“V型”两亲性聚合物接枝的纳米材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管在电子、光学、聚合物共混材料方面有其独特的性能,是科学界研究的热点。而纳米级的金刚石粉同样具有金刚石优良的物理和化学特性,而且其应用范围更广,纳米金刚石的制造,特别是应用,是近年来各国科学家的热门研究课题。然而它们都在溶剂中难于分散,极大地制约了其应用,因此有必要对其表面进行功能化,提高分散性和加工性能。活性自由基聚合埘聚合物的结构可控性方面有其独特的特点,在聚合物材料设计方面有着广泛的运用。其中RAFT聚合单体适用性广,反应条件温和,不存在原子转移自由基聚合中去除残余离子的问题。本文旨在采用RAFT方法合成结构可控的官能化嵌段共聚物,探讨以活性自由基聚合技术功能化碳纳米管、纳米金刚石的方法,以及聚合物修饰后的纳米材料的溶液性质。主要包括以下内容:
     (1)首先以偶氮二异丁腈为引发剂,二硫代苯甲酸异丙苯酯为链转移剂研究了功能性单体N,N-dimethylaminoethyl methacrylate(DMAEMA),poly(ethyleneglycol)methyl ether methacrylate(PEGMA),t-butyl methacrylate(t-BMA),2-hydroxyl ethyl methacrylate(HEMA),glycidyl methacrylate(GMA),methylmethacrylate(MMA),styrene(st)的RAFT聚合,聚合呈活性特征,得到了结构可控的多分散指数低于1.35的官能化嵌段聚合物。合成了中间嵌段带活性官能团的嵌段聚合物PtBMA-b-PGMA-b-PS,PtBMA-b-PHEMA-b-PDMAEMA,PMMA-b-PGMA-b-P(PEGMA)。利用合成的嵌段共聚物PtBMA-b-PGMA-b-PS中活性环氧基团同胺基取代的金刚烷反应,合成了嵌段中含金刚烷单元的三嵌段聚合物。
     (2)利用嵌段共聚物(PtBMA-b-PGMA-b-PS)的活性环氧基团与羧化的纳米金刚石的羧基反应,通过“center-Iinking”的方法得到了“V型”嵌段聚合物修饰的纳米金刚石PtBMA-g-ND-g-PS。该接枝物中聚甲基丙烯酸特丁酯链段的特丁基在三氟乙酸存在下水解,得到了两亲性聚合物聚苯乙烯PS和聚甲基丙烯酸PMAA同时接枝的纳米金刚石PMAA-g-ND-g-PS。使用TEM、SEM和TGA表征了聚合物官能化纳米金刚石的结构形态和接枝率。这种“V型”两亲性聚合物接枝的纳米金刚石不仅能在有机溶剂和水中分散而且能在油水界面进行自组装。
     (3)利用链中带环氧官能团或羟基官能团的嵌段聚合物(PtBMA-b-PGMA-b-PS和PtBMA-b-PHEMA-b-PDMAEMA),分别与碳纳米管表面的羧基或酰氯反应,通过“center-linking”的方法将两种不同聚合物同时接枝到碳纳米管上,得到了“V型”聚合物修饰的碳纳米管,这种不同聚合物同时接枝上碳纳米管的结构未见报到。将其中嵌段单元的特丁基水解,就得到两亲性聚合物和两性聚电解质修饰的碳纳米管。这种两亲性聚合物和两性聚电解质接枝的碳纳米管在溶剂中的分散性能得到了很大的提高,而且对pH变化敏感,还能实现碳纳米管在油水界面的白组装。
     (4)原始碳纳米管由于其疏水疏油性能,在超声分散后能被置换到油水的界面,形成水包油或油包水的“Pickering”乳液。原始碳纳米管在油水界面组装后将油水分为两相,我们利用界面的接枝反应来修饰碳纳米管。在水相中添加水溶性单体和水溶性引发剂,在油相中添加油溶性单体和油溶性引发剂,然后利用两相中的原位自由基聚合法一步在碳纳米管的表面同时接枝上两种不同的高分子链,得到了两亲性聚合物修饰的碳纳米管PS-g-MWCNT-g-PAM和PS-g-MWCNT-g-PDMAEMA。通过油水界面来制备两亲性聚合接枝的碳纳米管的方法简单有效,而且接枝率高。
Carbon nanotubes have been an area of intense research due to its potential utility in numerous areas,such as molecular wires and electronic,sensors,high-strength fibers,and field emission displays.Nanodiamond is a promising and valuable powder material with the remarkable properties like diamond such as superhardness,excellent chemical stability,thermal conductivity and biocompatibility.Recently years,the research on Nanodiamond is become popular.Nevertheless,the carbon nanotube and nanodiamond are not soluble in almost any solvents,which remain a severe limitation to the extensive use.So,it is very important to functionalize the carbon nanotubes and nanodiamond in order to improve their dispersibility in solvents and matrics. Reversible addition fragmentation chain transfer mediated polymerization(RAFT), one of a number of leading living radical polymerization techniques,has attracted considerable interest.It provides molecular weights predetermined by the chain transfer agent and conversion,and,more importantly,Produce polymers under mild reaction conditions.The main purpose of this work is to study the synthesis of well-defined functional polymers via the RAFT process and surface-modification of carbon nanotubes and nanodiamond with polymers resulting from living radical polymerization.This dissertation contains the following aspects:
     (1)Functional monomers N,N-dimethylaminoethyl methacrylate(DMAEMA), poly(ethylene glycol)methyl ether methacrylate(PEGMA),t-butyl methacrylate (t-BMA),2-hydroxyl ethyl methacrylate(HEMA),glycidyl methacrylate(GMA), methy methacrylate(MMA) and styrene(st) were polymerized by RAFT with cumyl dithiobenzoate as a chain transfer agent and AIBN as initiator.The process showed living characteristic and the functional polymers were obtained with controlled molecular weights and polymer polydispersity indices less than 1.35.Tri-block copolymers PtBMA-b-PGMA-b-PS,PMMA-b-PG MA-b-P(PEGMA), PtBMA-b-PHEMA-b-PDMAEMA containing small amount of epoxy groups or hydroxyl groups in the middle of the chains were synthesized by sequential polymerization of functional monomers using macro-chain transfer agent via RAFT process.The adamantine containing block copolymers were synthesized by reaction of amantadine with the epoxy groups of PtBMA-b-PGMA-b-PS.
     (2)PS and PtBMA were grafted onto nanodiamond particles by the reaction of epoxy groups in the block copolymers of PtBMA-b-PGMA-b-PS and carboxylic groups on the surface of nanodiamond.This "center-linking" process resulting in "V shaped" block polymer functionalized nanodiamond PtBMA-g-ND-g-PS.TEM,SEM, and TGA were employed to determine the structure,morphology,and the grafting quantities of the resulting products.Amphiphilic polymers grafted nanodiamond PMAA-g-ND-g-PS was prepared by subsequent hydrolysis of the tert-butyl group into carboxylic group.Those "V shaped" Amphiphilic polymers grafted nanodiamond displayed dispersibility not only in organic solvent but also in water. PMAA-g-ND-g-PS self-assembled at the interfaces of chloroform and water,or toluene and water.
     (3)PtBMA-b-PGMA-b-PS and PtBMA-b-PHEMA-b-PDMAEMA were synthesized via RAFT process.Those block polymers were grafted onto multi-walled carbon nanotubes by the reaction of epoxy groups or hydroxyl groups in the block copolymers with carboxylic groups or chloride on the surface of tubes.This "center-linking" process resulting in "V shaped" block polymer functionalized carbon nanotubes.Amphiphilic polymers and zwitterionic polymers grafted tubes were prepared respectively by subsequent hydrolysis of the tert-butyl group into carboxylic group.These Amphiphilic polymers and zwitterionic polymers grafted tubes displayed dispersibility not only in organic solvent but also in water and showed pH responsibility.PMAA-g-MWCNT-g-PS and PMAA-g-MWCNT-g-PDMAEMA can self assemble at the interfaces of chloroform and water,or toluene and water.
