一维碳纳米材料的可控制备及其生长机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碳纤维和纳米碳管有许多独特的性能,这些独特的性能使其具有许多潜在的应用,如催化剂载体,储氢,复合材料,纳米电子和纳米机械装置,和场致发射装置。影响纳米碳纤维和纳米碳管生长的因素很多,如催化剂种类和粒子尺寸,反应温度,载体的类型以及碳源的种类,在所有这些因素中,催化剂粒子尺寸和反应温度是关键因素。
     在本论文中,我们利用不同纳米金属催化剂和各种催化剂前驱体,催化乙炔或乙烯制备了一维碳纳米材料,纳米碳纤维和纳米碳管,并且利用铁基底铜催化剂催化乙炔成功的制备了纳米碳纤维阵列。通过扫描电镜、透射电镜、X射线粉末衍射、原子力显微镜和热重分析仪等分析方法对合成的纳米碳纤维和纳米碳管进行了表征。重点研究了催化剂粒子尺寸和反应温度对所制备的纳米碳纤维和纳米碳管形貌的影响,以及铜催化剂催化乙炔垂直定向生长碳纤维需具备的因素,并且讨论了其生长机理。
     在前期科研的基础上,我们有了新的进展:采用物理方法制备的纳米金属粒子成功的合成了螺旋形貌的碳纤维,实验重复性好,并发现了螺旋碳纤维生长的小尺寸效应。分别采用惰性气体蒸发法制备的纳米铜粒子和氢电弧等离子体法制备的纳米A1_2Cu粒子为催化剂,催化乙炔制备了螺旋型和直线型两种不同形貌的纳米碳纤维。研究结果表明催化剂粒子尺寸对所制备的纳米碳纤维的形貌有很大的影响。通常粒径小于50nm的催化剂粒子生长螺旋纳米碳纤维,在一个纳米催化剂粒子上,总是只生长两根螺旋纳米纤维。它们具有绝对相反的螺旋旋向,但却具有相同的纤维直径,纤维截面,螺旋直径,螺旋圈数,螺旋间距,和螺旋长度。这两根螺旋纤维经常在相同螺旋圈数的位置同时发生螺旋旋向的改变,即螺旋反转。较大尺寸的催化剂粒子易催化生长直线型纳米碳纤维。
     纳米催化剂粒子在催化纳米碳纤维生长的过程中,经历了一个重要的形状变化过程。即由初始的不规则形状变成了规则的多面体形状。分析表明催化剂粒子形状改变的驱动力来源于乙炔气体对纳米粒子晶面的吸附引起的表面能变化。纳米粒子不同晶面活性差异是生长螺旋纤维的首要条件。
     利用硝酸铜、碱式碳酸铜和酒石酸铜作为催化剂前驱体,催化乙炔制备了螺旋/直线纳米碳纤维。同样观察到粒径较小的催化剂粒子易生长螺旋纳米碳纤维,粒径较大的催化剂粒子易催化生长直线型纳米碳纤维。
     利用铁基底铜催化剂催化乙炔成功的制备了纳米碳纤维阵列,在基底上纳米碳纤维排列整齐,催化剂粒子位于垂直生长的碳纤维中部位置。透射照片清楚地显示在一个催化剂粒子上生长出两根纳米碳纤维,纳米碳纤维的直径与催化剂粒径相当,两根纳米碳纤维的夹角为180°;催化剂粒子与反应前相比形貌发生了变化。利用玻璃基底镀的铜溶胶膜和使用蒸发法在玻璃基底上沉积的铜膜催化乙炔制备了纳米碳纤维膜,此方法中纳米碳纤维在玻璃基底上无垂直生长的现象,纳米碳纤维相互交叉和缠绕,定向性并不明显。铜催化剂催化乙炔垂直定向生长碳纤维需具备以下因素:(1)基底上的铜催化剂粒子排列致密;(2)铜催化剂粒径足够大(大于100nm)。生长过程如下:在一个铜催化剂粒子上生长出两根纳米碳纤维,分别沿垂直方向生长,由于基底上的催化剂粒子排列很致密,每根碳纤维在生长的过程中均受到周围碳纤维力的作用,互相支撑,使得纳米碳纤维在垂直方向上生长。玻璃基底镀的铜溶胶膜中的纳米铜粒子分布稀疏,由其催化乙炔生长碳纤维时,碳纤维之间缺乏相互支撑,无法保持垂直向上生长;蒸发法在玻璃基底上沉积的铜粒子粒径较小,在其上对称生长出两根螺旋纳米碳纤维呈“V”型,无法实现垂直生长。
     利用氢电弧等离子体法制备的纳米铁、钴、镍粒子为催化剂,以乙炔或乙烯为碳源,在不同反应温度下制备了纳米碳纤维和纳米碳管。实验结果表明,反应温度对碳产物的形貌有很大影响。一般在低温下,如铁在温度低于650℃时,镍在低于温度低于550℃时,钴在温度低于500℃时,催化产物为纳米碳纤维;在较高温度时,铁反应温度在710-800℃,镍反应温度在650-850℃之间时,钴在温度在550-850℃之间时,制得的碳产物是纳米碳管;当温度再继续升高后,制得碳产物为纳米碳颗粒。在较低温度下,碳源气体分子附着在纳米催化剂粒子表面,在催化作用下分解产生碳原子。碳原子在催化剂的某个晶面上开始堆垛沉积,不断伸长。随着反应的进行,长成为具有一定长度的纳米碳纤维。在较高温度时,碳源气体分子首先被吸附在金属催化剂粒子的某个晶面上,然后分解出碳原子,碳原子通过溶解反应进入到金属粒子内部后,再由吸附碳原子的一面扩散到另一面,并以碳管的形式在此面析出。
     首次以铜为催化剂,使用电弧法制备了竹节状的纳米碳管,每根纳米碳管的顶端有一个催化剂粒子。
Carbon nanotubes and carbon nanofibers have many unique properties,such as high electric conductivity,high surface area,and high mechanical strength.These unique properties result in many potential applications,such as catalyst supports, hydrogen storage,composite materials,nano-electronic and nano-mechanical devices, and field emission devices.The synthesis parameters,such as types and particle sizes of catalysts,reaction temperatures,type of support materials,and type of carbon sources may greatly affect the growth process of carbon nanotubes and carbon nanofibers.Among these growth parameters,particle size of catalysts and reaction temperature undoubtedly play key roles in the structure properties of carbon nanotubes and carbon nanofibers.
