面向再制造的等离子喷涂层接触疲劳行为及寿命评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再制造是废旧机电产品高技术修复改造的产业化,是符合我国实现节能减排,建设两型社会的指导方针的有效举措。随着我国经济增长模式的良性转变,再制造产业进入了高速发展的快车道,从事再制造的企业日益增多,再制造概念深入人心。再制造领域中的诸多基础性科学问题引人关注,尤其是再制造产品的质量评估问题是影响其社会接纳度的关键问题,需大力关注。等离子喷涂是一种常用的再制造工程技术,经等离子喷涂再制造后再制造产品的寿命评估实际上可以简化为对表面涂层的寿命评估。
     本文研究了等离子喷涂层的接触疲劳失效机理和寿命评估。通过等离子喷涂制备表面Fe基涂层,通过正交设计的方法对喷涂参数进行优化,选择喷涂距离、喷涂电压和喷涂电流为正交因子,以涂层的显微硬度和孔隙率作为评价的指标,最终得到了较优的喷涂参数,制备了结构致密、结合良好的等离子喷涂层。采用点接触式滚动接触疲劳实验机开展涂层接触疲劳实验,通过两参数Weibull分布评估涂层寿命。
     研究了表面完整性对涂层接触疲劳行为的影响。分别对结合强度、表面硬度、涂层厚度和表面粗糙度对涂层寿命衰退机制的影响进行了探讨。研究表明,通过制备粘结底层的方法在提高涂层结合强度的同时明显增大了涂层的整体接触疲劳寿命,其主要原因是增强了涂层/基体界面的抗疲劳能力;通过表面渗N的方法提高涂层硬度的同时在一定程度上降低了涂层的整体寿命,其主要原因是表面硬化后脆性增强使得裂纹敏感度增大,导致渗N层快速分层失效;通过控制磨削过程增大涂层厚度的同时提高涂层的整体寿命,其主要原因是改善了涂层内部剪切应力的相对分布,使界面处于低应力状态;通过表面精加工的方式降低涂层粗糙度的同时提高了涂层整体寿命,其主要原因是有效避免粗糙接触,减轻了表面磨损。
     研究了负载条件对涂层接触疲劳行为的影响。分别对接触应力、转速对涂层寿命衰退机制的影响进行了探讨。研究表明,增大接触应力和转速均显著降低了涂层的整体寿命,增大接触应力后涂层内部和界面上强烈的剪切应力是涂层短期分层失效的主因,增大转速后单位时间内涂层承受的交变应力的频次增多,累积损伤进程加快,局部甚至可能出现应力叠加,因此寿命较短。
     研究了声发射技术在涂层接触疲劳在线监测中的应用。对比了声发射信号与传统振动、扭矩信号对于涂层疲劳开裂的敏感性,分析了涂层内部疲劳开裂的声发射信号源类型,研究了声发射信号对累积损伤过程的反馈,并进行了基于声发射信号提示的涂层失效预警研究。研究结果表明,声发射信号对于疲劳开裂的敏感性明显优于振动和扭矩信号,同时声发射信号可以准确反馈涂层内部或界面上的疲劳开裂并对累积损伤过程有着明确的反馈,基于声发射信号提示的预警模式,可以较为准确合理的预测即将到来的涂层失效。
     研制了基于表面压入法的喷涂层结合强度检测设备。探讨了表面压入法与声发射技术联合使用评估喷涂层结合强度的原理和可行性,设计和制造了便携式的压入设备样机,并开展了验证实验。有限元分析表明,表面交变压入可以引起较大的界面剪切应力。压入过程信号分析表明,声发射信号能量参数的突变可以作为评价涂层结合强度的特征参量。涂层的微观分析表明,表面交变压入可以有效诱发涂层界面裂纹,同时对涂层内部和基体无明显损伤。
Remanufacturing is industrialization of maintain of waste electromechanical products using high and new technologies. At the same time, remanufacturing is also an effective approach for economizing energy, decreasing discharge and establishing amphitypy society. As rising mode of economy of homeland benign transformation, remanufacturing domain fleetly develops. More and more corporations engaging remanufacturing appear. More and more people are approval with the concept of remanufacturing. Many scientific problems about remanufacturing are dramatic. The problem of quality evaluation of remanufacturing product need be specially focused. Plasma spraying is a useful technology for remanufacturing. The life evaluation of remanufacturing product by using plasma spraying can be actually predigested to the life evaluation of surface plasma sprayed coating.
     Mechnism and method of rolling contact fatigue (RCF) life evaluation of plasma sprayed coating are investigated in the present paper. Fe-based coatings were depositted by plasma spraying technology. Optimization of spraying parameters was conducted by orthogonal design. Spraying distance, spraying volitage and spraying current were selected as orthogonal factors. The micro-hardness and porosity of the coating were used as evaluation criterions. Optimizational spraying parameters were obtained. The optimizational coatings own density microstructrue and high bond strength. A ball on disk RCF tester was introduced to conduct the RCF experiments of the coatings. Two-parameter Weibull distribution was used to evaluate the coating life.