     (4)Pristine carbon nanotubes are insoluble in either water or oil.When mixtures of CNTs,water,and organic solvent are sheared vigorously,a macroscopic emulsion of oil droplets forms in water,with the CNTs residing at the interface between the immiscible fluids,acting as a natural "surfactant" or interphase material.Herein we present the formation of amphiphilic polymer grafted CNTs by simultaneous biphasic grafting of different polymer at a liquid/liquid emulsion interface through free radical polymerization.Interface is separated into two phases,which can be synchronously modified by free radical polymerization in the two phases with hydrophilic/lipophilic monomers.As a result,through one single step we prepared amphiphilic polymer grafted CNTs PS-g-MWCNT-g-PAM and PS-g-MWCNT-g-PDMAEMA.This approach is facile with high grafting efficiency.
引文
[1]Appenzeller,T.The man who dared to think small[J].Science 1991,254,(5036),1300-1300.
    [2]Shenderova,O.A.,Zhirnov V.V.,and Brenner D.W.Carbon nanostructures[J]Critical Reviews in Solid State and Materials Sciences,2002,27(3/4):227-356.
    [3]Ultrananocrystalline Diamond,(Eds:O.A.Shenderova,D.M.Gruen),William Andrew,Norwich,UK 2006.
    [4] Decarli, P.S.; Jamieson, J. C. Formation of diamond by explosive shock[J].Science,1961(133),1821-1826.
    [5] Krueger, A. Diamond Nanoparticles: Jewels Chemistry and Physics [J]. Adv.Mater. 2008,20:2445-2449.
    [6] Stawer, A M; Gubareva, N. V. et al. Ultrafine powders manufactured with the use of explosive enery[J]. Fizlka Goreniia i Vzryva, 1984, 20(5): 100-107.
    [7] Frenklach, M; Kematick,R. Huang,D.; Howard,W.; Homogeneous nucleation of diamond powder in the gas-phase[J]. Appl. Phys. 1989, 66, 395-399.
    [8] Buerki, P. R.; Leutwyler, S. Homogeneous nucleation of diamond powder by CO,-laser-driven gas-phase reactions[J]. Journal of Applied Physics, 1991, 69,3739-3744.
    [9] Donnet, J.B.; Lemoigne, C; Wang, T.K.; Peng, CM.; Samirant, M.; Eckhardt, A.Detonation and shock synthesis of nanodiamonds[J]. Bull. Soc. Chim. Fr. 1997,134,875-890.
    [10]Krueger, A. The structure and reactivity of nanoscale diamond[J]. J. Mater.Chem., 2008, 18, 1485-1492.
    [11]Aleksenskii, A. E.; Baidakova,M. V.; Vul', A. Y. Siklitskii,Phys, V. I. Solid State 1999,41,668.
    [12]Xu, K.; Xue, Q. J. A new method for deaggregation of nanodiamond from explosive detonation: Graphitization-oxidation method[J]. Physics of the Solid State, 2004, 46(4): 649-650.
    [13]Shenderova, O.; Petrov, I. et al. Modification of detonation nanodiamonds by heat treatment in air[J]. Diamond and Related Materials, 2006, 15(11-12): 1799-1803.
    [14]Kruger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration[J].Carbon, 2005, 43, 1722-1730.
    [15]Ozawa, M.; Inakuma, M.; Takahashi, M.; Kataoka, F.Preparation and behavior of brownish, clear nanodiamond colloids[J]. Adv. Mater., 2007, 19, 1201-1206.
    [16]Zhu, Y. W.; Shen, X. Q. et al. Chemical mechanical modification of nanodiamond in an aqueous system[J]. Physics of the Solid State, 2004. 46(4): 681-684.
    [17]Chiganova, G. A. The effect of particle hydration on the aggregation stability of ultradispersed diamond hydrosols[J]. Colloid J., 1997, 59, 87-89.
    [18]Chiganova, G. A. Aggregation of particles in ultradispersed diamond hydrosols[J] Colloid J., 2000, 62, 238-241.
    24
    [19]Chiganova,A.S.;Chiganova,G.A.Properties of ultra dispersed diamonds produced by detonation synthesis[J].Inorganic Materials,1994,30(1):51-53.
    [20]Bondar',V.S.;Pozdnyakova,I.O.;Puzyr',A.P.Applications of nanodiamonds for separation and purification of proteins[J].Phys.Solid State,2004,46,758.
    [21]Huang,L.C.L.;Chang,H.C.Adsorption and immobilization of cytochrome c on nanodiamonds[J].Langmuir,2004,20,5879-5884.
    [22]Chung,P.H.;Perevedentseva,E.;Tu,J.-S.;Chang C.C.Spectroscopic study of bio-functionalized nanodiamonds[J].Diamond Relat.Mater.2006,15,622-655.
    [23]Puzyr',A.P.;Pozdnyakova,I.O.;Bondar',V.S.Phys.Solid State 2004,46,761.
    [24]Sawada,H.;Kurachi,J.;Takahashi,H.;Ueno,K.;Hamazaki,K.,Dispersion of nanodiamond into organic media by the use of fluoroalkyl end-capped oligomers applications to surface modification of poly(methyl methacrylate) with the dispersed nanodiamond[J].Polymers for Advanced Technologies,2005,16,(9),651-654.
    [25]Liu,Y.;Gu,Z.N.;Margrave,J.L.;Khabashesku,V.N.,Functionalization of nanoscale diamond powder:Fluoro-,alkyl-,amino-,and amino acid-nanodiamond derivatives[J].Chemistry of Materials 2004,16,(20),3924-3930.
    [26]Liu,Y.;Khabashesku,V.N.;Halas,N.J.,Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface[J].In Journal of the American Chemical Society,2005;Vol.127,pp 3712-3713.
    [27]Kruger,A.;Liang,Y.J.;Jarre,G.;Stegk,J.,Surface functionalisation of detonation diamond suitable for biological applications[J].Journal of Materials Chemistry 2006,16,(24),2322-2328.
    [28]Li,L.;Davidson,J.L.;Lukehart,C.M.,Surface functionalization of nanodiamond particles via atom transfer radical polymerization[J].Carbon 2006,44,(11),2308-2315.
    [29]陈权,挥寿榕.炸药爆轰合成纳米金刚石及其应用[J].人工晶体学报,2000,29(1):90-93.
    [30]Dohnatov,V.Yu;Burkat,G.K.;Saburbaev,V.Yu.et al.Preparation and properties of electrochemical composite coatings of precious and nonferrous metals with ultradispersed detonation-synthesized diamonds[J].Super hard Materials,2001,(2):49-55.
    [31]Burkat,G.K.;Dolmatov,V.Yu.Application of ultrafine-dispersed diamonds in electroplating[J].Physics of the Solid State,2004,46(4):703-71.
    [32]Dolmatov V Yu.Detonation synthesis ultradispersed diamonds:properties and applications[J].Russian Chemical Reviews,2001,70(7):607-626
    [33]胡志孟,锥建斌,温诗铸,等.纳米金刚石用作磁头抛光材料的研究[J].材料保护,2001,34(12):11,1
    [34]张栋,胡晓刚,仝毅,黄风雷.纳米金刚石用做润滑添加剂的研究进展[J].润滑油,2006.21(1):50-53.
    [35]Shenderova O.A.,Zhirnov V.V.,and Brenner D.W.Carbon nanostructures[J]Critical Reviews in Solid State and Materials Sciences,2002,27(3/4):227-356.
    [36]刘晓新,周刚,文潮,孙德玉.纳米金刚石对橡胶力学性能的影响[J].特种橡胶制品,22(5):14-16
    [37]Krueger,A.New carbon materials:Biological applications of functionalized nanodiamond materials[J].Chemistry-a European Journal 14(5):1382-1390(2008).
    [38]Kong,X.L.;Huang,L.C.L.Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides[J].Anal.Chem.2005,77,259-265.
    [39]Huang,T.S.;Tzeng,Y.;Liu,Y.K.;Chen,Y.K.;Walker,K.R.Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications[J].Diamond Relat.Mater.2004,13,1098-1102.
    [40]Iijima,S.Helical microtubules of Graphitic carbon[J].Nature.1991,354(6348):56-58.
    [41]Ajayan,P.M.Nanotubes from carbon[J].Chemical Reviews.1999,99(7):1787-1799.
    [42]Yakobson,B.I.;Smalley,R.E.Nourishing nanotubes-reply[J].American Scientist.1997,85(6):500-500.
