用户名: 密码: 验证码:
挤压坯预成形模压成形过程中镁合金组织与性能的演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一次封闭模压挤压预成形型材,是高材料利用率、短流程、高效率生产高品质镁合金锻件的新方法。尽管在镁合金挤压变形规律、组织性能检测及工艺理论基础上目前投入了大量人力物力,形成了巨量的文献报道,但迄今仍然鲜有对镁合金挤压变形材在封闭模压过程中的组织和性能演变的实验观察和理论研究报道。
     本文拟通过对典型镁合金的挤压变形组织在封闭热模压过程中的演化及其对机械性能的影响进行深入系统的实验研究和理论分析,探明镁合金挤压变形型材在封闭模压过程中的组织和性能演变规律,为奠定挤压预成形模压成形技术的理论和实验基础提供了一定实验依据。
     为此,以挤压态AZ81镁合金为主要研究对象,用半连续铸坯挤压制备了具有锻件二维几何特征的预成形坯型材,截取与锻件等体积的模压坯料,然后对截断型材用封闭模压方法一次模压成形获得最终成形锻件。采用Gleeble1500热力模拟机对挤压态AZ81镁合金的热压缩变形行为进行分析研究,为确定模压成形工艺参数的制定提供一定的理论依据,然后对进行模压成形试验,采用金相、SEM、EBSD、常温拉伸和硬度检测等检测手段,深入分析了镁合金在挤压预成形坯模压成形过程中的材料内部组织及力学性能的演变规律,对挤压预成形坯模压近(或净)终成形工艺的经济性及可行性进行了探讨。
     主要研究内容及结论如下:
     (1)研究了挤压工艺对镁合金组织与力学性能的影响,并通过SEM分析了挤压工艺对镁合金断裂机制的影响。研究表明在热挤压过程中发生了动态再结晶,合金的晶粒在热挤压过程中产生了明显细化。挤压比相同时,随挤压温度的升高,基体的再结晶程度增加,合金的晶粒在370℃,挤压速度6~20mm/s时,晶粒最细,力学性能最好,温度继续升高,合金的再结晶晶粒尺寸逐渐增大;挤压温度相同时,挤压比越大,基体的再结晶就越完全,晶粒分布越均匀,合金的晶粒尺寸也随之减小,抗拉强度、屈服强度及伸长率得到大幅改善。与铸态合金相比,通过挤压方法提高了合金的屈服强度的同时还提高了镁合金的塑性,为后续的模压成形提供了高品质的预成形模压坯料;
     (2)研究了挤压态AZ81镁合金高温压缩变形行为。合金在高温压缩过程中表现为典型的动态再结晶特征。温度较低或应变速率较高时,流变曲线所达到的峰值应力较大,而在相同应变速率下,峰值应变随温度升高而明显减小;流变应力、应变速率和变形温度之间的关系可用双曲正弦函数表示,其中平均激活能Q=182.17KJ/mol,应力指数α=0.0043Mpa-1,应力指数n=4.4865,其高温塑性流变行为的本构方程为:峰值应变与变形条件(Z参数)之间满足关系式
     (3)对挤压态AZ81镁合金进行热加工性能进行分析,根据功率耗散图及失稳图制定模压成形工艺,并对模压成形后试样的显微组织及力学性能进行了研究,结果表明:经400℃模压变形后,合金的晶粒在三向压力及挤压态下等轴晶粒沿模压方向被拉长或被破碎成无数个细小单元个体,试样断面易形成强烈的纤维组织,力学性能较挤压态时有较大幅度的提高,挤压态AZ81镁合金的抗拉强度σ_b=331MPa;屈服强度σ_s=236.7MPa;延伸率δ=16.6%;模压成形后σ_b=350.2Mpa,σ_s=244.8MPa;δ=16.1%;经T6热处理后合金,AZ81镁合金的抗拉强度改善不明显,而屈服强度有了明显的改善,但延伸率显著下,其力学性能为σ_b=358.5Mpa,σ_s=270.7MPa;δ=9.8%;
     (4)模压成形过程中,合金显著细化,挤压态时晶粒平均尺寸为3.5μm;当变形量较小时,晶粒有长大趋势,随变形量增至30%时,晶粒细化至2~3μm,晶粒细化不明显,当变形量增加到50%~60%,由于外加机械强应力作用,晶粒细化至1~2.5μm,挤压板主要以基面织构(basal texture){0001}<1010>为主,且与挤压方向平行,随变形量的增加,合金内部晶粒在剪切内应力作用下,沿晶界发生一定角度的转动,并随变形量的增加,初始基面织构及晶粒取向的变化越明显,但织构强度较挤压态时变弱,基面的择优取向(Preferential orientation)偏离了ED方向,向FD方向集中,随变形量的增加,由于非基面滑移开动,织构方向偏离挤压方向,而向模压方向偏转,且晶粒取向差分布逐渐转向大角方向,在模压过程中易于形成与模压方向垂直的织构;挤压预成形坯模压复合成形过程中,晶粒细化是提高合金力学性能的重要手段,而合金的织构对材料的力学性能起着重要的作用。
     (5)分析了挤压预成形模压复合成形工艺的经济性及技术可行性,通过该工艺不仅能获得具有模具内腔形状及尺寸的净终成形的锻件产品,而且所获得的锻件晶粒显著细化,组织致密均匀,综合力学性能好,且是一种高效率、低能耗、高品质、高工艺收得率的一种塑性成形工艺,具有一定的工业发展前景。
The one-shot closed-die pressing for extruded preform is a new process to produce magnesium forging products with high material utilization, short process, high efficiency as well as high quality. The current research are focused on the law of Mg deformation, tests of microstructure and properties and the theory of process, and the extensive literature is consequently presented. However, it is rare to see reports about the experimental observations and theoretical research on the evolution of the microstructure and performance for magnesium extruded preforing profile in the process of closed-die pressing.
