基于新型微纳减反结构的硅基太阳能电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着薄膜技术的进步和微纳制造技术的发展,可把薄膜技术、微纳制造技术与硅基太阳能电池结合,形成新型微纳结构的硅基薄膜太阳能电池。
     近年来,氢化纳米晶硅薄膜太阳能电池备受瞩目,逐渐成为研究的热点。通过控制工艺条件,可实现带隙大小调节,从而调控有效利用光谱的响应范围。论文提出利用纳米晶硅薄膜和设计微纳减反结构,研究新型微纳减反结构的硅基太阳能电池。通过大量的实验和仿真研究得到以下结论:
     一、通过对纳米晶硅薄膜生长机理的研究,经过大量的纳米晶硅薄膜制备实验,初步得到了薄膜沉积时硅烷浓度、沉积速率、射频功率、直流偏压、衬底温度、反应室压强对所制备纳米晶硅薄膜晶粒的尺寸、以及薄膜光学带隙存在的内在关系;通过大量的掺杂实验,得到了本征纳米晶硅掺硼和掺磷时,射频功率、直流偏压、衬底温度、反应室压强等对生成P型纳米晶硅薄膜和N型纳米晶硅薄膜的性能影响;采用AMPS一1D软件对薄膜光学带隙、前端势垒高度①B0、界面层缺陷态、本征层厚度和本征层缺陷态密度进行了仿真,给出了相应的仿真参数,为高性能电池制备工艺的制定提供参考。
     二、从理论上阐述了微纳结构的减反效应,并建立了相关光学几何研究模型。采用OptiFDTD.V8.0软件对纳米线或纳米孔减反结构进行了仿真,给出了对应的纳米线或纳米孔的宽度、相邻的间距和深度等优化的结构参数,为制备纳米硅线减反层提供理论支撑;通过化学刻蚀的方法制备并表征了体硅纳米线,在采用飞秒激光烧蚀法纳米硅薄膜制备薄膜纳米线时,需控制飞秒激光的功率不能超过晶相和非晶相的等离子气化阈值,否则会出现烧蚀击穿现象。
     三、探明了纳米复合薄膜减反射的机理。纳米金属粒子对入射光线产生核外电子云,并发生振荡,产生局域表面等离子激元,等离子激元与光子相互作用,在适当条件下可以产生前散射,进而起到减反射的作用。
     四、制备出两种石墨烯复合薄膜。一是,在石墨烯薄膜上增加TiO2纳米颗粒涂层,形成复合薄膜,其既可以作为电极增加收集载流子能力,又可以作为减反层。二是,在石墨烯薄膜中添加纳米银颗粒,形成Ag/NPs/RGO复合薄膜,既可以作为电极,也可以作为减反层。通过对两种复合薄膜进行了性能表征,发现这两种电极具有优异的电学性能和光学性能,为制备微纳减反结构的纳米硅基电池提供依据。
     五、制备出两种新型微纳减反结构的硅基太阳能电池:硅纳米线微纳减反结构电池和基于石墨烯复合薄膜的纳米硅基渐变带隙电池。其中,石墨烯复合薄膜的纳米硅基渐变带隙电池,因采用两种不同结构的石墨烯复合薄膜作为减反层,从而形成了不同结构的纳米硅基渐变带隙薄膜电池:采用二氧化钛为减反层的渐变带隙电池和采用石墨烯中沉积纳米银颗粒为减反层的渐变带隙电池。以二氧化钛复合薄膜为减反层的电池效率为4.97%左右,以纳米银颗粒复合薄膜为减反层的电池效率为4.59%,高于没有采用减反层的“基体”电池效率2.82%。分析了影响这些电池效率的主要因素:在沉积纳米硅薄膜时,薄膜沉积的表面不是很平整,导致在涂石墨烯复合薄膜时,难以做到石墨烯与硅薄膜表面很好结合,影响了载流子的收集,降低了短路电流和开路电压,其填充因子也受到很大制约。此外,还有石墨烯在提拉的过程中,薄膜厚度不均匀也会影响入射光线,进而影响吸收有效的光子数量。在硅纳米线微纳减反电池中,经检测有减反层的电池性能明显优于没有减反层的电池性能。
With the progress of the thin film technology and the development of micro-Nano manufacturing technology, a new type of micro-Nano silicon thin film solar cells is created by incorporating the two technologies in silicon solar cells.