    [43]Ruoff,R.S.;Lorents,D.C.Mechanical and thermal-properties of carbon nanotubes[J].Carbon.1995,33(7):925-930.
    [44]Che,J.W.;Cagin,T.;Goddard,W.A.Thermal conductivity of carbon nanotubes[J].Nanotechnology.2000,11(2):65-69.
    [45]Collins,P.C.;Arnold,M.S.;Avouris,P.Engineering carbon nanotubes and nanotube circuits using electrical breakdown[J].Science.2001,292(5517):706-709.
    [46]Bethune,D.S.;Kiang,C.H.;de Vries,M.S.;Gorman,G.;Savoy,R.;Vazquez,J.; Beyers, R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature. 1993, 363(6430): 605-607.
    [47]Liu, C; Cong, H. T.; Li, F.; Tan, P. H.; Cheng, H. M.; Lu, K.; Zhou, B. L.Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arcdischarge method[J]. Carbon. 1999,37(11): 1865-1868.
    [48]Ebbesen, T. W.; Ajayan, P. M. Large-Scale synthesis of carbon nanotubes[J].Naturre, 1992, 358(6383): 220-222.
    [49]Ishigami, M.; Cumings, J.; Zettl, A.; Chen, S. A simple method for the continuous production of carbon nanotubes[J]. Chemical Physics Letters. 2000,319(5-6): 457-459.
    [50]Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smaltey, R. E.Self-assembly of tubular fullerenes[J]. Journal of Physical Chemistry, 1995,99(27): 10694-10697.
    [51]Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization[J]. Chemical Physics Letters,1995, 243(1-2): 49-54.
    [52]Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee,Y.H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.;Fischer, J. E.; Smalley, R. E. Crystalline ropes of metallic carbon nanotubes[J].Science, 1996, 273(5274): 483-487.
    [53]Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal[J]. Chemical Physics Letters, 1997, 278( 1 -3): 102-106.
    [54]Ivanov, V.; Nagy, J. B.; Lambin, P.; Lucas, A.; Zhang, X. B.; Zhang, X. F.;Bernaerts, D.; Vantendeloo, G.; Amelinckx, S.; Vanlanduyt, J. The study of carbon nanotubules produced by catalytic method[J]. Chemical Physics Letters,1994, 223(4): 329-335.
    [55]Fonseca, A.; Pierard, N.; Tollis, S.; Bister, G.; Konya, Z.; Nagaraju, N.; Nagy,J.B. Hydrogen storage in carbon nanotubes produced by CVD[J]. Journal De Physique Iv, 2002, 12(PR4): 129-137.
    [56]Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E.Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]../. Phys. Chem. B 2003, 707, 13357.
    [57]Thostenson, E. T.; Ren, Z.; Chou, T. W. Compos. Sci. Technol. 2001, 61, 1899.
    [58]Zhang, J.; Lee, J.-K.; Wu, Y.; Murray, R. W. Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes[J]. Nano Lett. 2003, 3, 403.
    [59]Balavoine, F.; Schultz, P.; Richard, C; Mallouh, V.; Ebbesen, T.W.; Mioskowski,C. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors[J]. Angew. Chem., Int. Ed. 1999, 38, 1912.
    [60] Bradley, K.; Briman, M.; Star, A.; Gruner, G. Charge transfer from adsorbed proteins[J].Nano Lett. 2004, 4, 253.
    [61]Liu, Y. T.; Zhao, W.; Huang, Z.Y. Noncovalent surface modification of carbon nanotubes for solubility in organic solvents[J]. Carbon 44 (2006) 1613-1616.
    [62]Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.;Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.;Lee, T. R.; Colbert, D. T.; Smalley, R. E., Fullerene pipes[J]. Science 1998, 280,(5367), 1253-1256.
    [63]Ziegler, K. J.; Gu, Z. N.; Shaver, J.; Chen, Z. Y.; Flor, E. L.; Schmidt, D. J.; Chan,C; Hauge, R. H.; Smalley, R. E., Cutting single-walled carbon nanotubes[J].Nanotechnology 2005, 16, (7), S539-S544.
    [64] Banerjee, S.; Hemraj-Benny, T.; Wong, S. S., Covalent surface chemistry of single-walled carbon nanotubes[J]. Advanced Materials 2005, 17, (1), 17-29.
    [65]Boul, P. J.; Liu, J.; Mickelson, E. T.; Huffman, C. B.; Ericson, L. M.; Chiang, I.W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smalley, R. E.Reversible sidewall functionalization of buckytubes[J]. Chem. Phys. Lett. 1999,310, 367.
    [66]Saini, R. K.; Chiang, I. W.; Peng, H.; Smalley, R. E.; Billups, W. E.; Hauge, R.H.; Margrave, J. L. Covalent sidewall functionalization of single wall carbon nanotubes[J]. J. Am. Chem. Soc. 2003,125, 3617.
    [67]Stevens, J. L.; Huang, A. Y.; Peng, H.; Chiang, I. W.; Khabashesku, V. N.;Margrave, J. L. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines[J]. Nano Lett. 2003, 3, 331.
    [68]Zhang, L.; Kiny, V. U.; Peng, H.; Zhu, J.; Lobo, R. F. M.; Margrave, J. L.;Khabashesku, V. N. Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties[J]. Chem. Mater. 2004, 16, 2055.
    [69]Kooi, S. E.; Schlecht, U.; Burghard, M.; Kern, K. Electrochemical modification of single carbon nanotubes[J].Angew.Chem.,Int.Ed.2002,41,1353.
    [70]Balasubramanian,K.;Friedrich,M.;Jiang,C.;Fan,Y.;Mews,A.;Burghard,M.;Kern,K.Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes[J].Adv.Mater.2003,15,1515.
    [71]Balasubramanian,K.;Sordan,R.;Burghard,M.;Kern,K.A selective electrochemical approach to carbon nanotube field-effect transistors[J].Nano Lett.2004,4,827.
    [72]Chert,Y.;Haddon,R.C.;Fang,S.;Rao,A.M.;Eklund,P.C.;Lee,W.H.;Dickey,E.C.;Grulke,E.A.;Pendergrass,J.C.;Chavan,A.;Haley,B.E.;Smalley,R.E.Chemical attachment of organic functional groups to single-walled carbon nanotube material[J].J.Mater.Res.1998,13,2423.
    [73]Lee,W.H.;Kim,S.J.;Lee,W.J.;Lee,J.G.;Haddon,R.C.;Reucroft,P.J.X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material[J].Appl.Surf Sci.2001,181,121.
    [74]Kamaras,K.;Itkis,M.E.;Hu,H.;Zhao,B.;Haddon,R.C.Covalent bond formation to a carbon nanotube metal[J].Science 2003,301,1501.
    [75]Hu,H.;Zhao,B.;Hamon,M.A.;Kamaras,K.;Itkis,M.E.;Haddon,R.C.Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene[J].J.Am.Chem.Soc.2003,125,14893.
    [76]Hirsch,A.Functionalization of single-walled carbon nanotubes[J].Angew.Chem.,Int.Ed.2002,41,1853.
    [77]Hirsch,A.;Vostrowsky,O.Functionalization of carbon nanotubes[J].Top.Curr.Chem.2005,245,193.
    [78]Holzinger,M.;Vostrovsky,O.;Hirsch,A.;Hennrich,F.;Kappes,M.;Weiss,R.;Jellen,F.Sidewall functionalization of carbon nanotubes[J].Angew.Chem.Int.Ed.2001,40,4002.
    [79]Bahr,J.L.;Yang,J.;Kosynkin,D.V.;Bronikowski,M.J.;Smalley,R.E.;Tour,J.M.Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:A bucky paper electrode[J].J.Am.Chem.Soc.2001,123,6536.
    [80]Balasubramanian,K.;Sordan,R.;Burghard,M.;Kern,K.A selective electrochemical approach to carbon nanotube field-effect transistors[J].Nano Lett.2004,4,827.
    [81]Peng,H.Q.;Alemany,L.B.:Margrave,J.L.;Khabashesku,V.N.Sidewall carboxylic acid functionalization of single-walled carbon nanotubes[J].J.Am. Chem.Soc.2003,125,15174.