     In this thesis,one-dimensional carbon nanomaterials,carbon nanofibers and carbon nanotubes,were synthesized by the pyrolysis of acetylene or ethylene using different metal nanoparticle catalysts or catalyst precursors.Vertically aligned carbon nanofibers were prepared successfully by the decomposition of acetylene with copper catalyst coated on an iron substrate.The products were characterized by SEM,TEM, AFM,XRD,DTA/TG,and so on.The effects of catalyst particle size and reaction temperature on the morphology of carbon nanofibers and carbon nanotubes were investigated.The determining factors in fiber alignment using copper catalyst were studied.The growth mechanism of the obtained carbon nanomaterials was also discussed.
     Helical carbon nanofibers were synthesized at low temperature by the catalytic decomposition of acetylene with metal nanoparticles prepare by a physical method.
     Good yields and reproducibility were obtained.Small size effect for synthesis of helical carbon nanofibers was found.Carbon nanofibers were synthesized by catalytic decomposition of acetylene with copper nanoparticles prepared by an evaporation method and Al_2Cu nanoparticles using a hydrogen-arc plasma method.Different morphologies(helical and straight) of carbon nanofibers were observed.The catalyst particle size had a considerable effect on the morphology of carbon nanofibers. Helical carbon nanofibers were grown on copper nanoparticles with a grain size less than 50 nm.The following characteristics of the helical carbon nanofibers were discovered.Firstly,there are always only two helical nanofibers symmetrically grown over a single catalyst nanoparticle,which is below 50 nm in size.Secondly,the two helical nanofibers have absolutely opposite helical senses,namely,one is left-handed coiled,and the other is right-handed coiled.Thirdly,the two helical nanofibers are identical in coil diameter,coil length,fiber diameter,cycle number,coil pitch and cross section.Finally,the fiber diameter of the helical nanofibers is approximately equal to the grain size of the nanocatalyst particle responsible for their growth,but the coil diameter almost twice the size of the catalyst nanoparticle.Therefore,based on the information mentioned above,we conclude that the two helical fibers follow a mirror-symmetric growth mode.When the catalyst particle size was larger than 50 nm, straight carbon nanofibers were obtained dominantly.
     This symmetric growth mode was induced by the shape changes in catalyst nanoparticles during catalyzing the chemical vapor deposition of acetylene.The shape changes were caused by the changes in surface energy resulting from the acetylene-adsorption on the nanoparticles.The catalytic activity anisotropy of the particle surfaces was the essential condition that fiber can be grown in a helical morphology.
     Helical and straight carbon nanofibers were synthesized by the catalytic decomposition of acetylene at a low temperature using Cu(NO_3)_2, CuCO_3·Cu(OH)_2·xH_2O and copper tartrate as catalyst precursors.Helical carbon nanofibers with a symmetric growth mode were grown on catalyst nanoparticles with a grain size less than 50 nm.If the catalyst particle size was in the range of 50-300 nm,straight carbon nanofibers were obtained dominantly.