     In recent years, high-profile hydrogenated silicon thin film solar cells gradually become the focus of research. By controlling the technology conditions the band gap size adjustment can be realized, so as to adjust the available spectral response range. In this paper, by employing nanocrystalline silicon films and micro-nano anti-reflection structure design, a new micro-nano silicon-based solar cells with anti-reflection structure is investigated. The experimental and simulation results show that the following conclusions can be drawn.
     By researching the growth mechanism of nanocrystalline silicon thin film, after a great deal of experiments of nanocrystalline silicon thin film preparation, we preliminarily obtained that the thin film deposition, silane concentration, deposition rate, RF power, DC bias and substrate temperature, reaction chamber pressure, the size of the prepared nanocrystalline silicon thin film, and the inner relation of thin film optical band gap. By conducting a lot of experiments, some conclusions can be drawn. When nanocrystalline silicon film is doped, the radio frequency power, DC bias, substrate temperature and the reaction chamber pressure have an impact on the produced good p-type nanocrystalline silicon thin film and n-type nanocrystalline silicon thin film. By using the AMPS-1D software to simulate the thin film optical band gap, the front barrier height Φ B0, interface layer defect mode, intrinsic layer thickness and intrinsic defect density, the corresponding performance parameters are presented, which provides reference for preparation of high performance battery.
     The light effect of micro-nano structure is theoretically elaborated, and the related optical geometry research model is established. By simulating the light structure of nanowires or nanopores with OptiFDTD V8.0software, the structural optimization parameters of the width, adjacent distance and depth of the nanowires or nanopores can be obtained, which can provide theoretical foundation for manufacturing miconano silicon solar cells with anti-reflection structure. In using the femtosecond laser ablation method, femtosecond laser power must be controled, which can't exceed crystal phase and amorphous phase plasma gasification threshold, otherwise there will be a breakdown of the ablation phenomenon.
     In this paper, the anti-reflection mechanism of nanocomposite film has been explored. When the photon light is projected on the metal nanoparticles, an extra nuclear electron cloud is produced on the surface of metal nanoparticles, Metal nanoparticles oscillate to produce localized surface plasmons, which interacted with the photons to produce a scattering under the appropriate conditions.
     The two kinds of graphene film composite film have been investigated and prepared. The first one can not only form a composite electrode, but also increase carrier collection ability as a decreased layer by increasing the TiO2nanoparticles on graphene film coating. The second one can be formed Ag NPs/RGO composite film by increasing the Nano size silver particles in the graphene films, which can be used as both electrode and decreased layer. Study of the performance characteristics of two kinds of composite electrode shows that the two kinds of electrodes have excellent electrical properties and optical properties, which provides basis for the preparation of micro-Nano anti-reflection structure silicon cells.
     Two novel micro-Nano silicon solar cells with anti-reflection structure are produced. They are micro-Nano silicon nanowires solar cell with anti-reflection structure and nanometer silicon gradient band gap solar cell based on composite graphene film. Two kinds of nanometer silicon thin-film solar cells based on graphene electrode gradient band gap have been prepared and investigated in details. One kind is the gradient band gap solar cell with decrease layer of TiO2. The other is the gradient of the band gap decreased layer solar cells with deposition silver nanoparticles in graphene. The cells with TiO2as decrease layers has efficiency of4.97%, while the other is4.59%. If there isn't reflect layer, it is called bare solar cell. Its efficiency is2.82%. Such efficiency is mainly because when nanocrystalline silicon thin film is deposited, the surface of the thin film deposition is uneven, thus graphene is unable to fully contact with the surface of silicon thin film when graphene films is coated on the silicon thin film surface. This affects the collection ability of carrier and reduces the value of the short circuit current and open circuit voltage, and thus solar cell fill factor is also affected. In addition, when grapheme is lifted, the nonuniform thickness of graphene film will affect the incoming light and effective number of photons. After testing, the solar cell performance with anti-reflection layer is significantly better than no anti-reflection layer solar cell.
引文
[1]王光伟.太阳能电池产业与半导体锗硅薄膜的应用综述[J].天津工程师范学院学报,2006,16(1):14-17.