    [82]Niyogi,S.;Hamon,M.A.;Hu,H.;Zhao,B.;Bhowmik,P.;Sen,R.;Itkis,M.E.;Haddon,R.C.,Chemistry of single-walled carbon nanotubes[J].Accounts of Chemical Research 2002,35,(12),1105-1113.
    [83]Kong,H.;Li,W.W.;Gao,C.;Yah,D.Y.;Jin,Y.Z.;Walton,D.R.M.;Kroto,H.W.,Poly(N-isopropylacrylamide)-coated carbon nanotubes:Temperature-sensitive molecular nanohybrids in water[J].Macromolecules 2004,37,(18),6683-6686.
    [84]Wang,D.;Chen,L.W.,Temperature and pH-responsive single-walled carbon nanotube dispersions[J].Nano Letters 2007,7,(6),1480-1484.
    [85]Qin,S.H.;Oin,D.Q.;Ford,W.T.;Resasco,D.E.;Herrera,J.E.,Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J].Journal of the American Chemical Society 2004,126,(1),170-176.
    [86]Kong,H.;Gao,C.;Yan,D.Y.,Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J].Journal of the American Chemical Society 2004,126,(2),412-413.
    [87]Kong,H.;Gao,C.;Yan,D.Y.,Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization.Journal of Materials Chemistry 2004,14,(9),1401-1405.
    [88]Chiefari,J.;Chong,Y.K.;Ercole,F.;Krstina,J.;Jeffery,J.;Le,T.P.T.;Mayadunne,R.T.A.;Meijs,G.F.;Moad,C.L.;Moad,G.;Rizzardo,E.;Thang,S.H.Macromolecules 1998,31,5559-5562.
    [89]Ganachaud,F.;Monteiro,M.J.;Gilbert,R.G.;Dourges,M.-A.;Thang,S.H.;Rizzardo,E.Macromolecules 2000,33,6738-6745.
    [90]Hong,C.Y.;You,Y.Z.;Pan,C.Y.,Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization[J].Chemistry of Materials 2005,17,(9),2247-2254.
    [91]Zhao,X.D.;Fan,X.H.;Chen,X.F.;Chai,C.P.;Zhou,Q.F.,Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization[J].Journal of Polymer Science Part a-Polymer Chemistry 2006,44,(15),4656-4667.
    [92]Fan,D.Q.;He,J.P.;Tang,W.;Xu,J.T.;Yang,Y.L.,Synthesis of polymer grafted carbon nanotubes by nitroxide mediated radical polymerization in the presence of spin-labeled carbon nanotubes[J]. European Polymer Journal 2007,43,(1),26-34.
    [93]Yao, Y.; Li, W. W.; Wang, S. B.; Yan, D. Y.; Chen, X. S., Polypeptide modification of multiwalled carbon nanotubes by a graft-from approach[J].Macromolecular Rapid Communications 2006, 27, (23), 2019-2025.
    [94]Xu, Y. Y.; Gao, C; Kong, H.; Yan, D. Y.; Jin, Y. Z.; Watts, P. C. P., Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization[J]. Macromolecules 2004, 37, (24), 8846-8853.
    [95]Baskaran, D.; Dunlap, J. R.; Mays, J. W.; Bratcher, M. S., Grafting efficiency of hydroxy-terminated poly(methyl methacrylate) with multiwalled carbon nanotubes[J]. Macromolecular Rapid Communications 2005, 26, (6), 481-486.
    [96]Liu, Y. X.; Du, Z. J.; Li, Y.; Zhang, C.; Li, C. J.; Yang, X. P.; Li, H. Q., Surface covalent encapsulation of multiwalled carbon nanotubes with poly(acryloyl chloride) grafted poly(ethylene glycol) [J]. Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, (23), 6880-6887.
    [97] Wu, H. X.; Tong, R.; Qiu, X. Q.; Yang, H. F.; Lin, Y. H.; Cai, R. F.; Qian, S. X.,Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions[J]. Carbon 2007, 45, (1), 152-159.
    [98] Li, H. M.; Cheng, F. O.; Duft, A. M.; Adronov, A., Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling[J]. Journal of the American Chemical Society 2005, 127, (41),14518-14524.
    [99]Xie, L.; Feng, X.; Qiu, F.; Lu H. B.; and Yang, Y.L. Single-Walled Carbon Nanotubes Functionalized with High Bonding Density of Polymer Layers and Enhanced Mechanical Properties of Composites[J]. Macromolecules,49(9):3296-3305.
    [100]Pickering, S. U..J. Chem. Soc, 1907 , 91 : 2001-2021.
    [101] Sullivan, A. P.; Kilpatrick, P. K. The effects of inorganic solid particles on water and crude oil emulsion stability [J]. Ind. Eng. Chem. Res. , 2002 , 41 : 3389 -3404
    [102]Binks, B. P.; Clint, J. H., Solid wettability from surface energy components:Relevance to pickering emulsions[J]. Langmuir 2002, 18, (4), 1270-1273.
    [103] Lin, Y.; Boker, A.; Skaff, H.; Cookson, D.; Dinsmore, A. D.; Emrick, T.;Russell, T. P., Nanoparticle assembly at fluid interfaces: Structure and dynamics[J]. Langmuir 2005, 21, (1), 191 -194
    [104]Lin,Y.;Skaff,H.;Emrick,T.;Dinsmore,A.D.;Russell,T.P.,Nanoparticle assembly and transport at liquid-liquid interfaces[J].Science 2003,299,(5604),226-229.
    [105]Park,Y.K.;Yoo,S.H.;Park,S.,Assembly of highly ordered nanoparticle monolayers at a water/hexane interface[J].Langmuir 2007,23,(21),10505-10510.
    [106]Li,Y.J.;Huang,W.I.J.;Sun,S.G.,A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface[J].Angewandte Chemie-International Edition 2006,45,(16),2537-2539.
    [107]Duan,H.W.;Wang,D.A.;Kurth,D.G.;Mohwald,H.,Directing self-assembly of nanoparticles at water/oil interfaces[J].Angewandte Chemic-International Edition 2004,43,(42),5639-5642.
    [108]Wang,D.Y.;Duan,H.W.;Mohwald,H.,The water/oil interface:the emerging horizon for self-assembly of nanoparticles[J].Soft Matter 2005,1,(6),412-416.
    [109]Duan,H.W.;Wang,D.Y.;Sobal,N.S.;Giersig,M.;Kurth,D.G.;Mohwald,H.,Magnetic colloidosomes derived from nanoparticle interfacial self-assembly[J].Nano Letters 2005,5,(5),949-952.
    [110]He,J.;Zhang,Q.;Gupta,S.;Emrick,T.;Russell,T.R.;Thiyagarajan,P.,Drying droplets:A window into the behavior of nanorods at interfaces[J].Small 2007,3,(7),1214-1217.
    [111]Binks,B.P.;Lumsdon,S.O.,Influence of particle wettability on the type and stability of surfactant-free emulsions[J].Langmuir 2000,16,(23),8622-8631.
    [112]Binks,B.P.;Kirkland,M.,Interfacial structure of solid-stabilised emulsions studied by scanning electron microscopy[J].Physical Chemistry Chemical Physics 2002,4,(15),3727-3733.
    [113]Binks,B.P.,Particles as surfactants-similarities and differences[J].Current Opinion in Colloid & Interface Science 2002,7,(1-2),21-41.
    [114]Binks,B.P.;Murakami,R.;Armes,S.P.;Fujii,S.;Schmid,A.,pH-responsive aqueous foams stabilized by ionizable latex particles[J].Langmuir 2007,23,(17),8691-8694.
    [115]Binks,B.P.;Murakami,R.;Armes,S.P.;Fujii,S.,Temperature-induced inversion of nanoparticle-stabilized emulsions[J].Angewandte Chemie-International Edition 2005,44,(30),4795-4798
    [116]Binks,B.P.;Murakami,R.;Armes,S.P.;Fujii,S.,Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles[J].Langmuir 2006,22,(5),2050-2057.
    [117]Yan,N.X;Masliyah,J.H.Demulsification of solids-stabilized oil-in-water emulsions[J].Journal of Colloid and Interface Science,1996,181:20-27.
    [118]Finkle,P;Draper,H.D;Hildebrand,J.H.J.Am.Chem.Soc.,1923,45:2780-2786.