     The microstructure evolution for typical Mg extruded profiles in hot closed-die pressing and the effects on mechanical properties in this paper were experimentally investigated and theoretically analyzed. And the evolution of microstructure and performance on extrude Mg profile during pressing were eventually discovered, which laid a theoretical and experimental foundation on the technology of closed-die pressing process for extruded preform.
     Therefore, a preform extrusion profile with the 2D geometrical feature of the specimens was first produced in use of AZ81, Then, the profile was sectioned, and net-shapely pressed into the specimens with the required geometry. The Gleeble1500 thermo-simulation machine was adopted to conduct analytical investigation on the hot deformation behavior of the as-extruded AZ81 in preparation for process parameters of pressing forming. Instruments such as metaloscope, SEM,EBSD, tensile testing machine as well as hardness test equipments were used during the whole experiment to deeply analyze the evolution of microstructure and mechanical properties of the profile during pressing forming. The economy and feasibility of near-net-shape pressing for extruded preform were also discussed.
     The major contests and conclusions are as follows:
     (1) The influence of extrusion preforming process on mechanical performance together with on fracture mechanism for Mg alloys through SEM were studied, and preventive measures for avoiding material defects in extrusion preforming were also presented to guarantee the profiles with uniform and fine microstructure. Study shows that dynamic recrystallization (DRX) and grain refinement are occurred during hot pressing. With same extrusion ratio, DRX increases as temperatures elevates. The finest grain size and excellent mechanical properties can be obtained with temperature at 370℃and extrusion rate 6~20mm/s, while the size of recrystalized grain becomes larger as temperature continues to increase. Under the same temperature, the larger the extrusion ratio is, the more the DRX happens, and the more uniform the grains are. Meanwhile, the grain size is coherently decreased, and tensile strength, yield strength as well as elongation are improved. The extrusion preforming process not only increases the yield strength of Mg alloys but also improves the plasticity in comparison with as-cast alloys, in order that following press forming experiment can be done with the high quality profiles.
     (2) The hot deformation behavior of the as-extruded AZ81 were also investigated, and microstructure during hot compressive deformation is mainly characterized by DRX. The peak stress of flow curve is higher either at lower temperature or faster strain rate. While at the same rate, the peak strain obviously decreases as temperature increases. The relationship amongst flow stress, strain rate and temperature can be described as , where the average activation energy Q=182.17KJ/mol, the stress exponentα= 0.0043Mpa-1, the strain exponent n=4.4865, And the constitutive equation for high-temperature plastic flow behavior is in which the peak strain and deformation condition(Z) suit to
     (3) Analysis on the hot deformation mecahnism and processing Map of as-extruded AZ81 magnesium alloy, according to power dissipation map and instablility map developed molding forming process. The microstructure and mechanical properties of specimens after pressing forming were researched. The results show that after pressed at 400℃, the equiaxed grains are elongated along pressing direction or fragmented into numerous small unit particles under three-dimensional compressive stress and extrusion force. A strong texture structure is formed in the fracture area, and mechanical properties are increased a certain degree but not too much compared with that of as-extruded AZ81. The tensile strengthσ_b, the yield strengthσ_s, the elongationδof as-extruded AZ81 are 331MPa, 236.7MPa and 16.6% respectively, while that of after-pressed AZ81 are 350.2MPa, 244.8MPa, and 16.1% respectively. After T6 heat-treated alloy, AZ81 magnesium alloy to improve the tensile strenght is not obvious, while the yield strength has been significicantly improved, but the extension rate was significantly, its mechanical properties ofσ_b = 358.5Mpa,σ_s = 270.7MPa;δ= 9.8%.