    [2]李力猛.微晶硅/晶体硅异质结太阳电池的模拟与优化[D].呼和浩特:内蒙古师范大学物理与电子信息学院,2009.
    [3]赵玉文.我国光伏产业发展概况及思考[c]//中国可再生能源学会、江苏省常州市人民政府、中国可再生能源学会太阳能光伏专委会.第十届中国太阳能光伏会议论文集:迎接光伏发电新时代,2008:15.
    [4]钟迪生.硅薄膜太阳能电池研究的进展[J].应用光学,2001,22(3):34-40.
    [5]毛爱华.太阳能电池研究和发展现状[J].包头钢铁学院学报,2002(1):94-98.
    [6]赵玉文.太阳能电池的新进展[J].物理学与新能源材料专题,2004,33(2):99-105.
    [7]Green M A, Emery K, King D L, et al.solar cell efficiency tables (version 25) [J]. Progress in Photovoltaic:Research and Applications,2005,13(1):49-54.
    [8]Schmela M. Super sonic solar maket[J]. Photon International,2005(3):66-82.
    [9]Huang C H, Li F Y, Huang Y Y. Photoelectric function super thin films[D]. Beijing:Peking University,2001:378-385.
    [10]于化丛.氢化纳米硅(na-Si:H)薄膜太阳电池研究[D].上海:上海交通大学理学院,2005.
    [11]金良茂,甘治平,王芸,等.氢化纳米硅薄膜及其太阳电池[J].化工进展,2010,29(S1):135-141.
    [12]Koshida N, Matsumoto N. Fabrication and quantum properties of nanostructure silicon Mat[J]. Science Engineering R,2003,40(5):169-205.
    [13]He Y L, Liu X N, Wang Z C, et al. Study of nano-crystalline silicon films[J]. Sci China Ser A,1993,36(2):248-256.
    [14]Viera G, Mikikian M, Bertran E, et al. Atomic structure of the nanocrystalline Si particles appearing in nanostructured Si thin films produced in low-temperature radiofrequency plasmas [J]. Journal of Applied Physics,2002,92(8):4684-4694.
    [15]Veperk S, Mareck V. Preparation of thin layers of Ge and Si by chemical hydrogen plasma transport[J]. Solid State Electron,1968,11(7):683-684.
    [16]Liu M, He Y L, Jiang X L. Photoluminescence characteristics of oxidized hydrogenated nanocrystalline silicon film[J]. Nanostructure Mar,1998,10(2):257-265.
    [17]He Y L, Yin C Z, Cheng G X, et al. The structure and properties of nanosize crystalline silicon films[J]. Journal of Applied Physics,1994,75(2):797-803.
    [18]陈永生,王生钊,杨仕娥,等.掺磷硅薄膜的微结构及光电特性研究[J].真空科学与技术学报,2006,26(1):8-11.
    [19]He Y L, Liu H, Yu M B, et al. The structure characteristics and piezoresistance effect in hydrogenated nanocrystalline silicon films[J]. Nanostructure Mat,1996,7(7):769-777.
    [20]Walters R J, Bourianoff G I, Atwater H A. Field-effect electroluminescence in silicon nanocrystals[J]. Nature Materials,2005,4(2):143-146.
    [21]张晓丹,赵颖,朱锋,等.VHF-PECVD制备微晶硅材料及电池[J].半导体学报,2005,26(5):952-957.
    [22]Kattamis A Z, Holmes R J, Chun I C, et al. High mobility nanocrystalline silicon transistors on clear plastic substrates high mobility nanocrystalline silicon transistors on clear plastic substrates[J]. IEEE Electron Device Lett,2006,27(1):49-51.
    [23]Kondo M. Microcrystalline materials and cells deposisted by RF glow discharge[J]. Solar Energy Materials & Solar Cells,2003,78(4):543-566.
    [24]Droz C, Vallat Sauvain E, Bailat J,et al. Application of raman spectros copy for the microstructure characterization in microcrystalline silicon solar cells[C]//Proceedings of 16th European Photovoltaic Solar Energy Conference and Exhibination,2001:22-26.
    [25]Vetterl C. On the physics of microcrystalline silicon thin film solar cells from the material to devices with high conversion efficiencies [D]. Germany:Duesseldorf University,2001.