     The influence of surface integrity on RCF behavior of coating was investigated. The influence of bond strength, surface hardness, coating thickness and surface roughness on RCF behavior of coating were investigated, respectively. Experimental results showed that deposition of undercoating not only increases the bond strength, but also improve the holistic RCF life. The reason is the increase of fatigue resistance of the coating/substrate interface. Nitridation of the coating surface increase the surface hardness, but decrese the holistic RCF life. After nitridation, the brittleness of coating was obviously improved, as a result, the crack sensitiveness increased. So the nitriding layers always sloughed in a short time. The increase of coating thickness by controlling the grinding process can improve the holistic RCF life. The relative distribution of shear stress within the coating is charged by increasing thickness, and the interface bears lesser stress. The decrease of surface roughness by using surface finishing machining can improve the holistic RCF life. The surfaec abrasion is alleviated for smooth coating.
     The influence of loading condition on RCF behavior of coating was investigated. The influence of contact stress and rotational speed on RCF behavior of coating were investigated, respectively. Experimental results showed that the increase of contact stress and rotational speed both obviously decrease the holistic RCF life. The intensive shear stresses within the coating or on the interface are the main drivers for coating delamination in a short time. The coating bears time after time altering shear stress in unit time when rotational speed is more rapid. The accumulate damage process charges quick. The nestification of stress may appear. As a result, the holistic RCF life reduces.
     Application of acoustic emission (AE) technology in on-line monitor of RCF process of coating was investigated. The comparison of sensibility of AE signal, acceleration signal and torque signal on coating fatigue fracture was conducted. The origin modes of AE signals within the coating were analyzed. The response of AE signal on accumulate damage process was addressed. The prewarning of coating failure based on AE signals was investigated. Experimental results showd that AE signal is more sensitive for coating fracture than acceleration signal and torque signal. At the same time, AE sensor can accurately capture the fatigue fracture within the coaitng. AE signal can also r feedback the accumulate damage process of the coating during RCF experiment. The prewarning mode based on AE signal can effectively predict the coming coating failure.
     Evaluation technology of bond strength of sprayed coating based on surface altering indentation was investigated. The mechnism and feasibility of surface altering indentation were discussed. The model machine of indentation device were designed and fabricated. The certification experiments were conducted. Experimental results showed that energe parameter of AE signal can be used as feature parameter to evaluate the bond strength of coating. The observations of the coating released that the surface altering indentation can effectively induce the interface crack, but no damages in the coating interior and substrate.
引文
1 B.S. Xu, S. C. Liu, H.D. Wang . Developing remanufacturing engineering, constructing cycle economy and building saving-oriented society. Journal of Central South University of Technology, 2005, 12(S2):1-6
    2 B.S. Xu. The remanufacturing engineering and automatic surface engineering technology. Key Engineering Materials, 2008, 373-374:1-10
    3徐滨士.再制造工程基础及其应用.哈尔滨:哈尔滨工业大学出版社, 2005: 15-16
    4徐滨士.装备再制造工程的理论与技术.北京:国防工业出版社, 2007:1-3
    5徐滨士,朱绍华.表面工程的理论与技术.北京:国防工业出版社, 2010:24-27
    6 B.S. Xu. Nano surface engineering and remanufacture engineering. Transactions of Nonferrous Metals Society of China, 2004, 14(S2):1-5
    7徐滨士.再制造工程与纳米表面工程,金属热处理, 2006, 31(1):1-8
    8吴子健.热喷涂技术与应用.机械工业出版社, 2007:56-57
    9 R.T.R. MeGrann. The relation of material properties, residual stress, and thermal and mechanical loadings to coating degradation in thermal barrier coatings and tungsten carbide thermal sprayed coatings. Ph.D. Dissertation. The university of Tulsa, 1997:17-19
    10 W.B. Meyer. Metal spraying in United States: A JTST historical paper. Journal of Thermal Spray Technology, 1996, 5(1):79-83
    11 R.W. Smith. Equipment and theory, in: A lesson from thermal spray technology, Course 51, Lesson, Test 2, Materials Engineering Institute. Materials Park. OH:ASM International, New York. 1992:63-69
    12 K. Landes. Diagnostics in plasma spraying techniques. Surface & Coatings Technology, 2006, 201(5):1948-1954
    13 K.T. Scott, R. Kingswell. Thermal spraying in Advanced surface coatings a handbook of surface engineering. Eds, D.S. Rickerby, A. Mathws, Chapman and Hall, New York, 1991:216-243