     (4) Remarkable grain refinement occurs during pressing process, while the average grain size in as-extruded is 3.5μm. With small deformation ratio, the grain tends to grow, whereas the grain is refined to 1~2.5μm when deformation ratio increases to 50%~60% together with outer force is applied. The profiles of extruded preforming is dominantly on basal texture {0001}<10 1 0>, and the basal plane is parallel to extrusion direction(ED). As deformation continues, the inner shear stress gives rise to grain rotation along boundaries with certain angles and initial basal texture and grain orientation vary remarkably, though the texture intensity is weaker than that of as-extruded. The basal preferential orientation deviates from extrusion direction (ED) and aligns with the FD. With deformation ratio increased and non-basal slip activated, the texture orientation turns away from extrusion direction(ED) and deflects along pressing direction. And the grain misorientation gradually turns into the direction of the larger angle. Consequently, it is prone to create a texture perpendicular to pressing direction. The grain refinement and texture for extruded preform and pressing compound process make great contributions to the mechanical properties.
     (5) The economy and feasibility of the pressing for extruded preform were finally analyzed. Through this technique, the near-net shape products with remarkable refined and uniform grains and excellent comprehensive mechanical properties can be obtained. It is a plastic process that combines with high efficiency, low energy consumption, high quality as well as high yield ratio, which can be put into industry in the future.
引文
[1]陈振华等编著.镁合金.北京:化学工业出版社,2004.
    [2] Clow B B. Magnesium industyr overview. Advanced Mater Proc. 1996, 10: 33-36.
    [3] R.W. Evans, B. Wilshire. Creep of metals and alloys [M]. London: Institute of Metals, 1985.
    [4]杨宜科.金属高温强度及试验[M].上海:上海科学技术出版社,1986.
    [5] Diem W. Magnesium in defferent applications. Auto Technology. 2001, 1: 40-41.
    [6] Kamado S, Koike J, Kondoh K, Kawamura Y. Magnesium research trend in Japan. Mater Sci Forum. 2003, 419-422: 21-34.
    [7] Y.S.Sun, W.M.Zhang, X.G.Min. Tensile Strength and CreepResistance of Mg-9Al-1Zn Based Alloys with Calcium Addition [J]. ACAT Metallurgica Sinica (English Letters),2001,14(5):330 - 334.
    [8] M. Regev, E.Aghion, S.Berger, et al. Dislocation analysis of crept AZ91D ingot casting [J]. Materials Science and Engineering A, 1998,257: 349-352.
    [9]刘奎立,张治民,杨宝付.镁合金成形技术及其应用研究[J].锻压技术,2004, (5): 5 - 8.
    [10]周海涛,马春江,曾小勤等.变形镁合金材料的研究进展[J].材料导报,2003, 17(11): 16- 18.
    [11]余琨,黎文献,王日出等.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003, 13(2): 277 - 288.
    [12]陈振华等主编,变形镁合金.北京:化学工业出版社,2005.6.
    [13] Schumann S, Friedrich H. Current and futrue use of magnesium in the automobile industry. Materials Science Forum, 2003, 419-422:51.
    [14]魏宇.变形镁合金的形变加工工艺研究: [东南大学硕士学位论文].南京:东南大学, 2004,1-2.
    [15]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004(1), 39-56.
    [16]邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报, 2002, 10: 37~39.
    [17]尹守义.国外镁合金的新发展[J].世界有色金属, 1994, (7): 9 - 11.
    [18] Fores F H, Eliezer D, Aghion E. How to increase the use of magnesium in aerospace applications, In: Aghion E, Eliezer D, ed. Proceedings of the second Israeli international conference on magnesium science & technology. Israel: Dead Sea, 2000, 43.
    [19]张氏宏,许沂,王忠堂等.镁合金成形加工技术[J].世界科技研究与发展,2001,23(6):18-21
    [20]黄少东,唐全波,赵祖德等.用镁合金促进兵器装备轻量化[J].金属成形工艺.2002, Vol.20, No.5, 8 - 10.
    [21]曾正明主编,实用工程材料技术手册[M].北京:机械工业出版社,2000.
    [22]陈振华,夏伟军,严红革等.变形镁合金[M]. .北京:化学工业出版社, 2005(1): 48-100.
    [23] Yoo M H, Agnew S R, Morris J R, et al. Non-basal slip systems in hcp metals and alloys: source mechanisms [J]. Materials Science and Engineering A, 2001, 319-321(1/2): 87-92.
    [24] Couret A, Cailiard D. Prismatic slip in beryllium I: the controlling mechanism at the peak temperature [J]. Philosophical Magazine A, 1989, 59(4):783-800.
    [25] Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy [J]. Materials Transactions, 2003, 44(4):426-435.
    [26] Couret A, Cailiard D. An in situ study of prismatic glide in magnesium-I. The rate controlling mechanism [J]. Acta Metallurgic, 1985, 33(8):1447-1462.
    [27] Couret A, Cailiard D. An in situ study of prismatic glide in magnesium-II. Microscopic activation parametiers [J]. Acta Metallurgic, 1985, 33(8): 1455-1462.