     Vertically aligned carbon nanofibers were produced by the decomposition of acetylene with copper catalyst coated on an iron substrate.Interestingly,we find that catalyst particles are located at the middle of the formed carbon nanofibers.TEM images reveal that there are only two straight nanofibers grown over a single catalyst nanoparticle.The fiber diameter is approximately equal to the grain size,of the catalyst particle.The angles between the two straight nanofibers are 180.The catalyst particles undergo shape changes during the growth of vertically aligned carbon nanofibers.In contrast,the carbon nanofibers grow in a random orientation, when using copper nanoparticle catalysts coated on a glass plate by a sol-gel method or an evaporation method.The determining factors in fiber alignment using copper catalyst are as follows:(1) Dense copper catalyst particles on a substrate.(2) Catalyst particles are large enough.Two straight nanofibers vertically grown over a single catalyst nanoparticle on a substrate.Because of the dense copper catalyst particles, each fiber is supported by surrounding fibers in the growth process.Attributed to sparse distribution,the carbon nanofibers without supporting by surrounding fibers grow in random orientations on a glass substrate base coated by copper films using a sol-gel method.Because helical carbon nanofibers with a "V"-type mirror-symmetric growth mode were grown on copper nanoparticles with a small grain size,the carbon nanofibers grown in random orientations on glass substrates base coated by copper nanoparticles using an evaporation method
     Two types of carbon nanomaterials,including carbon nanofibers and carbon nanotubes,were synthesized at different temperatures by the catalytic pyrolysis of acetylene or ethylene with iron,cobalt,and nickel nanoparticles prepared using a hydrogen-arc plasma method.The structures of the products were closely related to the reaction temperature,and could be changed from fibers to tubes by simply increasing the reaction temperature.At low temperature,such as the growth with iron nanoparticles under 650℃,the growth with nickel nanoparticles under 550℃,and growth with cobalt nanoparticles under 500℃,carbon nanofibers were obtained. While at higher temperature,such as the growth with iron nanoparticles between 710℃-800℃,the growth with nickel nanoparticles between 650℃-850℃,and the growth with cobalt nanoparticles between 550℃-850℃,carbon nanotubes were the dominant products.
     The reaction temperature had a significant effect on the activities of the catalysts and carbon sources.At high temperature,the carbon source gas decomposed to produce carbon atoms,which dissolved at catalyst surface exposed to gas and diffused into metal nanoparticles and deposited on the rear side.As for the growth of carbon nanofibers at lower temperatures,we infer that,in this case,maybe there is no dissolution and diffusion of carbon atoms into the catalyst particles,and a surface catalytic polymerization reaction occurs.Namely,carbon atoms decomposed from the carbon source gas deposited on the surface of catalyst to form carbon nanofibers.
     Bamboo-like carbon nanotubes were synthesized by an arc method using copper as catalyst.The growth mechanism for bamboo-like carbon nanotubes was discussed.
引文
[1]Iijima S.,Helical microtubules of graphitic carbon,Nature,1991,354:56-58
    [2]Doi T.,Fukuda A.,Iriyama Y.,et al.,Low-temperature synthesis of graphitized nanofibers for reversible lithium-ion insertion/extraction,Electrochem.Commun.,2005,7:1O-13
    [3]Mukhopadhyay K.,Porwal D.,Lal D.,et al.,Synthesis of coiled/straight carbon nanofibers by catalytic chemical vapor deposition,Carbon,2004,42,3254-3256
    [4]Rodriguez N.M.,A review of catalytically grown carbon nanofibers,J.Mater.Res.,1993,8(12):3233-3250
    [5]Kim M.S.,Rodriguez N.M.,Baker R.T.K.,The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments,J.Catal.,1991,131(1):60-73