    14 J.H. Clare, D.E. Crawmer. Thermal spray coatings. ASM Handbook, 1994, 5:361-374
    15徐滨士,李长久,刘世参,等.表面工程与热喷涂技术及其发展.中国表面工程, 1998, 38(1):3-9
    16 S. Zhu, B.S. Xu, J.K. Yao. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun. Material Science Forum, 2005, 475-479(v):3981-3984
    17谢友柏,张嗣伟.中国工程院咨询研究项目-摩擦学科学及工程应用现状与发展战略研究.北京:高等教育出版社, 2006:1-2
    18 M. Gell, E.H. Jordan,Y.H. Sohn, et al. Development and implementation of plasma sprayed nanostructured ceramic coatings. Surface and Coatings Technology, 2001, 146-147(9-10):48-54
    19 D. Goberman, Y.H. Sohn, L. Shaw L, et al. Microstructure development of Al2O3-13wt%TiO2 plasma sprayed coatings derived from nanocrytalline powders. Acta Materialia, 2002, 50:1141-1152
    20 H. Ageorges, P. Ctibor, Z. Medarhri, et al. Influence of the metallic matrix ratio on the wear resistance (dry and slurry abrasion) of plasma sprayed cermet (chromia/stainless steel) coating. Surface and Coating Technology, 2006, 201:2006-2011
    21 R. Manish, A. Rauschitz, J. Wernisch, et al. The influence of temperature on the wear of Cr3C2 25(Ni_20Cr) coating-comparison between nanocrystalline grains and conventional grains. Wear, 2004(257):799-811
    22 X.Q. Zhao, H.D. Zhou, J.M. Chen. Comparative study of the friction and wear behavior of plasma sprayed conventional and nanostructured WC-12%Co coatings on stainless steel. Material Science and Engineering A, 2006. 431:290-297
    23 J. Wang, L. Zhang, B.D. Sun, et al. Study of the Cr3C2–NiCr detonation spray coating. Surface and Coatings Technology, 2000, 130(1): 69-73
    24 T.W. Scharf, I.L. Singer. Role of the transfer film on the friction and wear of metal carbide reinforced amorphous carbon coatings during run-in. Tribology Letters, 2009, 6(1): 43-53
    25 M.B. Karamis, K Yildizli, H Cakyrer. Wear behaviour of Al–Mo–Ni composite coating at elevated temperature. Wear, 2005, 258(5-6): 744-751
    26 R Yilmaz. Microstructural and wear characterization of SiC reinforced Al2O3·TiO2 plasma coating. Industrial Lubrication and Tribology, 2006, 58(6): 312-319
    27 G.C Ji, C.J Li, Y.Y Wang, et al. Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2–NiCr coating. Surface and Coatings Technology, 2006, 200(24): 6749-6757
    28 L.Z.Du, B.S Xu,. S.Y Dong, et al. Sliding wear behavior of the supersonic plasma sprayed WC–Co coating in oil containing sand. Surface and Coatings Technology, 2008, 202(15): 3709-3714
    29 R. Arji, D.K Dwivedi, S.R Gupta. Sand slurry erosive wear of thermal sprayed coating of satellite. Surface Engineering, 2007, 23(5): 391-397
    30 S. Harsha, D.K. Dwivedi, A. Agarwal. Performance of Flame Sprayed Ni-WC Coating under Abrasive Wear Conditions. Journal of Materials Engineering and Performance, 2008, 17(1): 104-110
    31 G.B. Stachowiak, G.W. Stachowiak. Wear mechanisms in ball-cratering tests with large abrasive particles. Wear, 2004, 256(11): 600-607
    32 X.M. Li, Y.Y. Yang, T.M. Shao, et al. Impact wear performances of Cr3C2-NiCr coatings by plasma and HVOF spraying. Wear, 1997, 202(2):208-214
    33 J.C. Avelar-Batista, E. Spain, M. Letch, et al. Improvements on the wear resistance of high thermal conductivity Cu alloys using an electroless Ni-P coating prior to PVD deposition. Surface & Coatings Technology, 2006, 201:4052-4057
    34 S.Y. Yoon, K. O. Lee, S. S. Kang, et al. Comparison for mechanical properties between TiN and TiAlN coating layers by AIP technique. Journal of Materials Proceeing Technology, 2002, 130-131:260-265
    35 K. Holmberg, A. Laukkanen, H. Ronkainen, et al. Tribological contact analysis of a rigid ball sliding on a hard coated surface Part II: Material deformations, influence of coating thickness and Young’s modulus. Surface and Coatings Technology, 2006, 200(24): 3810-3823
    36 D. L Duan, S Li, X. H Duan, et al. Wear Behavior of Thermally Sprayed Coatings under Different Loading Conditions. Tribology Transactions, 2005, 48(1): 45-50
    37 M. Mohanty, R. W. Smith, M. De Bonte, et al. Sliding wear behavior of thermally sprayed 75/25 Cr3C2/NiCr wear resistant coatings.Wear, 1996, 198(1-2):251-266
    38徐向阳,左铁镛,刘世参,等.航空涡轮发动机叶片的表面失效及涂层防护技术.航空工程与维修, 2000, 6:21-23
    39吴朝军,吴晓峰,杨杰.热喷涂技术在我国航天领域的应用.金属加工, 2009. 18:23-27
    40 V. H. Hidalgo. Erosion wear and mechanical properties of plasma-sprayed nickel and iron-based coatings subjected to service condition in boilers. Tribology International, 1997, 30(9):641-649
    41 E. J. Morgan-Warren. Thermal spraying for boiler tube protection. Welding & Metal Fabrication, 1992, 60(1):25-31
    42赵雁潮,魏琪,栗卓新,等.热喷涂技术在锅炉管道防护中的应用进展.材料保护, 2006, 39(8):43-46
    43 B. Q. Wang. Chromium-titanium carbide cermet coating for elevated temperature erosion protection in fluidized bed combustion boiler. Wear, 1999, 225-229:502-509
    44郭立峰,黄安国,唐毅,等.超音速电弧喷涂技术在电站风机叶轮上的应用.风机技术, 2001, (4):19-21
    45刘传玉,马德举,姜维力.汽轮机叶片水蚀采用超音速火焰喷涂防护.东北电力技术, 2008 (5):30-35
    46武彬,孙宏飞,于惠博.热喷涂技术在电力工业中的应用.现代制造技术与装备, 2006 174(4):90-92.
