al.Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers:A new class of Cesium selective ionophores.Journal of the American Chemical Society,1995, 117(10):2767-2777
    [50]Metivier R, Leray I, Bermard V. A highly sensitive and selective fluorescent molecular sensor for Pb(Ⅱ) based on a calix[4]arene bearing four dansyl groups. Chemical Communications,2003,(8):996-997
    [51]Bu J H, Zheng Q Y, Chen C F, et al.New fluorescence-quenching process through resumption of PET process induced by complexation of Alkali metal ion. Organic Letters,2004,6(19):3301-3303
    [52]Li S Y, Zheng Q Y, Chen C F, et al.Fluorescent probes of D-(+)-gluconic acid δ-lactone based on binary hosts of chiral calix[5]arene.Tetrahedron:Asymmetry, 2005,16(16):2816-2820
    [53]Kavallieratos K, Rosenberg J M, Chen W Z, et al.Fluorescent sensing and selective Pb(Ⅱ) extraction by a dansylamide ion-exchanger. Journal of the American Chemical Society,2005,127(18):6514-6515
    [54]Gunnlaugsson T, Lee T C,Parkesh R. Cd(Ⅱ) sensing in water using novel aromatic iminodiacetate based fluorescent chemosensors.Organic Letters,2003, 5(22):4065-4068
    [55]Li J,Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society,2000,122(42):10466-10467
    [56]Deo S,Godwin H A.A selective,ratiometric fluorescent sensor for Pb2+.Journal of the American Chemical Society,2000,122(1):174-175
    [57]陈国珍,黄贤智,郑朱梓等著.荧光分析法.第二版.北京:科学出版社,1990,82-95
    [58]黄春辉,李富友,黄岩谊著.光电功能超薄膜.第一版.北京:北京大学出版社,2001,165
    [59]Rurack K.Flipping the light switch on the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A:Molecular Spectroscopy,2001,57(11):2161-2195
    [60]Kimura E,Koike T. Recent development of Zinc-fluorophores.Chemical Society Reviews,1998,27(3):179-184
    [61]Kimura E, Aoki S.Chemistry of Zinc(Ⅱ) fluorophore sensors.Biometals,2001, 14(3-4):191-204
    [62]Klein G, Kaufmann D,Schurch S,et al.A fluorescent metal sensor based on macrocyclic chelation.Chemical Communications,2001,(6):561-562
    [63]樊美公等著.光化学基本原理与光子学材料科学.第1版.北京:科学出版社, 2001,326-331
    [64]Valeur B,Leray I.Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews,2000,205(1):3-40
    [65]Wu Y, Peng X, Guo B,et al.Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(Ⅱ) in living cells.Organic & Biomolecular Chemistry,2005,3(8):1387-1392
    [66]De Silva A P, Gunaratne H Q N, Maguire G E M.Luminescence and charge transfer. Part3.The use of chromophores with ICT (internalc harget ransfer) excited states in the construction of fluorescent PET(photoinduced electon transfer) pH sensors and related absorption pH sensors with aminoalkyl side chains.Journal of the Chemical Society, Chemical Communications,1994,(10): 1213-1214
    [67]De Santis G, Fabbrizzi L,Lichelli M, et al.A fluorescent chemosensor for the Copper(II)ion. Inorganica Chimica Acta,1997,257(1):69-76
    [68]De Silva A P, McCaughan B, McKinney B O F, et al.Newer optical-based molecular devices from older coordination chemistry. Dalton Transactions,2003, (10):1902-1913
    [69]Gokel G W, Leevy W M, Weber M E.Crown Ethers:Sensors for ions and molecular scaffolds for materials and biological models.Chemical Reviews, 2004,104(5):2723-2750
    [70]Cosnard F, Wintgens V. A new fluoroionophore derived from 4-amino-N-methyl-1,8-naphthalimide.Tetrahedron Letters,1998,39(18):2751-2754
    [71]Kolimannsberger M, Rurack K, Resch-Genger U, et al.Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and itsinhibition by cation complexation:a new design concept for highly sensitive fluorescent probes. Journal of Physical Chemistry A,1998,102(50):10211-10220