    [28] Püschl W. Models for dislocation cross-slip in close-paced crystal structures: a critical review [J]. Progress in Materials Science, 2002, 47(4): 415-461.
    [29] Vrtek V, Igarashi M. Core structure of 1/3<11 2 0> screw dislocations on basal and prismatic planes in hcp metals: an atomistic study [J]. Philosophical Magazine A, 1991, 63(5): 1059-1075.
    [30]小池淳一,宫村刚夫.多结晶マグネシゥム合金板における塑性变形的微視的檅構[J]輕金属, 2004, 54(11): 460-464.
    [31] Christian J W, Mahajan S. Deformation twining [J]. Progress in Materials Science, 1995, 39(1-2): 1-157.
    [32] Jaschik C, Haferkam H, Niemeyer M. New Magnesium Wrought Alloys in: Kainer K U(Ed.), Proc Magnesium Alloys and their Applications. Munich, Germany, 2000: 41 ~ 46.
    [33]陈振华.变形镁合金[M].化学工业出版社. 2004.
    [34] Polmear I J. Magnesium alloys and application [J]. Materials Science and Technology. 1994, 10(2):1-16.
    [35]张佩武,夏伟,刘英等.变形镁合金成型工艺研究及其应用[J].材料导报,2005,19(7):82 -85.
    [36]王祝堂.镁及镁合金的锻造[J].有色金属加工, 2005, 34(6):30 -42.
    [37]陈礼清,于宝海,马宗义.镁合金主要制备成形技术述评[J].世界有色金属, 2005 (8): 17- 23.
    [38]王祝堂.镁合金的锻造[J]有色金属加工, 2005,345(6): 30 -42.
    [39]吕炎,徐福昌,薛克敏等.镁合金上机匣等温精锻工艺的研究[J].哈尔滨工业大学学报,2000,32(4): 127 - 129.
    [40]王祝堂.镁板材轧制工艺及性能[J].有色金属加工,2004,33(3): 8 - 20.
    [41]陈振华,夏伟军,严红革等.镁合金材料的塑性变形理论及其技术[J].化工进展, 2004,23(2): 127 - 135.
    [42] Hosokawa H, Chino Y, Shimojima K, et al. Mechanical properties and blow forming of rolled AZ31 Mg alloy shee t[J]. Materials Transaction, 2003,44(4);484 - 489.
    [43]尉胤红,王渠东,刘满平等.镁合金超塑性研究现状及发展趋势[J].材料导报,2002, 16(9): 20 - 23.
    [44]王庆娟,杜忠泽,刘长瑞等.镁合金塑性加工技术的研究进展[J].轻合金加工技术, 2006, 34 (1): 14 - 18.
    [45] Chen F X, Su J H, Yang Y L, et a1.Research on super plasticity and super plastic extrusion of MB26 magnesium alloy [J]. Journal of Materials Science and Technology,2001, 17(1):147 - 148.
    [46]王素梅,孙康宁,毕见强.大塑性变形法制备块体纳米材料[J].金属热处理,2003,28(5): 5 - 7.
    [47]赵新,高聿为,南云等.制备块体纳米/超细晶材料的大塑性变形技术[J].材料导报,2003, 17(12): 5 - 8.
    [48]许晓嫦,刘志义,党朋等.强塑性变形(SPD)制备超细晶粒材料的研究现状与发展趋势[J].材料导报,2005, 19(1): 1 - 5.
    [49] Zhernakov V S, Latysh V V, et a1.The developing of nanostructure SPD Ti for structural use [J]. Scripta Materialia, 2001, 44(8-9): 1771-1774.
    [50] Ravi Kumar N V, Blandin J J, Desrayaud C, et al. Grain refinement in AZ91 magnesium alloy during thermo mechanical processing[J].Materials and Engineering A, 2003, A359(1-2): 150-157.
    [51] Wu Xia, Liu Yi. Superplasticity of Coarse-grained Magnesium Alloy [J].Scripta Materialia, 2002, 46(4): 269-274.
    [52] Akihiro Yamashita, Zenji Horit, Terence G.Langdon. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation [J].Materials Science and Engineering A, 200, A300 (1-2): 142-147.
    [53] Yu Yoshida, Lawrence Cisar, Shigeharu Kamado,et al, Texture Development of AZ31 Magnesium Alloy during ECAE Processing[J]. Materials Science Forum, 2003, 419-422(1): 533-538.
    [54] Si-Young Chang, Sang-Woong Lee, Kae Myung Kang, et al, Improvement of Mechanical Characteristics in Severely Plastic-deformed Mg Alloys[J]. Materials Transactions, 2004, 45(2): 488-492.
    [55] Ravi Kumar N V, Blandin J J, Desrayaud C, Montheillet F, Suéry M. Grain refinement in AZ91 magnesium alloy during thermomechanical processing. Mater Sci Eng A. 2003. 359: 150-157.