    47张阳春,杨志康,郭东.国内外石油钻采设备技术水平分析.北京:石油工业出版社, 2001: 159-160
    48 J. Rodryguez, A. Martyn, R. Fernandez. An experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear, 2003, 255:950-955
    49 M. Ghorbani, M. Mazaheri, A. Afshar. Wear and friction characteristics of electrodeposited graphite bronze composite coatings. Surface & Coatings Technolgoy, 2005, 190:32-38
    50颜廷俊,王奎升,郭立谦,等.抽油杆/油管耐磨涂层摩擦磨损特性实验研究.润滑与密封, 2004, 164:46-48
    51 K. T. Kembaiyan, K. Keshavan. Combating seven fluid erosion and corrosion of drill bits using thermal spray coatings. Wear, 1995, 186-187(2):487-492
    52 B. Irving. Thermal-sprayed Zinc coating defend steel and concrete bridges. Weld Journal, 1993, 9:69-72
    53 B. S. Mann, P. Braham. High temperature friction and wear characteristics of various coating materials for steam valve spindle application. Wear, 2000, 240:223-230
    54王汉林,万宇杰,童幸生.内燃机活塞环陶瓷涂层研制.表面技术, 2007, 36(5):91-93.
    55 Y. Wang, S. Jiang, M. D. Wang. Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear, 2000, 237, 176-185
    56王铀,杨勇.热喷涂纳米结构涂层的研究进展及在外军舰艇上的应用.中国表面工程, 2008, 21(1):6-13
    57刘家浚.材料磨损原理及耐磨性.北京:清华大学出版社, 1993:16-17
    58 B. S. Xu. Development of surface engineering in China. Surface Engineering, 2010, 26 (1-2):123-125
    59 R. Nieminen, P. Vuoristo, K. Niemi, et al. Rolling contact fatigue failure mechanisms in plasma and HVOF sprayed WC-Co coatings. Wear, 1997, 212(1): 66-77
    60 R. Ahmed, M. Hadfield. Rolling contact fatigue behaviour of thermally sprayed rolling elements. Surface & Coatings Technology, 1996, 82(1-2):176-186
    61 R. Ahmed, M. Hadfield. Failure modes of plasma sprayed WC-15%Co coated rolling elements. Wear, 1999, 230(1):39-55
    62 X.Y. Shen, S.Y. Yu. Performance in resistance to surface fatigue for Cr3C2-25%NiCr coatings by plasma spray and CDS spray. Tribology Letters, 2004, 16(3):173-180
    63 R. Ahmed, M. Hadfield. Rolling contact fatigue performance of plasma sprayed coatings. Wear, 1998, 220(1):80-91
    64 B.Y. Sarma, M.M. Mayuram. Some studies on life prediction of thermal sprayed coatings under rolling contact conditions. ASME Journal of Tribology, 2000, 122 (3):503-510
    65 R. Ahmed, M. Hadfield. Rolling contact fatigue performance of detonation gun coated elements. Tribology International, 1997, 30(2):129-137
    66 S. Tobe, S. Kodama, H. Misawa. Rolling contact behaviour of plasma sprayed coating on aluminium alloy. Proc. Nat. Thermal. Spray Conf. Tokyo, Japan, ASM international, Anaheim, CA, 1990:171-178
    67 M. Fujii, A. Yoshida. Rolling contact fatigue of alumina ceramics sprayed on steel roller under pure rolling contact condition. Tribology International, 2006, 39:856-862
    68 X. C. Zhang, B. S. Xu, F. Z. Xuan, et al. Fatigue resistance of plasma-sprayed CrC–NiCr cermet coatings in rolling contact. Applied Surface Science, 2008, 254: 3734-3744
    69 R. Ahmed. Contact fatigue failure modes of HVOF coatings. Wear, 2002, 253(3): 473-487
    70 A. Nakajima,T. Mawatari,M. Yoshida,et al. Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coating in rolling/sliding contact. Wear, 2000, 241(2):166-173
    71 R. Ahmed, M. Hadfield. Experimental measurement of the residual stress field within thermally sprayed rolling elements. Wear, 1997, 209(1-2):84-95
    72 R. Ahmed, M. Hadfield. Wear of high-velocity oxy-fuel (HVOF)-coated cones in rolling contact.Wear, 1997, 203-204(5):98-106