    [6]Chambers A.,Rodriguez N.M.,Baker R.T.K.,Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene,J.Mater Res.,1996,11(2):430-438
    [7]Molcdima S.,Asakura S.,Kasenmra T.,et al.,Catalytic effects of metal carbides,oxides and Ni single crystal on the vapor growth of micro-coiled carbon fibers,Carbon,1996,34(3):289-296
    [8]姬海宁,张怀武,纳米碳管的研究与发展,磁性材料及器件,2001,32(4):37-40
    [9]王升高,汪建华,纳米碳管及其合成,材料导报,2002,16(3):47-48
    [10]Endo M,Takeuchi K.,Hiraoka T,et al.,Stacking nature of graphene layers in carbon nanotubes and nanofibres.J.Phys.Chem.Solids,1997,58(11):1707-1712
    [11]李安邦,高瑞林,晶须状碳材料,新型碳材料,1991,3:105-107
    [12]Masuda T.,Mukai S.R.,Hashimoto K.,The liquid pulse injection technique:A new method to obtain long vapor grown carbon fibers at high growth rates,Carbon,1993,31(1):783-787
    [13]Ishioka M.,Okada T.,Matsubara K.,Preparation of vapor-grown carbon fibers in straight form by floating catalyst method in Linz-Donawitz converter gas,Carbon,1993,31(1):123-127
    [14]Tibbelts G.G.,Bemardo C.A.,Gorkiewicz D.W.,et al.,Role of sulfur in the production of carbon fibers in the vapor phase,Carbon,1994,32(4):569-576
    [15]范月英,有机物催化热解法制备纳米碳纤维及其储氢性能研究:[博士论文].沈阳:中国科学院金属研究所,2000
    [16]Tibbetts G.G,Why are carbon filaments tubular,J.Crys.Growth,1984,66(3):632-638
    [17]lshioka M,Okada T,Matsubara K.,Preparation of vapor-grown carbon fibers by floating catalyst method in Linz-Donawitz converter gas:Influence of catalyst size,Carbon,1993,31(5):699-703
    [18]Zhang W.G.,Cheng H.M.,Su G.,et al.,A model for liquid-diffusion catalytically grown carbon materials,J.Mater.Sci.Tech.,1999,15(1):1-4
    [19]Holstein W.L.,The roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon,J.Catal.,1995,152(1):42-51
    [20]Baker R.T.K.,Catalytic growth of carbon filaments,Carbon,1989,27(3):315-323
    [21]Baird T.,Fryer J.R.,Grant B.,Carbon formation on iron and nickel foils by hydrocarbon pyrolysis--reactions at 700℃,Carbon,1974,12(5):591-602
    [22]Oberlin A.,Endo M.,Filamentous growth of carbon through benzene decomposition,J.Crys.Growth,1976,32(3):335-349
    [23]Tibbetts G.G.,Vapor-growth carbon fibers:status and prospects,Carbon,1989,27(5):745-747
    [24]Motojima S.,Chen Q.,Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obained by chemical vapor deposition,J.Appl.Phys.1999,85(7):3919-3921
    [25]苏革,杜金红,范月英等,用不同催化剂制备纳米炭纤维的生长机理,材料研究学报,2001,15(6):623-628
    [26]Akagi K.,Piao G,Kaneko S.,et al.,Helical polyacetylene synthesized with a chiral nematic reaction field,Science,1998,282:1683-1686
    [27]陈秀琴,CVD法制备微旋管状炭纤维的微观形貌,新型炭材料,2000,15(3):23-27
    [28]Krishnankutty N.,Rodriguez N.M.,Baker R.T.K.,Effect of copper on the decomposition of ethylene over an iron catalyst,J.Catal.,1996,158(1):217-227
    [29]Kato T,Kusakabe K,Morooka S.,Process of formation of vapour-grown carbon fibres by gas-phase reaction using ultrafine iron catalyst particles,J.Mater Sci Lett.,1992,11(1O):674-677
    [30]Kim M.S.,Rodriguez N.M.,Baker R.T.K.,The interplay between sulfur adsorption and carbon deposition on cobalt catalysts,J.Catal.,1993,143(2):449-463
    [31]Kato T.,Matsumoto T.,Saito T.,et al.,Effect of carbon source on formation of vapor-grown carbon fiber,Carbon,1993,31(6):937-940
    [32]Rodriguez N.M.,Kim M.S.,Baker R.T.K.,Promotional effect of carbon monoxide on the decomposition of ethylene over an iron catalyst,J.Catal.,1993,144(1):93-108
    [33]大谷杉郎,真田雄三,碳化工学基础,北京:化学工业出版社,1985,68
    [34]Nishiyama Y.,Tamai Y.,Carbon formation on copper-nickel alloys from benzene,J.Catal.,1974,33(1):98-107
    [35]Rodriguez N.M.,Chambers A.,Baker R.T.K.,Catalytic engineering of carbon nanostructures,Langmuir 1995,11(10):3862-3866.
    [36]Lammert P.E.,Crespi V.H.,Topological phase in graphite cones,Phys.Rev.Lett.,2000,85(24):5190-5193
    [37]Nakada K.,Fujita M.,Dresselhaus G.,et al.,Edge state in graphene ribbons:nanometer size effect and edge shape dependence,Phys.Rev.B,1996,54(24):17954-17961.