    [72]Delmond S,Letard J F, Lapouyade R, et al.Cation-triggering intramolecular charge transfer and fluorescence red-shift in intrinsic fluorescence probes.New Journal of Chemistry,1996, (20):861-869
    [73]Grabowski Z R, Dobkowski J.Twisted intramolecular charge transfer (TICT) excited states:energy and molecular structure.Pure and Applied Chemistry, 1983,55(2):245-252
    [74]Rettig W. Charge seperation in excited states of decoupled system-TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis.Angewandte Chemie International Edition,1986,25(11):971-988
    [75]Zachariasse K A, Druzhinin S I,Bosch W, et al.Intramolecular charge transfer with the planarized 4-aminobenzonitrile 1-tert-butyl-6-cyano-1,2,3,4-tetra hydroquinoline (NTC6).Journal of the American Chemical Society,2004, 126(6):1705-1715
    [76]Rappoport D,Furche F. Photoinduced intramolecular charge transfer in 4-(dimethyl)aminobenzonitrile-a theoretical perspective.Journal of the American Chemical Society,2004,126(4):1277-1284
    [77]Letard J F, Delmond S,Lapoyyade S P, et al.New intrinsic fluoroionophores with dual fluorescence:DMABN-crown-4 and DMABN-crown-5.Recueil des travaux chimiques des Pays-Bas.Journal of the Royal Netherlands Chemical Society,1995,114:517-527
    [78]Collins G E, Choi L S,Callahan J H. Effect of solvent polarity, pH, and metal complexation on the triple fluorescence of 4-(N-1,4,8,11-tetraazacyclo tetradecyl)-benzonitrile. Journal of the American Chemical Society,1998, 120(7):1474-1475
    [79]Jonker S A, Van Dijk S I, Goubitz K, et al.Solid-state structure and spectroscopy of chromoionophoric acridinium derivatives.Molecular Crystals and Liquid Crystals,1990,183:273-282
    [80]Moerner W E.High-Resolution Optical spectroscopy of single molecules in solids.Accounts of Chemical Research,1996,29(12):563-571
    [81]Kubo K, Kato N, Sakurai T. Synthesis and complexation behavior of diaza-18-crown-6 carrying two pyrenylmethyl groups.Bulletin of the Chemical Society of Japan,1997,70(12):3041-3046
    [82]Yang J S,Lin C S,Hwang C Y.Cu2+ induced blue shift of the pyrene excimer emission:A new signal transduction mode of pyrene probes.Organic Letters, 2001,3(6):889-892
    [83]Kim S K, Bok J H, Bartsch R A, et al.A fluoride-selective PCT chemosensor based on formation of a static pyrene excimer. Organic Letters,2005,7(22): 4839-4842
    [84]Speiser S.Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems:solution and supersonic jet studies.Chemical Reviews,1996,96(6):1953-1976
    [85]De Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al.Molecular photoionic switches with an internal reference channel for fluorescent pH sensing applications.New Journal of Chemistry,1996,(20):871-880
    [86]Takakusa H, Kikuchi K, Urano Y, et al. Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. Journal of the American Chemical Society,2002,124(8):1653-1657
    [87]Valeur B,Pouget J, Bourson J, et al.Tuning of photoinduced energy transfer in bichromophoric coumarin superamolecule by cation binding.Journal of Physical Chemistry,1992,96(16):6545-6549
    [88]Johnson D A, Leathers V L, Martinez A M, et al.Fluorescence resonance energy transfer with in a heterochromoatic cAMP dependent protein kinase holoenzyme under equilibrium conditions:new insight into the conformational changes that result in cAMP activation. Biochemistry(Easton),1993,32(25):6402-6410
    [89]Boiocchi M,Fabbrizzi L,Licchelli M,et al.A two-channel molecular dosimeter for the optical detection of copper(Ⅱ).Chemical Communications,2003,(15): 1812-1813
    [90]Moon S Y, Cha N R, Kim Y H, et al.New Hg2+-selective chromo-and fluoroionophore based upon 8-hydroxyquinoline.Journal of Organic Chemistry, 2004,69(1):181-183