    73 D. M. Nuruzzaman,A. Nakajima,T. Mawatari. Effects of substrate surface finish and substrate material on durability of thermally sprayed WC cermet coating in rolling with sliding contact. Tribology International, 2006, 39(7):678-685
    74 K. Holmberg, A.Matthews, H.Ronkainen. Coatings tribology-contact mechanisms and surface design. Tribology International, 1998, 31(1-3):107-120
    75 X. C. Zhang, B. S. Xu, F. Z. Xuan, et al. Rolling contact fatigue mechanism of a plasma-sprayed and laser-remelted Ni alloy coating. Fatigue & Fracture of Engineering Materials & Structure, 2009, 32(2):84-96
    76 S.Stewart, R.Ahmed. Contact fatigue failure modes in hot isostatically pressed WC-12%Co coatings. Surface Coating Technoloy, 2003, 172(2-3):204-216
    77 S. Stewart, R. Ahmed, T. Itsukaichi. Contact fatigue failure evaluation of post-treated WC–NiCrBSi functionally graded thermal spray coatings. Wear, 2004, 257:962-983
    78 S. Stewart, R. Ahmed, T. Ituskaichi. Rolling contact fatigue of post-treated WC-NiCrBSi thermal spray coatings. Surface Coating Technology, 2005, 190:171-189
    79 M. Fujii, J. B. Ma, A. Yoshida, et al. Influence of coating thickness on rolling contact fatigue of alumina ceramics thermally sprayed on steel roller. Tribology International, 2006, 39:1447-1453
    80 S. Ramalingam, L. Zheng. Film-substrate interface stresses and their role in the tribological performance of surface coatings. Tribology Internationa, 1995, 28(3):145-161
    81 C. Donnet. Tribology of solid lubricant coatings. Condensed Matter News, 1995. 4(6):9-24
    82王仁智.金属材料与零件的表面完整性欲疲劳断裂抗力间的关系.理化检验-物理分层, 2007, 42(10):535-537
    83 L. Z. Du, B. S. Xu, S. Y. Dong et al. Preparation, microstructure and tribological properties of nano-Al2O3/Ni brush plated composite coatings. Surface & Coatings Technology, 2005, 192(2-3):311-316
    84 J. B. Cheng, B. S. Xu, X. B. Liang, et al. Microstructure and wear behavior of FeBSiNbCr metallic glass coatings. Journal of Material Science and Technology, 2009. 25:687-690
    85濮春欢,徐滨士,王海斗,等.干摩擦条件下3Cr13涂层的加速磨损机理研究.摩擦学学报, 2009, 29(4): 368-373
    86《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会编.声发射检测.北京:机械工业出版社, 2005:14-17
    87 M. Abdullah. A. Ghamd, M. David. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size. Mechanical Systems and Signal Processing, 2006, 20: 1537-1571
    88 J. Sun, R.J.K. Wood, L. Wang, et al. Wear monitoring of bearing steel using electrostatic and acoustic emssion techniques. Wear, 2005, 259: 1482-1489
    89 T. Toutountzakis, D. Mba. Observations of acoustic emission activity during gear defedt diagnosis. NDT&E International, 2003, 36: 471-477
    90 K. Bruzelius, D. Mba. An initial investigation on the potential applicability of Acoustic Emission to rail track fault detection. NDT&E International, 2004, 37: 507-516
    91 S. Al-Dossary, R.I. Raja Hamzah, D. Mba. Observation of changes in acoustic emission waveform for varying seeded defect sizes in a rolling element bearing. Applied Acoustics, 2009, 70: 58-81
    92黄琪,余波,李录平,等.基于声发射检测的滑动轴承状态检测实验研究.电站系统工程, 2008, 24(2):15-20
    93 R. Unnthorsson, T.P. Runarsson, M.T. Jonsson. Acoustic emission based fatigue failure criterion for CFRP. International Journal of Fatigue, 2008, 30: 11-20
    94 S.K. Singh, K. Srinivasan, D. Chakraborty. Acoustic emission studies on metallic specimen under tensile loading. Material and Design, 2003, 24: 471-481.