    [38]Endo M.,Kim Y.A.,Hayashi T.,et al,Structural characterization of cup-stacked-type nanofibers with an entirely hollow core,Appl.Phys.Lett.,2002,80(7):1267-1269
    [39]Park C,Anderson.,P.E.,Chambers A.,et al.,Further studies of the interaction of hydrogen with graphite nanofibers,J.Phys.Chem.B,1999,103(48):10572-12081
    [40]Terrones H.,Hayashi T.,Munoz-Navia M.,et al.,Graphite cones in palladium catalysed carbon nanofibers,Chem.Phys.Lett.,2001,343(3-4):241-250
    [41]Ren W.C,Cheng H.M.,Herringbone-type carbon nanofibers with a small diameter and large hollow core synthesized by the catalytic decomposition of methane,Carbon,2002,41(8):1657-1660
    [42]Motojima S.,Kawaguchi M.,Nozaki K.,et al.,Growth regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene,and their morphology and extension characteristics,Appl.Phys.Lett.,1990,56(4):321-324
    [43]Gorbunov A.,Jost O.,Pompe W.,et al.,Role of the catalyst particle size in the synthesis of single-wall carbon nanotubes,Appl.Surf.Sci.,2002,197-198:563-567
    [44]Ermakova M.A.,Ermakov D.Y.,Kuvshinov G.G.,et al.,New nickel catalysts for the formation of filamentous carbon in the reaction of methane decomposition,J.Catal.,1999,187(1):77-84
    [45]Downs W.B.,Baker R.T.K.,Novel carbon fiber-carbon filament structures,Carbon,1991,29(8):1173-1179
    [46]Endo M.,Kim Y.A.,Hayashi T.,et al.,Vapor-grown carbon fibers(VGCFs):Basic properties and their battery applications,Carbon,2001,39(9):1287-1297
    [47]Merkulov V.I.,Lowndes D.H.,Baylor L.R.,et al.,Field emission properties of different forms of carbon,Solid State Electronics,2001,45(6):949-956
    [48]Gadd G.E.,Blackford M.,Moricca S.,et al.,The world's smallest gas cylinders?Science,1997,277:933-936.
    [49]Chambers A.,Park C,Baker R.T.K.,et al.,Hydrogen storage in graphite nanofibers,Journal of Physical Chemistry B,1998,102(22):4253-4256
    [50]Hoogenraad M.S.,Onwezen M.F.,van Dillen A.J.,et al.,Supported catalysts based on carbon fibrils,Studies in Surface Science and Catalysis,1996,101:1331-1339
    [51]Hoogenraad M.S.,van Leeuwarden R.A.G.M.M.,van Breda Vriesman G.J.B.,et al.,Metal catalysts supported on a novel carbon,Studies in Surface Science and Catalysis,1995,91:263-271
    [52]Mojet B.L.,Hoogenraad M.S.,van Dillen A.J.,et al.,Coordination of palladium on carbon fibrils as determined by XAFS spectroscopy,Journal of the Chemical Society-Faraday Transactions,1997,93(24):4371-4375
    [53]Kroto H.W.,Heath J.R.,Brien S.C.O.,et al.,C60:Buckminsterfullerene,Nature,1985,318:162-163
    [54]Iijima S.,Ichihashi T.,Single-shell carbon nanotubes of l-nm diameter,Nature,1993,363:603-605
    [55]沈曾民,赵东林,镀镍碳纳米管的微波吸收性能的研究,新型炭材料,2001,16(1)
    [56]Zhang X.F.,Zhang X.B.,Tendeloo V.,et al.,Carbon nano-tubes;their formation process and observation by electron microscopy,J.Cryst.Growth,1993,130(3-4):368-382
    [57]Colbert D.T.,Zhang J.,McClure S.M.,et al.,Growth and sintering of fullerence nanotubes,Science,1994,266:1218-1222
    [58]Endo M.,Takeuchi K.,Igarashi S.,et al.,The production and structure of pyrolytic carbon nanotubes(PCNT),J.Phys.Chem.Solid,1993,54(12):1841-1848
    [59]KrA[?]tschmer W.,Lamb L.D.,Fostiropoulos K.,et al.,Solid C60:a new form of carbon,Nature,1990,347:354-358
    [60]Guo T.,Nikolaev P.,Thess A.,et al.,Catalytic growth of single-walled nanotubes by laser vaporization,Chemical Physics Letters,1995,243(1-2):49-54
    [61]Zhang H.Y.,Ding Y.,Wu C.Y.,et al.,The effect of laser power on the formation of carbon nanotubes prepared in CO_(2) continuous wave laser ablation at room temperature,Physica.B,2003,325:224-229
    [62]Laplaze D.,Bernier P.,Maser W.K,et al.,Carbon nanotubes:the solar approach,Carbon,1998,36(546):685-688