    [26]Zi J, Buscher H, Falter C, et al. Raman shift in Si nanocrystals [J]. Applied Physics Letters, 1996,69(2).200-202.
    [27]丁建宁,高晓妮,袁宁一,程广贵,郭立强.硅烷对纳米硅薄膜微结构和光学性能的影响[J]江苏大学学报2010,31(3):300-303.
    [28]王书博.纳米硅薄膜的光电性质及其太阳能电池研究[D].常州:常州大学材料学院,2011.
    [29]Tauc J. Optical properties and electronic structure of amorphous Ge and Si[J]. Materials Research Bulletin,1968,3(1):37-46.
    [30]张晓丹.器件质量级微晶硅薄膜及高效微晶硅太阳电池制备的研究[D].天津:南开大学信息学院,2005.
    [31]Fonash S J. A manual for AMPS-1D[D]. Pennsylvania :Pennsylvania State University, 1997.
    [32]丁建宁,祁宏山,何宇亮,程广贵,等.工艺条件对硼掺杂纳米硅薄膜微结构及力学性能的影响[J].真空科学与技术学报,2009,29(2):188-193.
    [33]James D P, Michael D D, Peter B G. Silicon VLSL technology fundamentals,practice and modeling[M]. Beijing:Publishing House of Electronics Industry,2003:528.
    [34]Morrison S, Ujjwal D, Arun M. Deposition of thin film silicon using the pulsed PECVD and HWCVD techniques[J]. Solar Energy Materials & Solar cells,2003,76 (3):281-290.
    [35]Rech B, Oschek T R, Repmann T, et al. Microcrystalline silicon for large area thin film solar cells[J]. Thin Solid Films,2003,427(1):157-165.
    [36]张榕.氢化纳米硅薄膜光电导性质研究[[D].上海:上海交通大学物理系,2008.
    [37]Faraji M, Gokhale S, Choudhari S M,et al.High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications[J]. Applied Physics Letters,1992,60(26):29.
    [38]Matsui T, Kondo M, Matsuda A,et al. Microcrystalline silicon solar cells grown at 20-30 A/S by high pressure silane-depletion plasma[C]//3rd word conference on potoboltaic energy conversion,2003:11-18.
    [39]Guo L H, Kondo M, Fukawa M K,et al. High rate deposition of microcrystalline silicon using conbertional plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 1998,37(1):1116-1118.
    [40]He Y L, Yin C Z, Cheng G X, et al. The structure and properties of nanosize crystalline silicon films[J]. Journal of Applied Physics,1994,75 (2):797-803.
    [41]Peter Van Zant芯片制造:半导体工艺制程实用教程[M].赵树武,朱践知,于世恩,等译.北京:电子工业出版社,2004:244.
    [42]戴道生,韩汝琪.非晶态物理[M].北京:电子工业出版社,1989:551-562.
    [43]Knights J C, Lujan R A, Rosenblum M P,et al.Effects of inter gas dilution of silane on plasma-deposited s-si:h films[J]. Applied Physics Letters,1981,38(5):331.
    [44]彭英才,何宇亮.纳米硅薄膜研究的最新进展[J].稀有金属,1999,23(1):42-56.
    [45]彭英才,何宇亮,刘明.PECVD生长nc-Si:H膜的沉积机理分析[J].真空科学与技术,1998,18(4):283-288.
    [46]曾祥斌,徐重阳,王长安,等.PECVD法制备纳米硅薄膜材料[J].电子元件与材料,1999,18(5):1-2.
    [47]Guo L H, Lin R M. Studies on the formation of microcrystalline silicon with PECVD under low and high workong pressure[J]. Thin Solid films,2000,376(1-2):249-254.
    [48]Guo L H, Kondo M, Fukawa M, et al. High rate deposition of microcrystallline silicon using convertional plasma-enhanced chemical vapor deposition[J]. Journal of Applied Physics, 1998,37(10A):1116-1118.
    [49]Gracin D,Gajovic A, Juraic K, et al. Spectral response of amorphous-nano-crystalline silicon thin films [J]. Journal of Non-Crystalline Solids,2008,354(19-25):2286-2290.