    [91]Amendola V, Fabbrizzi L, Licchelli M, et al.Molecular events switched by transition metals.Coordination Chemistry Reviews,1999,190-192(1):649-669
    [92]Yang Y K, Yook K J, Tae J.A Rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media.Journal of the American Chemical Society,2005,127(48):16760-16761
    [93]Grandini P, Mancin F, Tecilla P, et al.Exploting the self-assembly strategy for the design of selective Cu2+ ion chemosensors. Angewandte Chemie International Edition,1999,38(20):3061-3064
    [94]Kalyanasundaram K, Thomas J K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems.Journal of the American Chemical Society,1977,99(7): 2039-2044
    [95]Dong D C,Winnik M A.The Py scale of solvent polarities.Solvent effects on the vibronic fine structure of pyrene fluorescence and empirical correlations with ET and Y values.Photochemistry and Photobiology,1982,35(1):17-21
    [96]Winnik F M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media.Chemical Reviews,1993,93(2):587-614
    [97]Caruso F,Lichtenfeld H, Donath E, et al.Investigation of electrostatic interactions in polyelectrolyte multilayer films:binding of anionic fluorescent probes to layers assembled onto colloids.Macromolecules,1999,32(7): 2317-2328
    [98]Sheldon A S,van Bekkum H.Fine chemicals through heterogeneous catalysis. Wiley-VCH,Weinheim,2001,384
    [99]Abdel-Magid A F, Carson K G, Harris B D, et al. Reductive amination of aldehydes and ketones with Sodium triacetoxyborohydride.Studies on direct and indirect reductive amination procedures.Journal of Organic Chemistry,1996, 61(11):3849-3862
    [100]田茂忠,彭孝军,樊江莉等.氟硼二吡咯类阳离子荧光探针的研究进展.分析化学.2006,34:S283-S288
    [101]宋波,沈永嘉,董黎分.荧光增白剂及其应用.第1版.上海:华东理工大学出版社,1995
    [102]Drobizhev M, Karotki A, Dzenis Y, et al.Strong cooperative enhancement of two-photon absorption in dendrimers.The Journal of Physical Chemistry B, 2003,107(31):7540-7543
    [103]Yang J S,Liau K L, Hwang C Y, et al.Photoinduced single-versus double-bond torsion in donor-acceptor-substituted trans-stilbenes.The Journal of Physical Chemistry A,2006,110(26):8003-8010
    [104]施琴芬,王筱梅,蒋宛莉等.以萘为π-中心的双芪类衍生物双光子上转换荧光性能研究.光谱学与光谱分析.2005,25(12):1925-1928
    [105]Rumi M, Ehrlich J E, Heikal A A, et al.Structure-property relationships for two-photon absorbing chromophores:bis-donor diphenylpolyene and bis(styryl)benzene derivatives.Journal of the American Chemical Society,2000, 122(39):9500-9510
    [106]Belfield K D, Chinna C,Schafer K J.New NLO stilbene derivatives bearing phosphonate ester electron-withdrawing groups.Tetrahedron Letters,1997, 38(35):6131-6134
    [107]Eddarir S,Abdelhadi Z,Rolando C.Fluorinated resveratrol and pterostilbene. Tetrahedron Letters,2001,42(52):9127-9130
    [108]Hanna P E, Gammans R E,Sehon R D,et al.Metabolic N-hydroxylation.Use of substituent variation to modulate the in vitro bioactivation of 4-acetamidostilbenes.Journal of Medicinal Chemistry,1980,23(9):1038-1044
    [109]Wittig G, Schollkopf U.Uber triphenyl-phosphin-methylene als olefinbildende reagenzien. Chemische Berichte,1954,87(9):1318-1330
    [110]Vedejs E, Meier G P,Snoble K A J.Low-temperature characterization of the intermediates in the Wittig reaction. Journal of the American Chemical Society, 1981,103(10):2823-2831
    [111]Borisova I V,Zemlyanskii N, Shestakova A K. Relaxation and thermally stimulated discharge currents in liquid-crystalline side-chain polymethacrylates with phenylbenzoate mesogens having tail groups different length. Mendeleev Communications,1996,90:256-259
    [112]Bestmann H J,Hellwinkel D.1H2D NMR studies on the cis-trans isomerism of diazoacetyl-chloride and its derivatives.Topics in Current Chemistry,1983,109: 36.