    95 H. Chang, E.H. Han, J.Q. Wang, et al. Acoustic emission study of fatigue crack closure of physical short and long cracks for aluminum alloy LY12CZ. International Journal of Fatigue, 2009, 31: 403-407
    96 A. Roques, M. Browne, J. Thompson, et al. Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique. Biomaterials, 2004, 25: 769-778
    97 C. Ennaceur, A. Laksimi, C. Herve, et al. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference. International Journal of Pressure Vessels and Piping, 2006, 83: 197-204
    98 H. Roy, N. Parida, S. Sivaprasad, et al. Acoustic emissions during fracture toughness tests of steels exhibiting varying ductility. Materials Science and Engineering A, 2008, 486: 562-571
    99 Y.B.Guo, S.C.Ammula. Real-time acoustic emission monitoring for surface damage in hard maching. International Journal of Machine Tools & Manufacture, 2005, 45: 1622-1627
    100 Y.B.Guo, A.W.Warren. The impact of surface integrity by hard turning vs. grinding on fatigue damage mechanisms in rolling contact. Surface and Coatings Technology, 2008, 203: 291-299
    101 Y.B.Guo. D.W.Schwach. An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique. International Journal of Fatigue, 2005. 27:1051-1061
    102 A.W. Warren, Y.B. Guo, Acoustic emission monitoring for rolling contact fatigue of superfinished ground surface. International Journal of Fatigue, 2007, 29: 603-614
    103 D.W. Schwach, Y.B. Guo. A fundamental study on the impact of surface integrity by hand turning on rolling contact fatigue. International Journal of Fatigue, 2006, 28: 1838-1844
    104 Z. Rahman, H. Ohba, T. Yoshioka,et al. Incipient damage detection and its propagation monitoring of rolling contact fatigue by acoustic emission. Tribology International, 2009, 42(6):807-815
    105 J.M. Miguel, J.M. Guilemany, B.G. Mellor, et al. Acoustic emission study on WC-Co thermal sprayed coatings. Materials and Science Engineering A, 2003, 352: 55-63
    106王俊英,杨启志,倪新华,等.用声发射技术结合显微硬度法研究镍基合金复合涂层韧性.新技术新工艺, 2002, 6: 45-46
    107杨班权,张坤,陈光南,等.涂层断裂韧性的声发射辅助拉伸测量方法.兵工学报, 2008, 29: 420-424
    108 Z. Y. Piao, B. S. Xu, H. D. Wang, et al. Influence of undercoating on rolling contact fatigue performance of Fe-based coating. Tribology International, 2010. 43:252-258
    109 H.L Cox. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 1952, 3:72-79
    110 D. C. Agrawal, R. Raj. Measurement of the ultimate shear strength of a metal-ceramic interface. Acta Metallurgica, 1989, 37(4):1265-1271
    111 C. J. Xie, T.Wei. Cracking and decohesion of a thin Al2O3 film on a ductile Al-5%Mg substrate. Acta Materialia, 2005, 53(2):477-485
    112 H. Era, F. Otsubo, T. Uchida, et al. A modified shear test for adhesion evaluation of thermal sprayed coating. Materials Science and Engineering A,1998, 251(1-2):166-172
    113 S.Q. Guo, D.R. Mumm, A.M.Kagawa, et al. Measurement of interfacial shear mechanical properties in thermal barrier coating systems by a barb pullout method. Scripta Materialia, 2005, 53(9):1043-1048
    114 Z.H. Gan, S.G. Mhaisalkar, Z. Chen, et al. Study of interfacial adhesion energy of multilayered ULSI thin film structures using four-point bending test. Surface and Coatings Technology, 2005, 198(1-3):85-89
    115 H. Zhang, D.Y.Li. Determination of interfacial bonding strength using a cantilever bending method with in situ monitoring acoustic emission. Surface and Coatings Technology, 2002, 155(2-3):190-194
    116 S.J. Bull, E.G. Berasetegui. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribology International, 2006, 39(2):99-114
    117 S. Zhang, D. Sun, Y.Q. Fu, et al. Toughness measurement of thin films: a critical review. Surface and Coatings Technolgoy, 2005, 198(1-3):74-84
    118 J. Stallard, S. Poulat, D.G.Teer. The study of the adhesion of TiN coating on steel an titanium alloy substrates using a multi-mode scratch tester. Tribology International, 2006, 39(2):159-166
    119朱晓东,胡奈赛,何家文.滚动接触评定硬质薄膜的结合强度.中国表面工程, 1999, 12(3):15-18
    120 J.W. He, K.W. Xu, N.S. Hu. Evaluation of bonding strength of thin hard films by spherical rolling test. Surface and Coatings Technology, 1997, 97(1-3):295-298
    121 P.R. Chalker, S.J.Bull, D.S. Rickerby. Review of methods for the evaluation of coating-substrate adhesion. Materials Science and Engineering A, 1991, 140:583-592
    122 J.G.Buijnsters, P.Shankar, W.J.P. van Enckevort, J.J.Schermer, J.J.ter Meulen. Adhesion analysis of polycrystalling diamond films on molybdenum by means of scratch, indentation and sand abrasion testing. Thin Solid Films, 2005, 474:186-196
    123 A. Kuper, R. Clissold, P.J. Martin, M.V. Swain. A comparative assessment of three approaches for ranking the adhesion of TiN coatings onto two steels. Thin Solid Films, 1997, 308-309:329-333