    [50]Kamiya T, Nakahata K, Tan Y T, et al. Growth, structure, and transport properties of thin (> 10 nm) n-type microcrystalline silicon prepared on silicon oxide and its application to single-electron transistor[J]. Journal of Applied Physics,2001,89(11):462-467.
    [51]Saha S C, Barua A K, Ray S. The role of hydrogen dilution and radio frequency power in the formation of microcrystallinity of n-type Si:H thin film[J]. Journal of Applied Physics, 1993,74(9):5561-5568.
    [52]Morral A F, Brenot R, Hamers E A G, et al.In situ investigation of polymorphous silicon deposition[J]. Journal of Non-Crystalline Solids,2000,266-269(1):48-53.
    [53]Hugger P G, Cohen J D, Yan B J, et al. Properties of light-induced degradation and the electronic properties of nanocrystalline silicon solar cells grown under functionally graded hydrogen dilutions[J] Journal of Non-Crystalline Solids,2008,354(19-25):2460-246.
    [54]何宇亮,陈光华,张仿清.非晶态半导体物理学[M].北京:高等教育出版社,1989.
    [55]王海燕.硅基太阳能电池陷光材料及陷光结构的研究[D].郑州:郑州大学物理工程学院,2005.
    [56]赵玉文,林安中.21世纪太阳电池发展趋势(晶体硅太阳电池及材料)[J].太阳能学报,1999(4):21.
    [57]张伟.光伏电池表面微结构制备及其抗反射性能研究[D].镇江:江苏大学材料学院,2012.
    [58]Zheng J P, Charbel P T. A three-dimensional computer model for simulation of light-trappingeffects in porous silicon [J].Microelectronic Engineering,2003, 66(1-4):224-232.
    [59]Born M, Wolf E. Principles of Optics [M]. New York:Pergamon,1980.
    [60]Green M A. Solar cells operating principles, technology and system applications[D]. New South Wales:University of New South Wales,1982.
    [61]Roedern von B. Status of amorphous and crystalline thin film silicon solar cell activities[C]// NCPV and Solar Program Review Meeting,2003.
    [62]Collins R W, Ferlauto A S, Ferreira G M, et al. Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry [J]. Sol. Energy Mater. Sol Cells,2003,78(1-4):143-180.
    [63]Tsuo Y S, Xiao Y, Heben M J,et al.Potential applications of porous silicon in photovoltaics [C]//23rd IEEE Photovohaic Specialists confernce,1993:287-293.
    [64]蔡勇,朱京平,马志强,等.透射型亚波长二元闪耀光栅的数值模拟与分析[J].空军工程大学学报:自然科学版,2007,8(3):81-83.
    [65]Philippe Lalanne. Dominique lemercier-lalanne on the effective medium theory of subwave length periodic structures [J]. Journal of Morden Optics,1996,43(10):2063-2085-
    [66]Haggans C W, Li L, Raymond K,et al.Effective-medium theory of zeroth-order lamellar gratings in conical mountings [J]. J Opt Soc Am,1993,10(10):2217-2225.
    [67]Richter I, Ryzi Z, Fiala P. Analysis of binary diffraction gratings:comparison of different approaches [J]. Journal of Morden Optics,1998,45(7):1335-1355.
    [68]周慧君,王取泉.闪耀光栅的二元近似结构[J].光学与光电技术,2005,3(3):39-40.
    [69]邓皓月,张云怀,肖鹏,等.硅纳米线的制备技术及应用研究新进展[J].化工进展,2010,29(2):274-280.
    [70]张晓丹,曹阳,贺军辉.一维硅纳米材料的可控制备和机理[J].化学进展,2008,20(7/8):1064-1072.
    [71]裴立宅,唐元洪.硅纳米线的制备与生长机理[J].材料科学与工程学报,2004,22(6):922-28.
    [72]裴立宅,唐元洪,陈扬文,等.掺杂硅纳米线的研究进展[J].功能材料与器件学报,2004,10(4):399-06.
    [73]郭广生,孙玉绣,王志华,等.纳米级羟基磷灰石粒子的可控制备[J].北京化工大学学报:自然科学版,2004,31(4):78-81.
    [74]杨枣,彭坤,袁缓,等.纳米带的研究进展[J].材料科学与工艺,2006,14(5):538-542.
    [75]一种单晶氧化硅纳米线的合成方法[J].无机盐工业,2006(9):49.