    [113]Yang J S,Lin Y D, Lin Y H, et al.Zn(Ⅱ)-induced ground-state π-de conjugation and excited-state electron transfer in N,N-bis(2-pyridyl)amino-substituted arenes. Journal of Organic Chemistry,2004,69(10):3517-3525
    [114]Irving H M N H, Freiser H, West T S (Eds.).IUPAC compendium of analytical nomenclature,definitive Rules.Pergamon Press, Oxford,1981.
    [115]Connors K A.Binding Constants,The measurement of molecular complex stability.John Wiley & Sons, New York,1987,339-343.
    [116]Safarzadeh-Amiri A.A time-resolved fluorescence study of the dynamic stokes shift of trans-4-dimethylamino-4'-cyanostilbene.Chemical Physics Letters,1986, 125(3):272-278
    [117]Albert I D L, Marks T J, Ratner M A. Large molecular hyperpolarizabilities. quantitative analysis of aromaticity and auxiliary donor-acceptor effects.Journal of the American Chemical Society,1997,119(28):6575-6582
    [118]Petkova I, Nikolov P, Dryanska V. Photophysical properties and quantum chemical calculations of differently substituted 2(2-phenylethenyl)-benzoxazoles and benzothiazoles.Journal of Photochemistry and Photobiology A: Chemistry,2000,133(1-2):21-25
    [119]Belfield K D,Morales A R, Kang B S,et al.Synthesis,characterization, and optical properties of new two-photon-absorbing fluorene derivatives.Chemistry of Materials,2004,16(23):4634-4641
    [120]Leng W N, Zhou Y M, Xu Q H, et al.Synthesis of nonlinear optical polyimides containing benzothiazole moiety and their electro-optical and thermal properties. Polymer,2001,42(22):9253-9259
    [121]Cao D X, Fang Q,Wang D,et al.Synthesis and two-photon-excited fluorescence of benzothiazole-based compounds with various π-electron donors.European Journal of Organic Chemistry,2003,2003(18):3628-3636
    [122]Reinhardt B A, Brott L L, Clarson S J et al.Highly active two-photon dyes: design, synthesis,and characterization toward application. Chemistry of Materials,1998,10(7):1863-1874
    [123]He G S,Swiatkiewicz J, Jiang Y et al.Two-photon excitation and optical 'spatial-profile reshaping via a nonlinear absorbing medium. Journal of Physical Chemistry A,2000,104(20):4805-4810
    [124]Kannan R, He G S,Yuan L et al.Diphenylaminofluorene-based two-photon-absorbing chromophores with various π-electron acceptors.Chemistry of Materials,2001,13(5):1896-1904
    [125]Chang S M, Tzeng Y J, Wu S Y et al. Emission of white light from 2-(2'-hydroxyphenyl) benzothiazole in polymer electroluminescent devices.Thin Solid Films,2005,477(1-2):38-41
    [126]Belfield K D,Morales A R, Kang B S et al.Synthesis, characterization, and optical properties of new two-photon-absorbing fluorene derivatives.Chemistry of Materials,2004,16(23):4634-4641
    [127]Youssefyeh R D.Formylation of ethylene ketals.Synthesis of a-monoalkyl ketals and ketones.Tetrahedron Letters,1964,5(32):2161-2166
    [128]Hesse S,Kirsch G. A rapid access to coumarin derivatives (using Vilsmeier-Haack and Suzuki cross-coupling reactions).Tetrahedron Letters,2002,43(7): 1213-1215
    [129]Roos T C, Jugert F K, Merk H F, et al. Retinoid metabolism in the skin. pharmacological reviews,1998,50(2):315-333
    [130]Sonogashira K, Tohda Y, Hagihara N.A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines.Tetrahedron Letters,1975,16(50):4467-4470
    [131]Diek H A, Heck R F. Palladium-catalyzed conjugated diene synthesis from vinylic halides and olefinic compounds.Journal of Organic Chemistry,1975, 40(8):1083-1090
    [132]Cassar L.Synthesis of aryl-and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes.Journal of Organometallic Chemistry, 1975,93(2):253-257
    [133]Sonogashira K.In comprehensive organic syntheses.Pergamon Press, Oxford, 1990,(3):545