    124 H. Ollendorf, D. Schneider. A comparative study of adhesion test methods for hard coatings. Surface and Coatings Technology, 1999, 113:86-102
    125 J.V. Stebut, F.Lapostolle, M.Bucsa, H.Vallen. Acoustic emission monitoring of single cracking events and associated damage mechanism analysis in indentation and scratch testing. Surface and Coatings Technology, 1999, 116-119:160-171
    126易茂中,冉丽萍,戴耀,等.用涂层压入仪界面压入测定结合强度的实验研究.理化检验, 1998, 34:27-30
    127易茂中,胡奈赛,何家文,等.涂层压入仪的研制及其应用.粉末冶金材料科学与工程, 2000, 5:79-86
    128胡奈赛,徐可为,何家文,等.涂、镀层的结合强度评定.中国表面工程, 1998, 38:31-35
    129 A. Yonezu, B.X. Xu, X. Chen. An experimental methodology for characterizing fracture of hard thin films under cyclic contact loading. Thin Solid Films, 2010, 518(8):2082-2089
    130刘东旭,张泰华,郇勇.宏观深度测量压入仪器的研制.力学学报, 2007, 3:64-69
    131 K. Sriram, R.Narasimhan, S.K.Biswas. A numerical fracture analysis of indentation into thin hard films on soft substrates. Engineering Fracture Mechanics, 2003, 70:1323-1338
    132钱秀清,张建宇,费斌军.材料特性对热障涂层合理压入深度的影响.航空材料学报, 2008, 5:45-49
    133 M. K. Kazmanli, B. Rother, M. Urgen, C.Mitterer. Identification of cracks generated by indentation experiments in hard-coating systems. Surface and Coating Technology, 1998, 107:65-75
    134 X. L. Pang, K. W. Gao, F. Luo, Y. Emirov, A.A. Levin, A.A. Volinsky. Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings. Thin Solid Films, 2009, 517:1922-1927
    135 R.Rabe, J.M. Breguet, P.Schwaller, et al. Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Film, 2004, 469-470:206-213
    136张显程.面向再制造的等离子喷涂层结构完整及寿命预测基础研究. [上海交通大学,博士学位论文]. 2007:67-68
    137 F. Elfallagh, B. J. Inkon. 3D analysis of crack morphologies in silicate glass using FIB tomography. Jouranl of the European Ceramic Society, 2009. 29:47-52
    138 X. C. Zhang, B.S. Xu, Y. X. Wu, et al. Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates. Applied Surface Science, 2008, 254:3879-3889
    139 X. C. Zhang, B.S. Xu, S. D. Tu, et al. Effect of spraying power on the microstructure and mechanical properties ofsupersonic plasma-sprayed Ni-based alloy coatings. Applied Surface Science, 2008, 254:6318-6326
    140 A. H. Tan, Y. C. Cheng. Optimization of wear-corrosion properties of a-C:N films using filtered cathodic arc deposition. Diamond and Related Materials, 2008, 17:36-42
    141 H. R. Sobhi, Y. Yamini, A. Esrafil, et al. Suitable conditions for liquid-phase microextraction using solidification of a floating drop for extraction of fat-solution vitamins established using an orthogonal array experimental design. Journal of Chcomatography A, 2008, 1196-1197:28-32
    142 H. K. Lee. Effects of the cladding parameters on the deposition efficiency in pulsed Nd:YAG laser cladding. Journal of Material Processing technology, 2008, 202:321-327
    143王翠玲.基于正交实验的超音速火焰喷涂Fe基涂层组织性能的研究. [山东科技大学,硕士学位论文]. 2005:45-47
    144 Y. Gao, X.L. Xu, Z.J. Yan, et al. High hardness alumina coatings prepared by low power plasma spraying. Surface & Coatings Technology, 2002, 154(2-3):189-193
    145 J. Cizek, K. A.Khor, Z. Prochazka. Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Material Science and Engneering, 2007, 27(2):340-344
    146 M.Vardelle, A. Vardelle, P. Fauchais. Spray parameters and particle behavior relationships during plasma spraying. Journal of Thermal Spray Technology, 1993, 2:79-85
    147 M.F. Morks, A. Kobayashi. Influence of gas flow rate on the microstructure and mechanical properties of hydroxyapatite coatings fabricated by gas tunnel type plasma spraying. Surface & Coatings Technology, 2006, 201(6):2560-2566
    148 A. Kulkarni, A.Vaidya, A.Goland. et al. Processing effects on porosity-property correlations in plasma sprayed yttria- stabilized zirconia coatings. Material Science and Engineering A, 2003, 359(1-2):100-111
    149 J. B. Cheng, X. B. Liang, B. S. Xu, et al. Microstructure and wear behavior of FeBSiNbCr metallic glass coatings. Journal of Materials Science and Technology, 2009, 25:687-690
    150 Y. P. Wu, P. H. Lin, Z. H. Wang, G.Y. Li. Microstructure and microhardness characterization of a Fe-based coating deposited by high-velocity oxy-fuel thermal spraying. Journals of Alloys and Compounds, 2009, 481:719-724
    151 B. Y. Sarma, M. M. Mayuram. Some studies on life prediction of thermal sprayed coatings under rolling contact conditions. Transaction of the ASME, 2000, 122:503-510
    152 Y. Choi, C. R. Liu. Rolling contact life of finish hard machined surfaces Part 1. Model development. Wear, 2006, 261:485-491
    153 M. Sivapragash, P.R. Lakshminarayanan, R.Karthikeyan, K.Raghukandan, M.Hanumantha. Fatigue life prediction of ZE41A magnesium alloy using Weibull distribution. Materials & Design, 2008, 29:1549-1553