    [76]税安泽,王书媚,刘平安,等.氧化锌晶须的制备及生长机理研究[J].材料导报,2006,20(S2):124-126.
    [77]冯孙齐,俞大鹏,张洪洲,等.一维硅纳米线的生长机制及其量子限制效应的研究[J].中国科学(A辑),1999,29(10):921-926.
    [78]刘建刚,范新会,陈建,等.热蒸发铜粉法制备硅纳米线的研究[J].材料科学与工程学报,2005,23(4):589-592.
    [79]Kautek W, Rudolph P, Daminelli G, et al.Physico-chemical aspects of femtosecond pulse laser induced surface nanostructures [J]. Journal of Applied Physics.2005,81(1):65-70.
    [80]Wu C, Her T H, Mazur E. Black Silicon:A new light absorber [C]// APS Centennial Meeting, 1999.
    [81]徐宇曦.功能化石墨烯的制备、组装及其应用[D].北京:清华大学化学系,2011.
    [82]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991(354):56-58.
    [83]Lu X K, Yu M F, Huang H, et al. Tailoring graphite with the goal of achieving single sheets[J]. Nanotechnology,1999,10(3):269-272.
    [84]Balleste M R, Navarro G C, Herrero G J, et al.2D materials:To graphene and beyond[J]. Nanoscale,2011,3 (1):20-30.
    [85]Ma R Z, Sasaki T. Nanosheets of oxides and hydroxides:Ultimate 2D charge-bearing functional crystallites[J]. Adv Mater,2010,22 (45):5082-5104.
    [86]Noorden R V. Moving towards a graphene world[J]. Nature,2006(442):228-229.
    [87]Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett,2008,100 (1):4.
    [88]Chen J H, Jang C, Xiao S D, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2[J]. Nature Nanotechnol,2008(3):206-209.
    [89]Balandin A A, Ghosh S, Bao W Z,et al.Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8 (3):902-907.
    [90]Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320 (5881):1308.
    [91]Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnol,2009(4):217-224.
    [92]van den Braik J. Graphene:from strength to strength[J]. Nature Nanotechnology, 2007,2(4):199-201.
    [93]Geim A K, Novoselov K S.The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
    [94]中国科学院.2008科学发展报告[R].北京:科学出版社,2008.
    [95]Avouris P, Chen Z, Perebeinos V. Carbon-based electronics[J]. Nature Nanotechnology, 2007,2(10):607-615.
    [96]Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev,2010,39(1):228-240.
    [97]Loh K P, Bao Q L, Ang P K, et al. The chemistry of graphene[J]. J Mater Chem,2010,20 (1): 2277-2289.
    [98]Xu Y F, Liu Z B, Zhang X L, et al. A graphene hybrid material covalently functionalized withporphyrin:Synthesis and optical limiting property [J]. Adv Mater,2009,21 (12):1275-1279.
    [99]Salvio R, Krabbenborg S, Naber W J M, et al. The formation of large-area conducting graphene-like platelets[J]. Chem Eur J,2009,15 (33):8235-8240.
    [100]Salavagione H J, Gomez M A, Martinez G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol) [J]. Macromolecules, 2009(42):6331-6334.
    [101]Zhang X Y, Huang Y, Wang Y, et al. Synthesis and characterization of a graphene-C60 hybrid material[J]. Carbon,2009,47 (1):334-337.
    [102]Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor:Interfacing graphene derivatives with nanoscale and microscale biocomponents [J]. Nano Lett,2008,8 (12):4469-4476.
    [103]Wang S, Chia P J, Chua L L, et al. Band-like transport in surface-functionalized high ly solution-processable graphene nanosheets[J]. Advanced Materials,2008,20 (18):3440-3446.
    [104]Yang H F, Li F H, Shan C S, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. J Mater Chem,2009,19 (1):4632-4638.
    [105]Park S, Dikin D A, Nguyen S T, et al. Graphene oxide sheets chemically cross-linked by polyallylamine[J]. J Phys Chem C,2009,113 (36):15801-15804.
    [106]Yang H F, Shan C S, Li F H, et al. Covalent functionalization of polydisperse chemi cally-converted graphene sheets with amine-terminated ionic liquid[J]. Chemical Com munications,2009(5):3880-3882.