    [63]Anglaret E.,Bendiah N.,Guillard T.,et al.,Raman characterization of single wall carbon nanotubes prepared by the solar energy route,Carbon,1998,36(12):1815-1820
    [64]Alvarez L.,Guillard T.,Sauvajol J.L.,et al.,Growth mechanisms and diameter evolution of single wall carbon nanotubes,Chemical Physics Letters,2001,342(1-2):7-14
    [65]Bethune D.S.,Klang C.H.,De Vires M.S.,et al.,Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,Nature,1993,363:605-607
    [66]Joumet C.,Master W.K.,Bemier P.,et al.,Large-scale production of single-walled carbon nanotubes by the electric-arc technique,Nature,1997,388:756-758
    [67]Liu L.,Cong H.T.,Cheng H.M.,et al.,Semi-continuous synthesis of single-walled carbon nanotubes by hydrogen arc method,Carbon,1999,37(11):1865-1868
    [68]Dai H.J.,Rinzler A.G.,Nikolacv P.,et al.,Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,Chem.Phys.Lett.,260(3-4):471-475
    [69]Cheng H.M.,Li F.,Su G.,et al.,Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,App.Phys.Lett.,1998,72(25):3282-3284
    [70]Cheng H.M.,Li F.,Sun X.,et al.,Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons,Chem.Phys.Lett.,289(5-6):602-610
    [71]Flahaut E.,Govindaraj A.,Peigney A.,et al.,Synthesis of single-walled carbon nanotubes using binary(Fe,Co,Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions,Chem.Phys.Lett.,300(1-2):236-242
    [72]Ebbessen T.W.,Ajayan P.M.,Large-scale synthesis of carbon nanotubes,Nature,1992,358:220-222
    [73]Ishigami M.,Cumings J.,Zettl A.,et al.,A simple method for the continuous production of carbon nanotubes,Chem.Phys.Lett.,2000,319(5-6):457-459
    [74]Rodriguez N.M.,Kim M.S.,Baker R.T.K.,Carbon nanofibers:a unique catalyst support medium,J.Phys.Chem.,1994,98(50):13108-13111
    [75]朱宏伟,慈立杰,梁吉等,浮游催化法半连续制取碳纳米管的研究,新型炭材料,2000,15(1):48-51
    [76]Cheng H.M.,Li F.,Su G.,et al.,Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,Appl.Phys.Lett.,1998,72:3282-3284
    [77]郑国斌,施益峰,冯景伟等,流动催化法连续制备碳纳米管及其形态和结构的研究,无机材料学报,2001,16(5):945-950
    [78]Fan Y.Y.,Li F.,Cheng H.M.,et al.,Preparation,morphology and microstructure of diameter-controllable vapor-grown carbon nanofibers,J.Mater.Res.,1998,13:2342-2346
    [79]Thcss A.,Lee R.,Nikolacv P.,et al.,Crystalline ropes of metallic carbon nanotubes,Science,273:483-487
    [80]Guo T.,Nikolaev P.,Rinzler A.G.,et al.,Self-assembly of tubular fullerenes,J.Phys.Chem.,1995,99(27):10694-10697
    [81]Hsu W.K.,Terrones M.,Hare J.P.,et al.,Electrolytic formation of carbon nanostructures,Chemical Physics Letters,1996,262(1-2):161-166
    [82]Vander Wal R.L.,Ticich T.M.,Curtis V.E.,Diffusion flame synthesis of single-walled carbon nanotubes,Chem.Phys.Lett.,2000,323(3-4):217-223
    [83]Das Chowdhury K.,Howard J.B.,VanderSande J.B.,Fulterenic nanotrctures in flames,Journal of Materials Research,1996,11(2):341-347
    [84]Chernozatonskii L.A.,Kosakovskaja I.J.,Fcdorov E.A.,et al.,New carbon tubelite-ordered film structure of multilayer nanotubes,Physics Letters A,1995,197(1):40-46
    [85]Yamamoto K.,Koga Y.,Fujiwara S.,et al.,New method of carbon nanotube growth by ion-beam irradiation,Applied Physics Letters,1996,69(27):4174-4175
    [86]Cho W.S.,Hamada E.,Kondo Y.,et al.,Synthesis of carbon nanotubes from bulk polymer,Applied Physics Letters,1996,69(2):278-279
    [87]Chemozatonskii L.A.,Val'chuk K.P.,Kiselev N.A.,et al.,Synthesis and structure irvestigations of alloys with fullerence and nanotube inclusions,Carbon,1997,35(6):749-753
    [88]Kyotani T.,Tsai L.F.,Tomita A.,Preparation of ultrafine carbon tubes in nanochannets of an adodic aluminum oxide film,Chem.Mater.,1996,8(8):2109-2113