    [119]Sacanna,S.;Kegel,W.K.;Philipse,A.P.,Thermodynamically stable pickering emulsions[J].Physical Review Letters 2007,98,(15) 158301.
    [120]Sacanna,S.;Philipse,A.P.,A generic single-step synthesis of monodisperse core/shell colloids based on spontaneous picketing emulsification[J].Advanced Materials 2007,19,(22),3824-3826.
    [121]Bon,S.A.F.;Chen,T.,Picketing stabilization as a tool in the fabrication of complex nanopatterned silica microcapsules[J].Langmuir 2007,23,(19),9527-9530.
    [122]Chen,T.;Colver,P.J.;Bon,S.A.F.,Organic-inorganic hybrid hollow spberes prepared from TiO2-stabilized pickering emulsion polymerization[J].Advanced Materials 2007,19,(17),2286.
    [123]Colver,P.J.;Colard,C.A.L.;Bon,S.A.F.,Multilayered Nanocomposite Polymer Colloids Using Emulsion Polymerization Stabilized by Solid Particles[J].Journal of the American Chemical Society 2008,130,(50),16850-16852
    [124]Liu,B.;Wei,W.;Qu,X.Z.;Yang,Z.H.,Janus colloids formed by biphasic grafting at a picketing emulsion interface[J].Angewandte Chemie-International Edition 2008,47,(21),3973-3975.
    [1]Szwarc,M.Living Polymers[J].Nature 1956,178:1168.
    [2]Solomon,D.H.;Rizzardo,E.;Cacioli,P.[P].U.S.Patent:4,581,429,1986. HIGHLIGHT 5385.
    [3] Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules 1993, 26(11): 2987-2988.
    [4] Hawker, C. J.; Bosman, A. W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations[J]. Chem. Rev. 2001, 101(12):3661-3688.
    [5] Kato, M. K.; Kamigaito, M.; Sawamoto, ML; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylpheno-xide) Initiating System: Possibility of Living Radical Polymerization[J].Macromolecules 1995, 28(5): 1721-1723.
    [6] Wang, J. S.; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes[J]. J.Am. Chem. Soc. 1995, 117(20): 5614-5615.
    [7] Fisher, H. The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations[J]. Chem. Rev. 2001, 101(12):3581-3610.
    [8] Matyjaszewski, K.; Patten, T. E.; Xia, J. H. Controlled/"Living" Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene[J]. J. Am. Chem. Soc. 1997, 119(4): 674-680.
    [9] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.;Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang,S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process[J]. Macromolecules 1998, 31(16): 5559-5562.
    [10] Lu, D. R.; Wang, Y.; Wu, T. Y.; Tao, K.; An, L. J.; Bai, R. K. A strategy for synthesis of ion-bonded amphiphilic miktoarm star copolymers via supramolecular macro-RAFT agent[J]. Journal of Polymer Science Part a-Polymer Chemistry 46(17): 5805-5815.
    [11] Yang, S.; Liu, H. R.; Zhang, Z. C, A facile route to hollow superparamagnetic magnetite/oolystyrene nanocomposite microspheres via inverse miniemulsion polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry 2008,46, (12), 3900-3910.
    [12] Hu, Y. Q.; Kim, M. S.; Kim, B. S.; Lee, D. S., RAFT synthesis of amphiphilic (A-ran-B)-b-C diblock copolymers with tunable pH-sensitivity[J].Journal of Polymer Science Part a-Polymer Chemistry 2008,46,(11),3740-3748.
    [13]Xiong,Q.F.;Ni,P.H.;Zhang,F.;Yu,Z.Q.Synthesis and characterization of 2-(dimethylamino)ethyl methacrylate homopolymers via aqueous RAFT polymerization and their application in miniemulsion polymerization[J].Polymer Bulletin,2004,53(1):1-8.
    [14]Sahnoun,M.;Charreyre,M.T.;Veron,L.;Delair,T.;D'Agosto,F.Synthetic and characterization aspects of dimethylaminoethyl methacrylate reversible addition fragmentation chain transfer(RAFT) polymerization[J].Journal of Polymer SciencePart A-Polymer Chemistry,2005,43(16):3551-3565.
    [15]Postma,A.;Davis,T.P.;Evans,R.A.;Li,G.X.;Moad,G.;O'Shea,M.S.Synthesis of well-defined polystyrene with primary amine end groups through the use of phthalimido-functional RAFT agents[J].Macromolecules,2006,39(16):5293-5306.
    [16]Ganachaud,F.;Monteiro,M.J.;Gilbert,R.G.;Dourges,M.A.;Thang,S.H.;Rizzardo,E.Molecular weight characterization of poly(N-isopropylacrylamide)prepared by living free-radical polymerization[J].Macromolecules,2000,33(18):6738-6745.
    [17]Ray,B.;Isobe,Y.;Matsumoto,K.;Habaue,S.;Okamoto,Y.;Kamigaito,M.;Sawamoto,M.RAFT polymerization of N-isopropylacrylamide in the absence andpresence of Y(OTf)(3):Simultaneous control of molecular weight and tacticity[J].Macromolecules,2004,37(5):1702-1710.
    [18]Relogio,P.;Charreyre,M.T.;Farinha,J.P.S.;Martinho,J.M.G.;Pichot,C.Well-defined polymer precursors synthesized by RAFT polymerization of N,N-dimethylacrylamide/N-acryloxysuccinimide:random and block copolymers[J].Polymer,2004,45(26):8639-8649.
    [19]Le,T.P.T.;Moad,G.:Rizzardo,E.;Thang,S.H.PCT Int.Pat.Appl.WO9801478 Al 980115,1998
    [20]Liu,S.S.;Gu,B.;Rowlands,H.A.;Sen,A.Controlled random and alternating copolymerization of methyl acrylate with l-alkenes[J].Macromolecules,2004,37(21):7924-7929.
    [21]Rizzardo,E.;Chiefari,J.;Mayadunne,R.T.A.;Moad,G.;Thang,S.H.Synthesis of defined polymers by reversible addition-fragmentation chain transfer:the RAFT process[J].ACS Symposium Series,2000,768(Controlled/Living Radical Polymerization): 278-296.
    [22] Kubo, K.; Goto, A.; Sato, K.; Kwak, Y.; Fukuda, T. Kinetic study on reversible addition-fragmentation chain transfer (RAFT) process for block and random copolymerizations of styrene and methyl methacrylate[J]. Polymer, 2005, 46 (23):9762-9768.
    [23] Barner-Kowollik, C; Quinn, J. F.; Nguyen, T. L. U.; Heuts, J. P. A.; Davis, T. P.Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate[J]. Macromolecules 2001, 34 (22): 7849-7857.
    [24] Donovan, M. S.; Lowe, A. B.; Sumerlin, B. S.; McCormick, C. L. Water-soluble polymers part 85 - Raft polymerization of N,N-dimethylacrylamide utilizing novel chain transfer agents tailored for high reinitiation efficiency and structural control[J]. Macromolecules 2002, 35 (10): 4123-4132.
    [25] Perrier, S.; Barner-Kowollik, C; Quinn, J. F.; Vana, P.; Davis, T. P. Origin of inhibition effects in the reversible addition fragmentation chain transfer (RAFT) polymerization of methyl acrylate[J]. Macromolecules 2002, 35 (22): 8300-8306.
    [26] Vana, P.; Davis, T. P.; Barner-Kowollik, C. Kinetic analysis of reversible addition fragmentation chain transfer (RAFT) polymerizations: Conditions for inhibition, retardation, and optimum living polymerization[J]. Macromolecular Theory And Simulations 2002, 11 (8): 823-835.
    [27] Plummer, R.; Goh, Y. K.; Whittaker, A. K.; Monteiro, M. J. Effect of impurities in cumyl dithiobenzoate on RAFT-mediated polymerizations[J]. Macromolecules 2005, 38 (12): 5352-5355.
    [28] Liu, Y; He, J. P.; Xu, J. T.; Fan, D. Q.; Tang, W.; Yang, Y. L. Thermal decomposition of cumyl dithiobenzoate[J]. Macromolecules 2005, 38 (24):10332-10335.
    [29] Xu, J. T.; He, J. P.; Fan, D. Q.; Tang, W.; Yang, Y L. Thermal decomposition of dithioesters and its effect on RAFT polymerization[J]. Macromolecules 2006, 39(11): 3753-3759.