    [56] Chang T C, Wang J Y, O CM, Lee S. Grain refining of magnesium alloy AZ31 by rolling. [J] Mater Proc Techn. 2003, 140: 588 - 591.
    [57]吉田雄, Lawrence CISAR,鎌土重晴,小島陽. ECAE加工したAZ31マグネシウム合金の引張特性に及ぼすミクロ組織因子の影響.軽金属. 2002, 52: 559 - 565.
    [58] Murai T, Matsuoka S, Miyamoto S, Oki Y. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. J Mater Proc Tech. 2003, 141: 207-212.
    [59] Kim W J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing Acta Mater. 2003, 51: 3293 - 3307.
    [60] Mukai T, Watanabe H, Ishikawa K, Higashi K. Guide for enhancement of room temperature ductility in Mg alloys as high strain rates. Mater Sci Forum. 2003, 419-422: 171-176.
    [61] Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta Mater. 2001, 45: 89 - 94.
    [62] Somekawa H, Mukai T. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. Scripta Mater. 2005, 53: 541-545.
    [63] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Mater. 2004, 52: 5093-5103.
    [64] Staroselskya A, Anand L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B. Inter J Plast. 2003, 19: 1843-1864.
    [65] Klimanek P, P?tzsch A. Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater Sci Eng A. 2002, 324: 145-150.
    [66] Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Materi. 2006,54 549-562.
    [67] Hanlin Ding, Liufa Liu, Shigeharu Kamado, Wenjiang Ding, Yo Kojima. Evolution of microstructure and texture of AZ91 alloy during hot compression. Mater Sci Eng A. 2006. Inpress.
    [68] Wagner L, Hilpert M, Wendt J. On methods for inproving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80. Mater Sci Forum. 2003, 419-422: 93-102.
    [69] Kalidindi S R. Modeling anisotropic strain hardening and deformation textures in lowstacking. Fault energy FCC metals. Int J Plast. 2001, 17: 837-860.
    [70] Christian J W, Mahajan S. Deformation Twinning. Prog Mater Sci. 1995, 39: 1-157.
    [71] Poss R. Sheet metal production of magnesium. Mater Sci Forum. 2003, 419-422: 327-336.
    [72] Tanno Y, Mukai T, Asakawa M. Study on warm caliber rolling of magnesium alloy. Mater Sci Forum. 2003, 419-422: 359-364.
    [73] Wu S K, Chou T S, Wang J Y. The deformation texture in AZ31B magnesium alloy. Mater Sci. Forum. 2003, 419-422: 527-532.
    [74] Yoshida Y, Cisar L, Kamado S, Kojima Y. Effect of microstructural factors on tensile properties of an ECAE-processed AZ31 magnesium alloy. Mater Trans. 2003, 44: 468-475.
    [75] Zhang Y, Zeng X Q, Liu L F, Lu C, Zhou H T, Li Q, Zhu Y P. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys. Mater Sci Eng A. 2004, 373: 320-327.
    [76] Pérez-Prado M T, Valle J A, Ruano O A. Effect of sheet thickness on the microstructure evolution of an Mg alloy during large strain hot rolling. Scripta Mater. 2004, 50: 667-671.
    [77]东建司,平井勤二.制造镁合金产品的方法中国,发明专利,CN1443862A[P].,2003.9.24.
    [78]江木山.镁合金锻造成型新工艺.中国,发明专利,CN 1345641A[P],2002.4.24.
    [79]坂本和夫,山本幸男,石田恭聪.镁合金锻造材料和锻造构件以及制造锻造构件的方法.中国,发明专利,CN 1249355A[P],2000.4.
    [80]龙思远,曹韩学.镁合金复合成形方法:中国,CN200410040086.7[P]. 2004-10-04.
    [81]吴立鸿,关绍康,王利国等.锻造镁合金及影响锻造成形的几个关键因素[J].锻压技术, 2006, (4): 7-10.
    [82]刘楚明,刘子娟,朱秀荣等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报, 2006, (1): 1-12.
    [83]曹韩学,龙思远.多场交互作用下镁合金塑性变形研究[J].中国机械工程, 2007, (18): 361-364.
    [84] Cahn R W,师昌绪,柯俊.非铁合金的结构与性能.北京:科学出版社. 1999:101.
    [85] Polmear I J. Magnesium alloys and applications. Mater Sci Tech. 1994; 10: 1-14.
    [86] Polmear I J. Magnesium alloys and applications. Mater Sci Tech. 1994; 10: 1-14.
    [87] E.Aghion, D.Eliezer. Magnesium and magnesium alloys(Science, Technology and Application) [M]. Israel: Avi Moshe Bregman Ltd, 2004.
    [88]张晓凉,唐新民.锻造镁材料的特性及在车轮上的应用[J].国外金属热处理, 1998, (4): 38-40.