    [89]Duesberg G.S.,Blau W.,Byrnv H.J.,et al.,Chromatography of carbon nanotubes,Synth.Metal.,1999,103(1-3):2484-2485
    [90]Bonard J.M.,Slora T.,Salvetat J.P.,et al.,Purification and size-selection of carbon nanotubes,Adv.Mater.,1997,9(10):827-831
    [91]Ebbesen T.W.,Ajayan P.M.,Hiura H.,et al.,Purification of nanotubes,Nature,1994,367:519
    [92]Tohji K.,Goto T.,Takahasbi H.,et al.,Purifying single-walled nanotubes,Nature,1996,383:679
    [93]Tsang S.C.,Harris P.J.F.,Green M.L.H.,Thinning and opening of carbon nanotubes by oxidation using carbon dioxide,Nature,1993,362:520-522
    [94]Dujardin E.,Ebbesen T.W.,Krishnan A.,et al.,Purification of single-shell nanotubes,Adv.Mater.,1998,10(8):611-613
    [95]Dillon A.C.,Cennett T.,Jones K.M.,et al.,A simple and complete purification of single-walled carbon nanotube materials,Adv.Mater.,1999,11(16):1354-1358
    [96]Baker R.T.K.,Factors controlling the mode by which a catalyst operates in the graphite-oxygen reaction,Carbon,1986,24(6):715-717
    [97]Endo M.,Kroto H.W.,Formation of nanofibers,J.Phys.Chem.,1992,96(17):6941-6949
    [98]Iijima S.,Growth of carbon nanotubes,Mater Sci.Eng.B,1993,19(1-2):172-180
    [99]Lourie O.,Wagner H.D.,Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy,J.Mater.Res.,1998,13:2418-2422
    [100]Wong E.W.,Sheehan P.E.,Lieber C.M.,Nanobeam mechanics:elasticity,strength,and toughness of nanorods and Nnanotubes,Science,1997,277:1971-1975
    [101]Pan Z.W.,Xie S.S.,Lu L.,et al.,Tensile tests of ropes of very long aligned multiwall carbon nanotubes,Appl.Phys.Lett.,1999,74:3152-3154
    [102]王淼,李振华,纳米材料应用技术的新进展,材料科学与工程,2000,18(1):103-105
    [103]Ma R.Z.,Wu J.,Wei B.Q.,et al.,Processing and properties of carbon nanotubes-nano-SiC ceramic,J.Mater.Sci.,1998,33(21):5243-5246
    [104]Dai H.J.,Hafher J.H.,Rinzler A.G.,et al.,Nanotubes as nanoprobes in scanning probe microscopy,Nature,1996,384:147-150
    [105]Hafher J.H.,Cheung C.L.,Lieber C.M.,Growth of nanotubes for probe microscopy tips,Nature,1999,398:761-762
    [106]Ebbesen T.W.,Lezec H.J.,Hiura H.,et al.,Electrical conductivity of individual carbon nanotubes,Nature,1996,382:54-56
    [107]Dai H.,Wong E.W.,Lieber C.M.,Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes,Science,1996,272:523-526
    [108]de Heer W.A.,Bacsa W.S.,Ugarte D.,et al,Aligned carbon nanotubes films:production and optical and electrical properties,Science,1995,268:845-847
    [109]Huang Y.H.,Okada M.,Tanaka K.,et al.,Estimation of superconducting transition temperature in metallic carbon nanotubes,Phys.Rev.B,1996,53(9):5129-5132
    [110]Chauvet O.,Forro L.,Bacsa W.,et al.,Magnetic anisotropics of aligned carbon nanotubes,Phys.Rev.B,1995,52(10):R6963-R6966
    [111]Kuhlmann U.,Jantoljak H.,Pfander N.,et al.,Infrared reflectance of single-walled carbon nanotubes,Synthetic Met,1999,103(1-3):2506-2507
    [112]Bachilo S.M.,Strano M.S.,Kittrell C,et al.,Structure-assigned optical spectra of single-wailed carbon nanotubes,Science,2002,298:2361-2366
    [113]Sun W.X.,Huang Z.P.,Zhang L.,et al.,Luminescence from multi-walled carbon nanotubes and the Eu(Ⅲ)/multi-walled carbon nanotube composite,Carbon,2003,41(8):1685-1687
    [114]Riggs J.E.,Guo Z.X.,Carroll D.L.,et al.,Strong luminescence of solubilized carbon nanotubes,J.Am.Chem.Soc,2000,122(24):5879-5880
    [115]Guo J.D.,Yang C.L.,Li Z.M.,et al.,Efficient visible photoluminescence from carbon nanotubes in zeolite templates,Phys.Rev.Lett.,2004,93(1):017402
    [116]Croci M.,Arfaoui I.,Stockli T.,et al.,A fully sealed luminescent tube based on carbon nanotube field emission,Microelectronics J.,2004,35(4):329-336