    [1]Bogatyreva,G.P.;Marinich,M.A.;lshchenko,E.V.;Gvyazdovskaya,V.L.;Bazalii,G.A.;Oleinik,N.A.,Application of modified nanodiamonds as catalysts of heterogeneous and electrochemical catalyses[J].Physics of the Solid State 2004,46,(4),738-741.
    [2]Bondar',V.S.;Pozdnyakova,I.O.;Puzyr',A.P.,Applications of nanodiamonds for separation and purification of proteins[J].Physics of the Solid State 2004,46,(4),758-760.
    [3] Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D., Active nanodiamond hydrogels for chemotherapeutic delivery[J]. Nano Letters 2007, 7, (11), 3305-3314.
    [4] Puzyr, A. P.; Baron, A. V.; Purtov, K. V.; Bortnikov, E. V.; Skobelev, N. N.;Moginaya, O. A.; Bondar, V. S., Nanodiamonds with novel properties: A biological study[J]. Diamond and Related Materials 2007, 16, (12), 2124-2128.
    [5] Chiganova, G. A. The effect of particle hydration on the aggregation stability of ultradispersed diamond hydrosols[J]. Colloid J., 1997, 59, 87-89.
    [6] Chiganova, G. A. Aggregation of particles in ultradispersed diamond hydrosols[J] Colloid J., 2000, 62, 238-241.
    [7] Chiganova, A. S.; Chiganova, G. A. Proerties of ulteradispersed diamonds profuced by dethonation synthesis [J]. Inorganic Materials, 1994, 30(1):51-53.
    [8] Bondar', V. S.; Pozdnyakova, I. O.; Puzyr', A. P. Applications of nanodiamonds for separation and purification of proteins[J]. Phys. Solid State 2004, 46, 758.
    [9] Huang, L.C. L.; Chang, H.C. Adsorption and immobilization of cytochrome c on nanodiamonds[J].Langmuir, 2004, 20,5879-5884.
    [10] Puzyr', A. P.; Pozdnyakova,I. O.; Bondar',V. S. Phys. Solid State 2004, 46, 761.
    [11]Sawada, H.; Kurachi, J.; Takahashi, H.; Ueno, K.; Hamazaki, K., Dispersion of nanodiamond into organic media by the use of fluoroalkyl end-capped oligomers- applications to surface modification of poly(methyl methacrylate) with the dispersed nanodiamond[J]. Polymers for Advanced Technologies 2005, 16, (9),651-654.
    [12]Liu, Y.; Gu, Z. N.; Margrave, J. L.; Khabashesku, V. N., Functionalization of nanoscale diamond powder: Fluoro-, alky!-, amino-, and amino acid-nanodiamond derivatives[J]. Chemistry of Materials 2004, 16, (20),3924-3930.
    [13]Liu, Y.; Khabashesku, V. N.; Halas, N. J., Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface[J].In Journal of the American Chemical Society, 2005; Vol. 127, pp 3712-3713.
    [14]Li, L.; Davidson, J. L.; Lukehart, C. M., Surface functionalization of nanodiamond particles via atom transfer radical polymerization[J]. Carbon 2006,44, (11), 2308-2315.
    [15]Kruger, A.; Liang, Y. J.; Jarre, G; Stegk, J., Surface functionalisation of detonation diamond suitable for biological applications[J]. Journal of Materials Chemistry 2006, 16, (24), 2322-2328.
    [16]Aleksenski(?), A. E.; BA(?)dakova, M. V.; Vul', A. Ya., Siklitski(?), V. I. Phys. Solid State 1999, 41,668-671.
    [17]Tu, J. S.; Perevedentseva, E.; Chung, P. H.; Cheng, C. L. Size-dependent surface CO stretching frequency investigations on nanodiamond particles[J]. J. Chem.Phys. 2006, 125, 174713.
    [18] Chen, G. X.; Kim, H. S.; Park, B. H.; Yoon, J. S. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lacticacid)[J]. Journal of Physical Chemistry B. 2005, 109(47):22237-22243.
    [19]Xie, L; Xu, F; Qiu, F; Lu, H.B.; Yang, Y.L. Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites[J]. Macromolecules 2007, 40(9): 3296-3305.
    [20]Eitan, A.; Jiang, K. Y; Dukes, D.; Andrews, R.; Schadler, L. S., Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites[J]. Chemistry of Materials 2003, 15, (16),3198-3201.
    [21]Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y; Aleksenskii, A. E.; Vul', A. Y;Osawa, E., Unusually tight aggregation in detonation nanodiamond: Identification and disintegration[J]. Carbon 2005,43, (8), 1722-1730.
    [22]Haperin, A; Tirrell, M.; Lodge, T. P. Tethered chains in polymer microstructure[J].Adv. Polym. Sci., 1992, 100: 31-71.
    [23]Zhang, L.; Eisenberg, A. Multiple Morphologies of "Crew-cut" Aggregates of polystyrene-b-poly(acrylic acid) Block Copolymers[J]. Science, 1995, 258(5218):1728- 1731.
    [24]Zhang, L.; Eisenberg, A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in soIutions[J].Macromolecules, 1996, 29(27):8805-8815
    [25]Li, D.; Sheng, X.; Zhao, B. Environmentally Responsive "Hairy" Nanoparticles:Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques[J]. J. Am. Chem. Soc. 2005, 127, 6248-6256.
    [26]Zubarev, E. R.; Xu, J.; Sayyad, A.; Gibson, J. D. Amphiphilic gold nanoparticles with V-shaped arms. J. Am. Chem. Soc. 2006,128, 4958-4959.
    [27]Binks, B. P.; Clint, J. H.; Fletcher, P. D. I.; Lees, T. J. G.; Taylor, P. Growth of gold nanoparticle films driven by the coalescence of particle-stabilized emulsion drops[J].Langmuir 2006,22,4100-4103.
    [28]Binder,W.H.,Supramolecular assembly of nauoparticles at liquid-liquid interfaces[J].Angewandte Chemie-International Edition 2005,44,(33),5172-5175.
    [29]Duan,H.W.;Wang,D.A.;Kurth,D.G.;Mohwald,H.,Directing self-assembly of nanoparticles at water/oil interfaces[J].Angewandte Chemie-International Edition 2004,43,(42),5639-5642.
    [30]Li,Y.J.;Huang,W.I.J.;Sun,S.G.,A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface[J].Angewandte Chemie-International Edition 2006,45,(16),2537-2539.
    [31]Reincke,F.;Hickey,S.G.;Kegel,W.K.;Vanmaekelbergh,D.,Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface.Angewandte Chemie-International Edition 2004,43,(4),458-462.
    [32]Binks,B.R;Clint,J.H.Solid wettability from surface energy components:Relevance to picketing emulsions[J].Langmuir 2002,18,1270-1273.
    [33]Binks,B.R Particles as surfactants - similarities and differences[J].Curr.Opin.Colloid Interface Sci.2002,7,21-41.3
    [34]Binks,B.P.;Clint,J.H.;Fletcher,P.D.I.;Lees,T.J.G.;Taylor,P.Growth of gold nanoparticle films driven by the coalescence of particle-stabilized emulsion drops[J].Langmuir 2006,22,4100-4103.
    [35]Binder,W.H.,Supramolecular assembly of nauoparticles at liquid-liquid interfaces.Angewandte Chemie-International Edition 2005,44,(33),5172-5175.
    [36]Duan,H.W.;Wang,D.A.;Kurth,D.G.;Mohwald,H.,Directing self-assembly of nanoparticles at water/oil interlaces.Angewandte Chemie-International Edition 2004,43,(42),5639-5642.
    [37]Li,Y.J.;Huang,W.I.J.;Sun,S.G.,A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface.Angewandte Chemie-International Edition 2006,45,(16),2537-2539.
    [38]Reincke,F.;Hickey,S.G.;Kegel,W.K.;Vanmaekelbergh,D..Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface.Angewandte Chemie-International Edition 2004,43,(4),458-462.
    [1]Iijima,S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [2]Niyogi S.,H.M.A.,Hu H.,Zhao B.,Bhowmik P.,Sen R.,Itkis M.E.,Haddon R. C, Chemistry of Single-Walled Carbon Nanotubes[J]. Acc. Chem. Res.,2002,35,1105-1113.