    [89] Kubota K, Mabuchi M, Higashi K. Processing and mechanical properties of fine grained magnesium alloys[J] Mater Sci. 1999; 34: 2255-2262.
    [90] Watanabe H, Tsutsui H, Mukai T, Kohzu M, Tanabe S, Higashil K. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures. Int J Plast. 2001: 17: 387-397.
    [91] Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31 magnesium alloys. Script Mater. 2001; 45: 89-94.
    [92] Philippe M J. Texture formation in hexagonal materials. Mater Sci Forum. 1994, 157-162: 1337-1350.
    [93] Emley. Principles of Magnesium Technology. Oxford,Pergamon , 1966,p122-136.
    [94] Das S K, Chang C F. Magnesium Alloys and their Applications. Oberursel, FRGDGM Information Sgesellschaft , 1992.
    [95] Mabuchi M, Iwasaki H, Yanase K, Higashi K. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Mater. 1997, 36: 681-686.
    [96] Yoshida Y, Arai K, Itoh S, et al. Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working. Sci Tech Adv Mater, 2005, 6: 185-194.
    [97] Lin H K, Huang J C. Fabrication of low temperature high strength and high ductility for AZ61 magnesium alloy by severe warm working. Sci Tech Adv Mater, 2005, 6: 185-194.
    [98] Wu Lihong. Study on the forgeability, superplasticity and forming process of AZ70 magnesium alloy at elevated temperatures.博士论文. 2008.
    [99]马图哈K H主编.丁道云译.非铁合金的结构与性能.北京:科学出版社, 1999.
    [100]п.и.卢波欣等著.塑性变形的物理基础[M].冶金工业出版社, 1989.11.
    [101] Derby B, Ashby M F. On dynamic recrystallization. Scripta Metall. 1987, 21: 879-884.
    [102] Peczak P, Luton M J. The effect of nucleation models on dynamic recrystallizationⅡ: Heterogeneous stored energy distribution. Phil. Mag. B. 1994, 70: 817-849.
    [103] Peczak P. A monte carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metall. 1995, 43: 1279-1291.
    [104]王平,崔建忠等.金属塑性成形力学[M].冶金工业出版社,2006.8.
    [105]谢建新,刘静安.金属挤压理论与技术[M].冶金工业出版社,2001.5.
    [106]赵明汉,张继,冯滌.高温合金断口分析图谱[M[.冶金工业出版社, 2006.8.
    [107] M.Tisza. Numerical modeling and simulation in sheet metal forming [J]. Journal of Materials Processing Technolgoy 151 (2004) 58-62.
    [108] Z.Q. Sheng, R. Shivpuri. Modeling flow stress of magnesium alloys at elevated temperature [J]. Materials Science and Engineering A 419(2006) 202-208.
    [109]王进,陈军,赵镇等.非调质钢F40MnV高温流动应力模型研究[J].塑性工程学报, 2005, 12(5): 54-58.
    [110]徐文臣,单德彬,李春峰. TA15钛合金的动态压缩行为及其机理研究[J].航空材料学报, 2005, 25(4): 10-16.
    [111] SHI H, MCLAREN A J, SELLARS C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Technology 13(1997) 210-214.
    [112] Z. Trojanová, P. Lukáǒ. Compressive defromation behaviour of magnesium alloys [J]. Journal of Materials Processing Technology 162-163(2005) 416-421.
    [113]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社, 1999.
    [114]曹乃光.金属塑性加工原理[M].北京:冶金工业出版社,1989, 231-235.
    [115]黄勇,刘心宇,曾中明. 1050铝合金热扎流变应力研究.轻合金技工技术, 2002, 30(9): 15-18.
    [116]п.и.波卢欣,г.я.贡, A.M.加尔金著.林治平译.金属与合金的塑性变形抗力[M]。机械工业出版社, 1984.
    [117]郭强,严红革,陈振华,张辉. AZ31镁合金高温热压缩变形特性[J].中国有色金属学报, 2005.15 (6): 900-906.
    [118]范永革,汪凌云,黄光胜,黄光杰.变形镁合金高温变形流变应力分析[J].重庆大学学报, 2003.26(2) :9-11.
    [119]张先宏,崔振山,阮雪榆.镁合金塑性成形技-AZ31成形性能及流变应力[J].上海交通大学学报, 2003. 37(12): 1874-1877.
    [120] Gao Weilin, Bai Guangrun, Zhou Zhimin. An evolution model of dislocation patterns in plastic deformation and its applications. Science in China, Ser.A, 1995, 7: 109-117.
    [121] Kaibyshev R, Galiyev A. On the possibility of superplasticity enhanced byrecrystallization[J]. Materials Science Forum, 1997, 243-245(1): 131-136
    [122] Galiyev A,Kaibyshev R,Sakai T.Continuous dynamic recrystallization in magnesium alloy[J]. Materials Science Forum, 2003, 419-422 (1): 509-514
    [123]毛萍莉,杨柯,苏国跃.铸态奥氏体不锈钢的热变形行为.金属学报. 2001, 1: 37-39.