    [134]Hillier M C,Price A T, Meyers A I.Studies on the total synthesis of disorazole C1. An advanced macrocycle intermediate. Journal of Organic Chemistry,2001, 66(18):6037-6045
    [135]Kagechika H, Shudo K. Synthetic retinoids:Recent developments concerning structure and clinical utility. Journal of Medicinal Chemistry,2005,48(19): 5875-5883
    [136]李祖义,刘俊杰.酶促反应合成糖脂化合物.有机化学,1999,19(2):121-126
    [137]Maryanoff C A.Process for prepparing retinoyl chlorides.US.Pat. No.4743400, 1988-5-10
    [138]刘平,闫爱新,叶蕴华.4-二甲基氨基吡啶催化合成N-保护氨基酸三氟乙酯.化学通报,2001,64(12):777-780
    [139]Negishi E, Anastasia L.Palladium-catalyzed alkynylation.Chemical reviews, 2003,103(5):1979-2018
    [140]Siemsen P, Livingston R C,Diederich F. Acetylenic coupling:A powerful tool in molecular construction. Angewandte Chemie International Edition,2000,39(15): 2632-2657
    [141]Thorand S,Krause N.Improved procedures for the Palladium-catalyzed coupling of terminal alkynes with aryl bromides (Sonogashira coupling).Journal of Organic Chemistry,1998,63(23):8551-8553
    [142]Bundgaard H, Nielsen N M.Esters of N,N-disubstituted 2-hydroxy-acetamides as novel highly bioabile prodrug type for carboxylic acid agents.Journal of Medicinal Chemistry,1987,30(3):451-455
    [143]Wilson A J. International table for X-ray crystallography, volume C.Dordrecht, Kluwer Academic Publishers,1992:500-502,219-222
    [144]Drexler K E.Nanotechnology:From feynman to funding.Bulletin of Science, Technology & Society,2004,24(1):21-27
    [145]Clark H A, et al.Subcellular optochemical nanobiosensors:probes encapsulated by biologically localized embedding (PEBBLEs).Sensors and Actuators B: Chemical,1998,51(1-3):12-16
    [146]Clark H A, Kopelman R, Tjalkens R, et al.Optical nanosensors for chemical analysis inside single living cells,2.Sensors for pH and Calcium and the intracellular application of PEBBLE sensors.Analytical Chemistry,1999,71(21): 4837-4843
    [147]Alivisatos A P.Semiconductor clusters,nanocrystals, and quantum dots.Science, 1996,271(5251):933-937
    [148]Chan W C W and Nie S M. Quantum dot bioconjugates for ultrasensitive. nonisotopic detection.Science,1998,281(5385):2016-2018
    [149]Smith A M and Nie S M.Chemical analysis and cellular imaging with quantum dots.Analyst,2004,129(8):672-677
    [150]Alivisatos A P.The use of nanocrystals in biological detection. Nature Biotechnology,2004,22(1):47-52
    [151]Turkevitch J, Stevenson P C,Hillier J.A study of the nucleation and growth processes in the synthesis of colloidal gold.Discussions of the Faraday Society, 1951,11,55-75
    [152]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.Nature:Phys.Sci.,1973,241:20-22
    [153]Brust M, Walker M, Bethell D, et al.Synthesis of thiol-derivatised Gold nanoparticles in a two-phase liquid-liquid system.Journal of the Chemical Society, Chemical Communications,1994,(7):801-802
    [154]He L,Musick M D,Nicewarner S R, et al.Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. Journal of-the American Chemical Society,2000,122(38):9071-9077
    [155]Elghanian R, Storhoff J J, Mucic R C,et al.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of Gold nanoparticles.Science,1997,277(5329):1087-1081
    [156]Jin R C,Wu G S, Li Z, et al.What controls the melting properties of DNA-linked Gold nanoparticle assemblies? Journal of the American Chemical Society,2003, 125(6):1643-1654
    [157]Otsuka H, Akiyama Y, Nagasaki Y, et al. Quantitative and reversible Lectin-induced association of Gold nanoparticles modified with a-lactosyl-ω-mercapto-poly(ethylene glycol).Journal of the American Chemical Society, 2001,123(34):8226-8230