    [3] Dai, L. M. Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials,[J]Adv. Mater., 2001, 13,899-913
    [4] Dyke, C. A.; Tour, J. M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization[J]. Chemistry-A European Journal. 2004, 10(4): 813-817.
    [5] Dyke, C. A.; Tour, J. M. Solvent-free functionalization of carbon nanotubes[J].Journal of the American Chemical Society. 2003, 125(5): 1156-1157.
    [6] Bahr, J. L.; Yang, J. P.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.;Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode[J]. Journal of the American Chemical Society. 2001, 123(27): 6536-6542.
    [7] Chen, J.; Liu, H. Y.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C,Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers[J]. Journal of the American Chemical Society 2002, 124,(31), 9034-9035.
    [8] Qin, S. H.; Oin, D. Q.; Ford, W. T.; Resasco, D. E.; Herrera, J. E.Polymerbrushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J]. Journal of the American Chemical Society. 2004, 126(1): 170-176.
    [9] Qin, S. H.; Qin, D. Q.; Ford, W. T.; Herrera, J. E.; Resasco, D. E.; Bachilo, S.M.; Weisman, R. B. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate[J]. Macromolecules. 2004, 37(11): 3965-3967.
    [10] Kong, H.; Gao, C; Yan, D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J]. Journal of the American Chemical Society. 2004, 126(2): 412-413.
    [11] Kong, H.; Gao, C; Yan, D. Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products[J]. Macromolecules. 2004, 37(11): 4022-4030.
    [12] Hong, C. Y.; You, Y. Z.; Pan, C. Y. Functionalized multi-walled carbon nanotubeswith poly(N-(2-hydroxypropyl)methacrylamide) by RAFT polymerizationlJ].Journalof Polymer Science Part A-Polymer Chemistry,2006,44(8):2419-2427.
    [13]Lou,X.D.;Detrembleur,C.;Sciannamea,V.;Pagnoulle,C.;Jerome,R.Grafting of alkoxyamine end-capped(co)polymers onto multi-walled carbon nanotubes[J].Polymer.2004,45(18):6097-6102.
    [14]Riggs,J.E.;Guo,Z.X.;Carroll,D.L.;Sun,Y.P.Strong luminescence of solubilized carbon nanotubes[J]..Journal of the American Chemical Society.2000,122(24):5879-5880.
    [15]Sano,M.;Kamino,A.;Okamura,J.;Shinkai,S.Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films[J].Langmuir.2001,17(17):5125-5128.
    [16]Lou,X.;Detrembleur,C.;Sciannamea,V.;Pagnoulle,C.;Jerome,R.Grafting of alkoxyamine end-capped(co)polymers onto multi-walled carbon nanotubes[J].Polymer,2004,45(18):6097-6102.
    [17]Lou,X.;Detrembleur,C.;Pagnoulle,C.;Jerome,R.;Bocharova,V.;Kiriy,A.;Stature,M.Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine):Dispersion,selective deposition,and decoration of the nanotubes[J].Advanced Materials(Weinheim,Germany),2004,16(23-24):2123-2127.
    [18]Liu,Y.Q.;Yao,Z.L.;Adronov,A.Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling[J].Macromolecules 2005,38,1172-1179
    [19]Xie,L;Xu,F;Qiu,F;Lu,H.B.;Yang,Y.L.Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites[J].Macromolecules 2007,40(9):3296-3305.
    [20]Kong,H.;Li,W.;Gao,C.;Yan,D.;Jin,Y.:Walton,D.R.M.:Kroto,H.W.Poly(N-isopropylacrylamide)-Coated Carbon Nanotubes:Temperature-Sensitive Molecular Nanohybrids in Water[J].Macromolecules,2004,37(18):6683-6686.
    [21]Hong,C.-Y.;You,Y.-Z.;Pan,C.-Y.Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-Responsive Shells by Surface RAFT Polymerization[J].Chemistry of Materials,2005,17(9):2247-2254.
    [22]Wang,D.;Chen,L.W.,Temperature and pH-responsive single-walled carbon nanotube dispersions. Nano Letters 2007,7, (6), 1480-1484.
    [23] Yang, D.; Hu, J. H.; Wang, C. C, Synthesis and characterization of pH-responsive single-walled carbon nanotubes with a large number of carboxy groups[J]. Carbon 2006,44, (15), 3161-3167.
    [24] Liu, A. H.; Honma, I.; Ichihara, M; Zhou, H. S., Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties[J]. Nanotechnology 2006, 17, (12), 2845-2849.
    [25] Liu, Y. X.; Du, Z. J.; Li, Y; Zhang, C; Li, C. J.; Yang, X. P.; Li, H. Q., Surface covalent encapsulation of multiwalled carbon nanotubes with poly(acryloyl chloride) grafted poly(ethylene glycol)[J]. Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, (23), 6880-6887.
    [26] Zhao, B.; Hu, H.; Yu, A.; Perea, D.; Haddon Robert, C. Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers[J].Journal of the American Chemical Society, 2005, 127 (22):8197-203.
    [27] Zengin, H.; Zhou, W.; Jin, J.; Czerw, R.; Smith, D. W., Jr.; Echegoyen,L.;Carroll, D. L.; Foulger, S. H.; Ballato, J. Carbon nanotube doped polyaniline[J]. Advanced Materials (Weinheim, Germany), 2002, 14 (20):1480-1483.
    [28] Valter, B.; Ram, M. K.; Nicolini, C. Synthesis of Multiwalled Carbon Nanotubes and Poly(o-anisidine) Nanocomposite Material: Fabrication and Characterization of Its Langmuir-Schaefer Films[J]. Langmuir, 2002, 18 (5):1535-1541.
    [29] Blanchet, G. B.; Fincher, C. R.; Gao, F. Polyaniline nanotube composites: A high-resolution printable conductor[J]. Applied Physics Letters, 2003, 82 (8):1290-1292.
    [30] Jain, S.; Bates Frank, S. On the origins of morphological complexity in block copolymer surfactants[J]. Science, 2003, 300 (5618): 460-4.
    [31] Koide, A.; Kishimura, A.; Osada, K.; Jang, W.-D.; Yamasaki, Y.; Kataoka, K.Semipermeable Polymer Vesicle (PICsome) Self-Assembled in Aqueous Medium from a Pair of Oppositely Charged Block Copolymers: Physiologically Stable Micro-/Nanocontainers of Water-Soluble Macromolecules[J]. Journal of the American Chemical Society, 2006, 128 (18): 5988-5989.
    [32] Rodriguez-Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Toward 'smart' nano-objects by self-assembly of block copolymers in solution[J].Progress in Polymer Science,2005,30(7):691-724.
    [33]Tang,C.;Qi,K.;Wooley,K.L.;Matyjaszewski,K.;Kowalewski,T.Well-defined carbon nanoparticles prepared from water-soluble shell cross-linked micelles that contain polyacrylnitrile cores[J].Angewandte Chemie,International Edition,2004,43(21):2783-2787.
    [34]Riess,G.Micellization of block copolymers[J].Progress in Polymer Science,2003,28(7):1107-1170.
    [35]Genson,K.L.;Holzmueller,J.;Jiang,C.Y.;Xu,J.;Gibson,J.D.;Zubarev,E.R.;Tsukruk,V.V.,Langmuir-Blodgett monolayers of gold nanoparticles with amphiphilic shells from V-shaped binary polymer arms.Langmuir 2006,22,(16),7011-7015.
    [36]Shan,J.;Nuopponen,M.;Jiang,H.;Viitala,T.;Kauppinen,E.;Kontturi,K.;Tenhu,H.,Amphiphilic gold nanoparticles grafted with poly(N-isopropylacrylamide) and polystyrene.Macromolecules 2005,38,(7),2918-2926.
    [37]Zubarev,E.R.;Xu,J.;Sayyad,A.;Gibson,J.D.,Amphiphilicity-driven organization of nanoparticles into discrete assemblies.Journal of the American Chemical Society 2006,128,(47),15098-15099.
    [38]Lin Y,Rao AM,Sadanadan B,Kenik EA,Sun YP.Functionalizing multiple-walled carbon nanotubes with aminopolymers.Journal of Physical Chemistry B 2002;106(6):1294-1298.