    154 D. Shan, H.N. Hashemi. Fatigue-life prediction of SiC aluminum composite using a Weibull model. NDT&E International, 1999, 32:265-274
    155 S. Picoli, R. S. Mendes, L. C. Malacarne. q-exponential, Weibull, and q-Weibull distributions: an empirical analysis. Physica A, 2003, 324: 678-688
    156 R. Jiang, M. J. Zuo, H. X. Li. Weibull and inverse Weibull mixture models allowing negative weights. Reliability Engineering and System Safety, 1999, 66:227-234
    157 H. Hertz. On the contact of elastic solids. Journal of Reine Angew Math, 1882, 92:156-171
    158 K. L. Johnson. Contact Mechanics. Cambridge: Cambridge University Press, 1992:17-19
    159 Y. F. Tan. P. Martin, C. Lescalier, et al. Study on the ground surface quality of Cr2O3 coatings. Journal of Materials Processing Technology, 2002, 129:441-445
    160 D. J. Stephenson, J. Hedge, J. Corbett. Surface finishing of Ni-Cr-B-Si composite coatings by precision grinding. International Journal of Machine Tools & Manufacture, 2002, 42:357-363
    161 M. Klein, D. Eifler. Influences of the manufacturing processes on the surface integrity and the resulting fatigue behavior of quenched and tempered SAE 4140. Procedia Engineering, 2010, 2:2239-2247
    162 O. Culha, E. Celik, N. F. AkAzem NF, et al. Microstructural, thermal and mechanical properties of HVOF sprayed Ni–Al-based bond coatings on stainless steel substrate. Journal of Materiasl Processing Technology, 2008, 204:221-230
    163 E. Way. Pitting due to rolling contact. Journal Applied Mechanic,1935, 2:49-58
    164 Z. J. Yin, S. Y. Tao, X. M. Zhou, et al. Tribological properties of plasma sprayed Al/Al2O3 composite coatings. Wear, 2007, 263:1430-1437
    165 C. Y. Seemikeri, P. K. Brahmankar, S. B. Mahagaonkar. Investigations on surface integrity of AISI 1045 using LPB tool. Tribology International, 2008, 41:724-734
    166 M. D. Wang, L. L. Shaw. Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina-titania coatings. Surface & Coatings Technology, 2007, 202:34-44
    167 J.Q. Yang, Y. Liu, Z.Y. Ye, et al. Microstructure and tribology characteristics of nitride layer on 2Cr13 steel in air and vacuum. Surface & Coaitngs Technology, 2009, 204:705-712
    168田野,王毛球,李金许,等.新型渗氮钢的力学性能及渗氮特性.材料热处理学报, 2008, 29(3):122-125
    169 Y. X. Chen, X. B. Liang, Y. Liu, et al.Prediction of residual stresses in thermally sprayed steel coatings considering the phase transformation effect[J].Materials & Design, 2010, 31:3852-3858
    170 C.H. Hsueh . Thermal stresses in elastic multilayer systems. Thin Solid Films, 2002, 418(2):180-188
    171 I. A. Polonsky, T. P. Chang, L. M. Keer, et al. An analysis of the effect of hard coatings on near-surface rolling contact fatigue initiation induced by surface roughness. Wear, 1997, 208:204-219
    172 J. Kang, M. Hadfield, R. T. Cundill. Rolling contact fatigue performance of HIPed Si3N4 with different surface roughness. Ceramics International, 2001, 27:781-794
    173 M. M. Khonsari, S. H. Wang. On the role of particulate contamination in scuffing failure. Wear, 1990, 137: 51-62
    174 Y. Choi, C. R. Liu. Wear, Rolling contact fatigue life of finish hard machined surface: Part 2. Experimental verification, 2006, 261(5-6):492-499
    175 R. Ahmed. Contact fatigue failure modes of HVOF coatings. Wear, 2002, 253(3): 473-487
    176 P. Ramaurty, B. Satyanarayana. K. Ramji, et al. Evaluaion of fatigue life of aluminium alloy wheels uner bending loads. Fatigue Fracture of Engineering Materials Structures, 2008, 32:119-126
    177 J. H. Ahn, C. W. Sim, Y. J. Jeong, et al. Fatigue behavior and statistical evaluation of the stress category for a steel-concrete composite bridge deck. Journal of Constructional Steel Research, 2009, 65:373-385
    178 L. Tom, R. Naman. Proposal for a more accurate physically based S-N curve for welded steel joints. International Journal of Fatigue, 2009, 31:70-78
    179 W. J. Ringsberg. Life prediction of rolling contact fatigue crack initiation. International Journal of Fatigue, 2001, 23:575-586
    180 D. Finney Charles, R.Gnanmoorthy, Parag Ravindran. Rolling contact fatigue behavior of polyamide clay renfored nanocomposite-Effect of load and speed. Wear, 2010, 269:565-571
    181 H. Chang, E.H. Han, J.Q. Wang, et al. Acoustic emission study of fatigue crack closure of physical short and long cracks for aluminum alloy LY12CZ. International Journal of Fatigue, 2009, 31:403-407
    182 S. K. Singh, K. Srinivasan, D. Chakraborty. Acoustic emission studies on metallic specimen under tensile loading. Material and Design, 2003, 24:471-481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700