    [158]Suslick K S,Fang M, Hyeon T. Sonochemical synthesis of Iron colloids.Journal of the American Chemical Society,1996,118(47):11960-11961
    [159]Kim D, Zhang Y, Voit W, et al.Synthesis and characterization of surfactant coated superparamagnetic monodispersed iron oxide nanoparticles.Journal of Magnetism and Magnetic Materials,2001,225(1-2):30-36
    [160]Andrew J S.Quantum dots as luminescent probes in biological systems.Current opinion in Solid Structural Materials,2002,6(4):365-370
    [161]Liu J H, Fan J B,Gu Z, et al.Green chemistry for large-scale synthesis of semiconductor quantum dots.Langmuir,2008,24(10):5241-5244
    [162]Peng X G, Michael C S,Andreas V K,et al.Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. Journal of the American Chemistry Society,1997,119(30): 7019-7029
    [163]Michalet X, Pinaud F F,Bentolila L A, et al.Quantum dots for live cells, in vivo imaging, and diagnostics.Science,2005,307(5709):538-544
    [164]Burbaum J J.Miniaturization technologies in HTS:how fast, how small,how soon? Drug Discovery Today,1998,3(7):313-322
    [165]Kawaguchi H. Functional polymer microspheres.Progress in Polymer Science, 2000,25(8):1171-1210
    [166]Spange S,Seifert A, Muller H, er al.A one-pot synthesis of chromophoric silicate-based xerogels.Angewandte Chemie International Edition,2002,41(10): 1729-1732
    [167]Luo D,Saltzman W M.Enhancement of transfection by physical concentration of DNA at the cell surface. Nature Biotechnology,2000,18:893-895
    [168]He X X, Wang K M, Tan W H, et al.Bioconjugated nanoparticles for DNA protection from cleavage.Journal of the American Chemistry Society,2003, 125(24):7168-7169
    [169]Zhao X J, Tapec-Dytioco R, Tan W H.Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles.Journal of the American Chemistry Society,2003,125(38):11474-11475
    [170]Marcel B J, Mario M, Peter G, et al.Semiconductor nanocrystals as fluorescent biological labels.Science,1998,281(5385):2013-2015
    [171]Lee J A, Hung A, Mardyani S,et al.Toward the accurate read-out of quantum dot barcodes:Design of deconvolution algorithms and assessment of fluorescence signals in buffer. Advanced Materials,2007,19(20):3113-3118
    [172]Niemeyer C M.Nanoparticles,proteins,and nucleic acids:Biotechnology meets materials science.Angewandte Chemie International Edition,2001,40(22): 4128-4158
    [173]Murray C B,Norris D J,Bawendi M G. Synthesis and characterization of nearly monodisperse CdE(E=S,Se,Te) semiconductor nanocrystallites.Journal of the American Chemical Society,1993,115(19):8706-8715
    [174]Qu L H, Peng Z A, Peng X G. Alternative routes toward high quality CdSe nanocrystals. Nano Letters,2001,1(6):333-337
    [175]Yu W W, Peng X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents:Tunable reactivity of monomers.Angewandte Chemie International Edition,2002,41(13):2368-2371
    [176]Deng Z T, Cao L, Tang F Q, Zou B S.A new route to Zinc-blende CdSe nanocrystals:Mechanism and synthesis.Journal of Physical Chemistry B,2005, 109(35):16671-16675
    [177]Kappe C O.Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition,2004,43(46):6250-6284
    [178]Grisaru H, Palchik O, Gedanken A.Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles.Inorganic Chemistry,2003,42(22): 7148-7155
    [179]Ni T, Nagesha D K, Robles J et al.CdS nanoparticles modified to chalcogen sites: New supramolecular complexes,butterfly bridging, and related optical effeets. Journal of the American Chemical Society,2002,124(15):3980-3992