    [39]Liu,J.;Rinzler,A.G.;Dai,H.J.;Hafner,J.H.;Bradley,R.K.;Boul,P.J.;Lu,A.;Iverson,T.;Shelimov,K.;Huffman,C.B.;Rodriguez-Macias,F.;Short,Y.S.;Lee,T.R.;Colbert,D.T.;Smalley,R.E.,Fullerene pipes.Science 1998,280,(5367),1253-1256.
    [40]Yang,D.;Guo,G.Q.;Hu,J.H.:Wang,C.;Jiang,D.L.,Hydrothermal treatment to prepare hydroxyl group modified multi-walled carbon nanotubes.Journal of Materials Chemistry 2008,18,(3),350-354.
    [41]Eitan,A.;Jiang,K.Y.;Dukes.D.;Andrews,R.;Schadler,L.S.,Surface modification of multiwalled carbon nanotubes:Toward the tailoring of the interface in polymer composites.Chemistry of Materials 2003,15,(16),3198-3201.
    [42]Wu,H.X.;Tong,R.;Qiu,X.Q.;Yang,H.F.;Lin,Y.H.;Cai,R.F.;Qian,S.X., Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions. Carbon 2007,45, (1), 152-159.
    [43] Georgakilas V, Bourlinos A, Gournis D, Tsoufis T, Mateo-Alonso A, Prato M.Multipurpose Organically Modified Carbon Nanotubes: From Functionalization to Nanotube Composites. J. Am. Chem. Soc. 2008; 130 (27): 8733-8740.
    [44] Fan D Q, He JP,Tang W, Xu JT, Yang YL. Synthesis of polymer grafted carbon nanotubes by nitroxide mediated radical polymerization in the presence of spin-labeled carbon nanotubes. European Polymer Journal 2007; 43(1): 26-34.
    [45] Hill DE, Lin Y, Rao AM, Allard L F, SunYP. Functionalization of carbon nanotubes with polystyrene. Macromolecules 2002; 35(25): 9466-9471.
    [46] Genson, K. L.; Holzmueller, J.; Jiang, C. Y; Xu, J.; Gibson, J. D.; Zubarev, E. R.;Tsukruk, V. V., Langmuir-Blodgett monolayers of gold nanoparticles with amphiphilic shells from V-shaped binary polymer arms. Langmuir 2006, 22,(16), 7011-7015.
    [47] Glogowski, E.; He, J. B.; Russell, T. P.; Emrick, T., Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. Chemical Communications 2005, (32), 4050-4052.
    [48] Cheng, J. L.; He, J. P.; Li, C. X.; Yang, Y. L., Facile approach to functionalize nanodiamond particles with V-shaped polymer brushes. Chemistry of Materials 2008,20, (13), 4224-4230.
    [49] Dong LC, Johnson DT. Adsorption of acicular particles at liquid-fluid interfaces and the influence of the line tension. Langmuir 2005; 21(9): 3838-3849.
    [50] Lewandowski EP, Searson PC, and Stebe KJ, Orientation of a nanocylinder at a fluid interface. Journal of Physical Chemistry B 2006; 110(9): 4283-4290.
    [51] He J, Zhang Q, Gupta S, Emrick T. Russell TP, Thiyagarajan P. Drying droplets:A window into the behavior of nanorods at interfaces. Small 2007; 3(7):1214-1217
    [52] Yuk, S. H.; Cho, S. H.; Lee, S. H. pH/temperature-responsive polymer composed of poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide) Macromolecules 1997, 30: 6856-6859.
    [53] Liu, S. Y.; Armes, S. P. The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids J Am Chem Soc 2001, 123:9910-9911.
    [54] Amalvy, J. I.; Wanless, E. J.; Li, Y.; Michailidou, V.; Armes, S. P.; Duccini, Y. Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates Langmuir 2004,20:8992-8999.
    [55]Jiang,K.Y.;Eitan,A.;Schadler,L.S.;Ajayan,P.M.;Siegel,R.W.;Grobert,N.;Mayne,M.;Reyes-Reyes,M.;Terrones,H.;Terrones,M.,Selective attachment of gold nanoparticies to nitrogen-doped carbon nanotubes.Nano Letters 2003,3,(3),275-277.
    [56]Dan H.Marsh,a.G.A.R.,a Richard J.Whitby,b Francesco Giustinianob and Andrei N.Khlobystov,Assembly,structure and electrical conductance of carbon nanotube-gold nanoparticle 2D heterostructures.Journal of Materials Chemistry 2008.
    [57]Lawson,G.;Gonzaga,F.;Huang,J.;de Silveira,G.;Brook,M.A.;Adronov,A.,Au-carbon nanotube composites from self-reduction of Au3+ upon poly(ethylene imine) functionalized SWNT thin films.Journal of Materials Chemistry 2008,18,(14),1694-1702.
    [58]Jiang,K.Y.;Eitan,A.;Schadler,L.S.;Ajayan,P.M.;Siegel,R.W.;Grobert,N.;Mayne,M.;Reyes-Reyes,M.;Terrones,H.;Terrones,M.,Selective attachment of gold nanoparticies to nitrogen-doped carbon nanotubes.Nano Letters 2003,3,(3),275-277
    [1]Qin,S.H.;Oin,D.Q.;Ford,W.T.;Resasco,D.E.;Herrera,J.E.Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J].Journal of the American Chemical Society.2004,126(1):170-176.
    [2]Qin,S.H.;Qin,D.Q.;Ford,W.T.;Herrera,J.E.;Resasco,D.E.;Bachilo,S.M.;Weisman,R.B.Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate[J].Macromolecules.2004,37(11):3965-3967.
    [3]Kong,H.;Gao,C.;Yan,D.Y.Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization[J].Journal of the American Chemical Society.2004,126(2):412-413.
    [4]Kong,H.;Gao,C.;Yan,D.Y.Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products[J].Macromolecules.2004,37(11):4022-4030.
    [5]Hong,C.Y.;You,Y.Z.;Pan,C.Y.Functionalized multi-walled carbon nanotubeswith poly(N-(2-hydroxypropyl)methacrylam ide) by RAFT polymerization[J].Journalof Polymer Science Part A-Polymer Chemistry,2006,44(8):2419-2427.
    [6]Lou,X.D.;Detrembleur,C.;Sciannamea,V.;Pagnoulle,C.;Jerome,R.Grafting of alkoxyamine end-capped(co)polymers onto multi-walled carbon nanotubes[J]. Polymer.2004,45(18):6097-6102.
    [7]Riggs,J.E.;Guo,Z.X.;Carroll,D.L.;Sun,Y.P.Strong luminescence of solubilized carbon nanotubes[J].Journal of the American Chemical Society,2000,122(24):5879-5880.
    [8]Sano,M.;Kamino,A.;Okamura,J.;Shinkai,S.Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films[J].Langmuir.2001,17(17):5125-5128.
    [9]Lou,X.;Detrembleur,C.;Sciannamea,V.;Pagnoulle,C.;Jerome,R.Grafting of alkoxyamine end-capped(co)polymers onto multi-walled carbon nanotubes[J].Polymer,2004,45(18):6097-6102.
    [10]Jia,Z.J.;Wang,Z.Y.;Xu,C.L.;Liang,J.;Wei,B.Q.;Wu,D.H.;Zhu,S.W.,Study on poly(methyl methacrylate)/carbon nanotube composites.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 1999,271,(1-2),395-400
    [11]Shaffer,M.S.P.;Koziol,K.,Polystyrene grafted multi-walled carbon nanotubes.Chemical Communications 2002,(18),2074-2075.
    [12]Yi,H.X.;Song,H.H.;Chen,X.H.,Carbon nanotube capsules self-assembled by W/O emulsion technique.Langmuir 2007,23,(6),3199-3204.
    [13]Howard Wang,a.E.K.H.,Amphiphobic Carbon Nanotubes as Macroemulsion Surfactants.Langmuir 2003,Vol.19,(No.8),3091-3094.
    [14]Guo,G.Q.;Yang,D.;Wang,C.C.;Yang,S.,"Fishing" polymer brushes on single-walled carbon nanotubes by in-situ free radical polymerization in a poor solvent.Macromolecules 2006,39,(26),9035-9040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700