    [124] Mwembela A, Konopleva E B, McQueen H J. Microstructrual development in Mg alloy AZ31 during hot working. Sci. Mater. 1997, 37: 1789-1795.
    [125] Spigarelli S, Cabibbo M, Evangelista E, et al. Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy. Mater Sci Eng A. 2000, 289: 172-181.
    [126] McQueen H J, Ryan N D. Constitutive analysis in hot working. Mater Sci Eng A. 2002, 322: 43-63.
    [127] Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. ACTA Metallurgic, 1966, 14: 1136-1138.
    [128] Daniel J, Whittenberger. The influence of grain size and composition on slow plastic flow in FeAl between 1100 and 1400K [J]. Mater Sci Eng A, 1986, 77: 103-113.
    [129] McQueen H J. Metal forming: Industrial, mechanical, computational and microstructure [J]. Journal of Materials Processing Technology, 1993, 37(1-4): 3-36.
    [130] Jennifer A. Jackman, Jeffrey Wood, Eihachmi Essadipi, et al. Overview of Key R & D Activities for the Development of High-Performance Magnesium Materials in Canda[J]. Materials Science Forum 488-489(2005)21-24.
    [131] Spigarelli S, Cabibbo M, Evangelista E, et al. Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy. Mater Sci Eng A. 2000, 289: 172-181.
    [132] L.Li, J.Zhou, J.Duszczyk.. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion [J]. Journal of Materials Processing Technology 172 (2006) 372-380.
    [133] Sivakesavam O, Rao I S, Prasad Y V R K. Processing map for hot working of as cast magnesium. Mater Sci Tech. 1993, 9: 805-810.
    [134] Polmear I J. Magnesium alloys and applications. Mater Sci Tech. 1994, 10: 1-14.
    [135]韩冰. 7075z铝合金高温塑性变形行为的研究[D].硕士论文.广东工业大学. 2003.
    [136] Myshyaev M M, McQueen H J, Mwembela A, Konopleva E V. Twining, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Mater Sci Eng A. 2002, 337: 121- 133.
    [137] Haitao Zhou, Liufa Liu, Qudong Wang, et al. Stain Softening and Hardening Behavior in AZ61 Magnesium Alloy. J Mater Sci Technol. 2004, 20: 691-693.
    [138]郭强.镁合金高温单向压缩及多向变形行为研究[D].博士论文.湖南大学. 2007.
    [139] Ryan N D, McQueen H J. Flow stress, dynamic restoration, strain hardening and ductility in hot working of 316 steel. J Mater Proc Tech. 1990, 21: 177-199.
    [140] Ryan N D, McQueen H J. Work hardening, strength and ductility in the hot working of 304 austenitic stainless steel. High Temp Tech. 1990, 8: 27-43.
    [141] Ryan N D, McQueen H J. Comparion of dynamic softening in 301, 304 and 317 stainless steels. High Temp Tech. 1990, 8: 185-200.
    [142] Ravi Kummar N V Blandin J J, Desrayaud C, Montheillet F, Suéry M. Grain refinement in AZ91 magnesium alloy during thermomechanical processing. Mater Sci Eng A. 2003, 359: 150-157.
    [143] Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 1982, 30: 1909-1919.
    [144] Prasad Y. V.R.K, Rao K.P. Effect of crystallographic texture on the kineics of hot deformation of rolled Mg-3Al-1Zn alloy plate[J]. Materials Science and Engineering A, 2006, A432(1-2): 170-177.
    [145] Couret A, Cailiard D. Prismatic slip in beryllium I: the controlling mechanism at the peak temperature[J]. Philosophical Magazine A, 1989, 59(4): 783-800.
    [146] Medina S F, Hernandez C A. The influence of chemical composition on peak strain of deformed austenite in low alloy and microalloyed steels[J]. Acta Materialia, Volume 44, Issue 1, Pages 149-154.
    [147]杜勇.热挤压和Al含量对AZ系镁合金组织和性能影响研究.硕士论文,重庆大学, 2009.
    [148] Watanabe H, Tsutsui H, Mukai T, et al. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Materials Science and Engineering A, 2006, A432(1-2): 170-177.
    [149]西北工业大学有色金属锻造编写组.有色金属锻造[M].北京:国防工业大学出版社,1979.
    [150]崔忠圻.金属学与热处理[M].北京:机械工业出版社, 2006.
    [151]王占学.塑性加工金属学.冶金工业出版社[M], 1991.
    [152]钟群鹏,赵子华.断口学[M].2006.6
    [153] Hong Tac Kang, Terry Ostrom. Mechanical behavior of cast and forged magnesium alloys and their microstructrues [J]. Materials Science and Engineering A, 2008, 49(1-2): 52-56.