    [180]Gerbec J A, Magana D,Washington A, et al.Microwave-enhanced reaction rates for nanoparticle synthesis.Journal of the American Chemical Society,2005, 127(45):15791-15800
    [181]Li L, Qian H F, Ren J C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature.Chemical Communications,2005,(4):528-530
    [182]Qian H F, Qiu X, Li L, et al.Microwave assisted aqueous synthesis:A rapid approach to prepare highly luminescent ZnSe(S)alloyed quantum dots.Journal of Physical Chemistry B,2006,110(18):9034-9040
    [183]He Y, Sai L M, Huang W, et al.Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chemistry of Materials,2007,19(3):359-365
    [184]LaMer V K, Dinegar R H.Theory, production and mechanism of formation of monodispersed hydrosols.Journal of the American Chemical Society,1950, 72(11):4847-4854
    [185]Murray C B,Kan C R, Bawendi M G, et al.Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies.Annual Review of Materials Science,2000,30:545-610
    [186]Zhang W, Wang C, Zhang L. Room temperature synthesis of cubic nanocrystalline CdSe in aqueous solution.Journal of Solid State Chemistry, 2000,151(2):241-244
    [187]刘舒曼,徐征.CdSe纳米晶的制备及性能表征.光电子激光,2003,14(1):46-49
    [188]Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society,2002,124(9): 2049-2055
    [189]Qu L H, Peng Z A, Peng X G. Alternation routes toward high quality CdSe nanocrystals.Nano Letters,2001,1(6):333-337
    [190]Wu X Y, Liu J H, Liu Q J, et al.Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nature Biotechnology,2002,21:41-46
    [191]Gattas K M, Leblanc R M.Peptide-coated CdS quantum dots for the optical detection of Copper(Ⅱ) and Silver(Ⅰ).Chemical Communications,2003,(21): 2684-2685
    [192]Xie H Y, Liang J G, Zhang Z L,et al.Luminescent CdSe-ZnS quantum dots as selective Cu2+probe.Spectrochimica Acta Part A,2004,60(11):2527-2530
    [193]Peng X G, Schlamp M C.Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility.Journal of the American Chemical Society,1997,119(30):7019-7029
    [194]Battaglia D,Peng X G.Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Letters,2002,2(9):1027-1030
    [195]Zhuang Z P, Kung M P, Hou C,et al.Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates.Journal of Medicinal Chemistry, 2001,44(12):1905-1914
    [196]Kung M P, Hou C,Zhuang Z P, et al.IMPY:An improved thioflavin-T derivative for in vivo labeling of amyloid plaques.Brain Research,2002,956(2):202-210
    [197]Chandra R, Kung M P, Kung H F. Design, synthesis,and structure-activity relationship of novel thiophene derivatives for amyloid plaque imaging. Bioorganic and Medicinal Chemistry Letters,2006,16(5):1350-1352
    [198]Park S,Clark B L,Keszler D A, et al.Low-temperature thin-film deposition and crystallization. Sciense,2002,297(5578):65
    [199]Li J J,Wang Y A, Guo W Z, et al.Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction.Journal of the American Chemical Society,2003, 125(41):12567-12575
    [200]Gerion D,Chen F, Kannan B,et al.Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays.Analytical Chemistry,2003,75(18):4766-4772
    [201]Mahtab R, Harden H H, Murphy C J. Temperature-and salt-dependent binding of long DNA to protein-sized quantum dots:Thermodynamics of "Inorganic Protein"-DNA interactions. Journal of the American Chemical Society,2000,122(1):14-17
    [202]张慧.氨基酸促进的铜(I)催化的乌尔曼反应的研究—芳基卤化物与硫酚(醇)、胺、含氮杂环交叉偶联反应的研究.[复旦大学博士学位论文].上海:复旦大学化学系,2005
    [203]张宇,付德刚,蔡建东等.CdS纳米粒子的表面修饰及其对光学性质的影响.物理化学学报,2000,16(5):431-436
    [204]Alex V I, John C.Optical and photochemical properties of nonstoichiometric Cadmium Sulfide nanoparticles:Surface modification with Copper ions. Langmuir,1997,13(12):3142-3149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700