    [107]Liu Z, Robinson J T, Sun X M, et al. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J Am Chem Soc,2008,130 (33):10876-10877.
    [108]Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-s oluble noncovalent functionalized graphene sheets[J]. J Am Chem Soc,2008,130 (1 8):5856-5857.
    [109]Bai H, Xu Y X, Zhao L, et al. Non-covalent functionalization of graphene sheets by sulfonated polyaniline[J]. Chemical Communications,2009(13):1667-1669.
    [110]Qi X Y, Pu K Y, Zhou X Z, et al. Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents[J]. Small,2010,6 (5):663-669.
    [111]Yang H F, Zhang Q X, Shan C S, et al. Stable, conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte[J]. Langmuir,2010,26 (9):6708-6712.
    [112]Chen G H,Wu D J,Weng W G, et al. Preparation and characterizations of nanoparti cles from graphite via an electrochemically oxidizing method[J]. Synthetic Metals,2003, 139(2):221-225.
    [113]Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proc Natl Acad Sci,2005,102 (30):10451-10453.
    [114]Berger C, Song Z, Li X, et al.Electronic confinement and coherence in patternerd epitaxial graphene[J]. Science,2006,312(5777):1191-1196.
    [115]王文荣,周玉修,李铁,等.高质量大面积石墨烯的化学气相沉积制备方法研究[J].物理学报,2012,61(3):510-516.
    [116]任文才,高力波,马来鹏,等.石墨烯的化学气相沉积法制备[J].新型炭材料,2011,26(1):71-80.
    [117]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature,2009(457):706-710.
    [118]Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and gra phene:Versatile building blocks for carbon-based materials[J]. Small,2010,6(6):711-723.
    [119]De S, King P J, Lotya M, et al. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized,oxide-free graphene dispersions. Small,2010,6(3): 4587464..
    [120]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnol,2008,3(5):270-274.
    [121]Li D, MUller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnol,2008,3(2):101-105.
    [122]Tuinstra F, Koenig J L. Raman spectra of graphite[J]. Bull. Am. Phys. Soc,1970,15(3): 1126-1130.
    [123]Jorio A, Pimenta M A, Souza A G, et al. Characterizing carbon nanotube samples with resonance Raman scattering[J]. New J Phys,2003,5:139.
    [124]Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters,2008,8(1):36-41.
    [125]Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene [J]. Nano Letters,2007,7(2):238-242.
    [126]Stankovich S, Dikin D A, Piner R D,, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7),1558-1565.
    [127]Zhou Y Z, Yang J, Chong X N, et al. Electrostatic self-assembly of graphene-silver multilayer films and their transmittance and electronic conductivity [J]. Carbon,2012,50(12):4343-4350.
    [128]Temple T L, Mahanama G D K, Reehal H S, et al. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells[J]. Sol Energy Mater Sol cells,2009,93(11):1978-1985.
    [129]N+a-Si Electrical Property Parameter Set[EB/OL]. [2013-12-06].http://www.ampsmodelin g.org/materials/naSi.htm.
    [130]Fonash S, Arch J, Cuiffi J, et al.A manual for AMPS-1D for windows 95/NT a one-dimensional device simulation program for the analysis of microelectronic and photonic structures[J]. The Pennsylvania State University,1997.
    [131]张勇,刘艳,吕斌,等.前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响[J].物理学报,2009,58(4):2829-2835.
    [132]Finger F, Mai Y, Klein S, et al.High efficiency microcrystalline silicon solar cells with Hot-Wire CVD buffer layer[J]. Thin Solid Films,2008,516 (5):728-732.
    [133]Peng H,Zhou Z B. Research on Ⅲ-Ⅴ bandgap graded solar cells [J]. Chinese J Semiconduct,2005,26(5):95.
    [134]Rech B,Kluth O,Repmann T,et al. New materials and deposition techniques for highly eficient silicon thin film solar cells[J]. Solar Energy Mater Solar Cells,2002,74 (1-4);439-447.
    [135]Pieters B E. Determination of the mobility gap of in-trinsic in p-i-n solar cells[J]. Journal of Applied Physics,2009,105(4):044502.
    [136]Gloeckler M, Sites J R. Band-gap grading in Cu(In,Ga)Se2 solar cells[J]. J Phys Chem Solids,2005,98(11):113704-113704.