    [154] Guan S K, Wu L H, Wang P. Hot forgeability and die-forging forming of Semi-continuous Casting AZ70 Mg-alloy [J]. Materials Science and Engineering A, 2009, 499(1-2): 187-191.
    [155]吴立鸿,关绍康,王利国,刘俊.锻造镁合金及影响锻造成形的几个关键因素[J].锻压技术, 2006, 31(4):7-10.
    [156]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002.
    [157] Liu J, Ram say C W, A skeland D R effects of Foam Density and Density Gradients on MetalFill in the LFC Process [J]. AFS Transaction, 1997, 105:435-442.
    [158]龙思远,曹凤红,廖慧敏.镁合金复合成形方法[P].中国.发明专利, CN 200810069225.7[P]. 2008.01.10.
    [159] Pan E N, Sheu G L. Mold filling behavior in vertical gating lost foam aluminum alloy [J]. AFS Transaction, 2001, 79: 1503-1521.
    [160] Liu Z L, Hu J Y, Ding W J, et al. Effect of Processing Parameters on Mold Filling in Magnesium Alloy EPC Process [J]. AFS Transaction, 2001, 101: 1 ~ 14.
    [161] Myagchilov S, Dawson P R. Evolution of texture in aggregates of crystals exhibiting both slip and twinning [J]. Modeling and Simulation in Materials Science and Engineering, 1999, 7: 975~1004.
    [162]杨平,任学平,赵祖德. AZ31镁合金热诚成形及退火过程的组织与织构[J].材料热处理学报, 2003, 24(4): 12-17.
    [163] Myagchilov S, Dawson P R. Evolution of texture in aggregates of crystals exhibiting both slip and twinning[J]. Modelling and Simulation in Materials Science and Engineering, 1999, 7: 975~1004.
    [164] Wagner L , Hilpert M , Wendt J. On methods for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80[J]. Materials Science Forum Vols, 2003, 419 422: 93~102.
    [165] Kalidindi S R. Modeling anisoptropic strain hardening and deformation textures in low stacking fault energy materials [J]. International Journal of Plasticity, 2001, 17: 837~ 860.
    [166] ChristianJ W, Mahajan S. Deformation twinning[J].Progress in Materials Science, 1995, 39: 1~157.
    [167] Poss R. Sheet metal production of magnesium[J]. Materials Science Forum Vols, 2003, 419 422: 327~336.
    [168] Valle J A , Prado M T, Ruano O A. Texture evolution during large strain hot rolling of the AZ61 Mg alloy[J]. Materials Science and Engineering, 2003, A355: 68~78.
    [169] Humphreys F J. Quantitative metallpgraphys by electron backscattered diffraction. Journal of Microscopy, 1999, 195: 170-175.
    [170] Yang X, Miura H. Sakai T. Dynamic evolution of new grains in magnesium alloy during hot deformation. Mater. Trans. 2003; 44: 197-203.
    [171] Yoshida Y, Cisar L, Kamado S, Koike J, Kojima Y. Texture development of AZ31 magnesium alloy during ECAE processing. Mater Sci Forum. 2003, 419-422: 533.
    [172]陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性[J].中国有色金属学报. 2005,15: 1-11.
    [173] Elwazri A M,Wanjara P,Yue S.Dynamic recrystallization of austenite in microalloyed high carbon steels[J].Materials Science and Engineering A,2003, A339(1-2): 209-215
    [174] Barnett M R,Beer A G,Atwell D,et al.Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn[J].Scripta Materialia,2004,51(1): 19-24
    [175] Prasad Y V RK, Sasidhara S. Hot Working Guide: A Courpendium of Processing Maps[M]. OH: ASM International. 1997.
    [176] Bozzinib, Cerri E. Numerical reliability of hot working processing maps [J]. Materials Science and Engineering. 2002, A328:344-347.
    [177] Cerri E, Spigarelli S, Evangelista S E, et al. Hot defromation and processing maps of a particulate reinfroced 6061+20%Al2O3 composite[J]. Mater Sci Eng A, 2002, A324(1-2): 157-161.
    [178] Cavaliere P. Hot and warm forming of 2618 aluminium alloy [J] . Journal of Light Metals, 2002, 2 (4) : 247 252.
    [179]林哲民. XX系铝合金的锻造性能[J].中国有色金属学报,2002,12(2): 264-268
    [180]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社, 2007.
    [181] http://hi.baidu.com/liaochengdaxue/blog/item/a61d147365c0b4168601b074.html
    [182] Duly D, Simon J P, Brechet Y. On the competition between continuous and discontinuous precipitation in binary Mg-Al alloys, Acta Metall Mater, 1995, 43(1):101.
    [183] Celotto S, Bastow T J . Study of precipitation in aged binary mg-al and ternary mg-al-zn alloys using 27~Al NMR spectroscopy. Acta Mater . 2001, 49 (1): 41-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700