    [137]Rath J K. Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications[J]. Solar Energy Materials and Solar Cells, 2003,76(4):431-487.
    [138]Nasuno Y, Kondo M, Matsudaet A. Passivation of oxygen-related donors in microcrys talline silicon by low temperature deposition[J]. Applied Physics Letters,2001,78(16),2 330-2332.
    [139]Nasuno Y, Kondo M, Matsudaet A. Passivation of oxygen-related donors in microcrystalline silicon by low temperature deposition[J]. Applied Physics Letters,2001,78(16),2330-2332.
    [140]Graf U, Meier J, Kroll U, et al. High rate growth of microcrystalline silicon by VHF-GD at high pressure[J]. Thin Solid Films,2003,427(1-2):37-40.
    [141]苗丽燕,杨仕娥,李艳阳,等.数值模拟p/i界面对微晶硅薄膜太阳电池性能的影响[J].人工晶体学报,2011,40(3):599-603.
    [142]Green M A,Emery K, Hishikawa Y, et al.Solar cell efficiency tables(version37)[J]. Progress in Photovoltaics:Research and Applications,2011,19 (1):84-92.
    [143]Yamamoto K, Nakajima A, Yoshimi M, et al. A high efficiency thin film silicon solar cell and module[J]. Solar Energy,2004,77 (6):939-949.
    [144]Mai Y, Klein S, Carius R, et al. Open circuit voltage improvement of high-deposition-rate microcrystalline siliconSolar cells by hot wire interface layers[J]. Applied Physics Letters,2005,87 (7):073503-073506.
    [145]Zhang X D, Zhao Y, Zhu F, et al. Study of vertical non-uniformity of microcry stalli ne silicon thin film using raman spectraand AFM[J]. Journal of Synthetic Crystals,200 4,33(6):960-964.
    [146]Zhang L W, Yu Z T, Yang G, et al. Study on the microstructure of microcry stalline silicon thin films by VHF-PECVD[J]. Journal of Synthetic Crystals,2009,38(1):231-234.
    [147]Vanden Donker M N, Rech B, Finger F, et al. Deposition of highly efficient microcry stalline silicon solar cells under conditions of low H2 dilution:The roleof the transient depletion induced incubation layer[J]. Progress in Photovoltaics:Research and Applications,2007,15 (4):291-301.
    [148]Yan B, Yue G, Yang J, et al. Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells[J]. Applied Physics Letters,2004,85(11):1955-1957.
    [149]Vanden Donker M N.Plasma deposition of microcrystalline silicon solar cells:Looking beyondthe glass[C]. Forschungszentrum Julich:PHD Thesis,2006.
    [150]Material data:Silicon materials[EB/OL]. [2013-12-06].http://www.ampsmodeling.org/mate rialData_silicon.html.
    [151]Pieters B E, Stiebig H, Zeman M, et al. Determination of the mobility gap of intrinsic μc-Si:H in p-i-n solar cells [J]. Journal of Applied Physics,2009,105 (4):10.
    [152]Yan B, Owens J M, Yang J, et al. High efficiency triple-junction solar cells with hydrogenated nanocrystalline silicon bottom cell[C]//Proceedings of the 31st IEEE PV Specialists Conference,2005(3-7):1456-1459.
    [153]Brammer T, Stiebig H. Applying analytical and numerical methods for the analysis of microcrystalline silicon solar cells[J]. Solar Energy Materials & Solar Cells,2006,90 (18-19):3021-3030.
    [154]Schmidt M, Kortea L, Laades A, et al. Physical aspects of a-Si:H/c-Si hetero-junction solar cells [J]. Thin Solid Films,2007,515 (19):7475-7480.
    [155]张福庆.光伏电池表面微/纳陷光结构及硅纳米线太阳电池的制备[D].镇江:江苏大学机械工程学院,2012.
    [156]Zhu,jun,Ding,Jian-Ning,Guo,Li-Qiang.A new silicon nanowire arrays solar cell based on gradient optical gaps nanometre thin film [J]. International Journal of Materials and Structual Integrity,2012,2(6):297-308.
    [157]苏未安,沈文忠.多重激子效应及其在先进太阳电池中的应用(上)[J].太阳能,2012,(23):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700