    [117]Park J.,Kim Y,Lee J.,et al.,Effect of dye dopants in poly(methylphenyl silane) light-emitting devices,Curr.Appl.Phys.,2005,5(1):71-74
    [118]Wei J.Q.,Zhu H.W.,Wu D.H.,et al.,Carbon nanotubes filaments in household light bulbs,Appl.Phys.Lett.,2004,84(24):4869-4871
    [119]Dillon A.C,Jones K.M.,Bekkedahl T.A.,et al.,Storage of hydrogen in single-walled carbon nanotubes,Nature,1997,386:377-379
    [120]Chen P.,Wu X.,Lin J.,et al.,High H_2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures,Science,1999,285:91-93
    [121]Lee S.M.,Park K.S.,Choi Y.C,et al,Hydrogen adsorption and storage in carbon nanotubes,Synth.Metal.,2000,113(3):209-216
    [122]Rajalakshmi N.,Dhathathreyan K S.,Govindaraj A.,et al,Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage,Electrochimica Acta.,2000,45(27):4511-4515
    [123]N(?)tzenadel C,Zuttel A.,Chartouni D.,et al.,Electrochemical storage of hydrogen in nanotube materials,Electrochem Solid State Lett.,1999,2:30-32
    [124]Qin X.,Gao X.P.,Liu H.,et al.,Electrochemical hydrogen storage of multiwalled carbon nanotubes,Electrochem Solid State Lett.,2000,3:532-535
    [125]Helveg S.,Lopez-cartes C,Sehested J.,et al.,Atomic-scale imaging of carbon nanofibre growth,Nature,2004,427:426-429
    [126]Hernadi K.,Fonseca A.,Nagy J.B.,et al.,Production of nanotubes by the catalytic decomposition of different carbon-containing compounds,Appl.Catal.A,2000,199(2):245-255
    [127]Ermakova M.A.,Ermakov D.Y.,Kuvshinov G.G.,Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon:Part Ⅰ.Nickel catalysts,Appl.Catal.A,2000,201(1):61-70
    [128]Villacampa J.I.,Royo C,Romeo E.,et al.,Catalytic decomposition of methane over Ni-Al_2o_3 coprecipitated catalysts:Reaction and regeneration studies,Appl.Catal.A:General,2003,252(2):363-383
    [129]Ci L.J.,Li Y.H.,Wei B.Q.,et al.,Preparation of carbon nanofibers by the floating catalyst method,Carbon,2000,38(14):1933-1937
    [130]Ermakova M.A.,Ermakov D.Y,Kuvshinov G.G,et al.,New nickel catalysts for the formation of filamentous carbon in the reaction of methane decomposition,J.Catal.,1999,187(1):77-84
    [131]Cheung C.L.,Kurtz A.,Park H.,et al.,Diameter-controlled synthesis of carbon nanotubes,J.Phys.Chem.B,2002,106(10):2429-2433
    [132]Toebes M.L.,Bitter J.H.,van Dillen A.J.,et al,Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers,Catalysis Today,2002,76(1):33-42
    [133]Cheung C.L.,Kurtz A.,Park H.,et al.,Diameter-Controlled Synthesis of Carbon Nanotubes,J.Phys.Chem.B,2002,106(10):2429-2433
    [134]Qin Y.,Zhang,Z.K.,Cui Z.L.,Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate,Carbon,2003,41(15):3072-3074
    [135]Qin Y.,Zhang,Q.,Cui Z.L.Effect of synthesis method of nanocopper catalysts on the morphologies of carbon nanofibers prepared by catalytic decomposition of acetylene,J.Cata.,2004,223:389-394
    [136]Amelinkx S.,Zhang X.B.,Bernaerts D.A.,Formation mechanism for catalytically grown helix-shaped graphite nanotubes,Science,1994,265:635-639
    [137]Motojima S.,Kawaguchi M.,Nozaki K.,et al.,Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene,and its morphology and extension characteristics,Carbon,1991,29(3):379-385
    [138]Kawaguchi M.,Nozaki K.,Motojima S.,A growth mechanism of regularly coiled carbon fibers through acetylene pyrolysis,J.Cryst.Growth,1992,118(3-4):309-313
    [139]Hansen P.L.,Wagner J.B.,Helveg S.,et al.,Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals,Science,2002,295:2053-2055
    [140]Chen X.,Saito T.,Kusunoki M.,et al.,Three-dimensional vapor growth mechanism of carbon microcoils,J.Mater.Res.,1999,14(11):4329-4336
    [141]李文军,徐海涛,郭燕川等,碳微线圈的气-液-固-固生长机理,物理化学学报,2006,22(6):768-770
    [142]沈曾民,新型炭材料[M],北京:化学工业出版社,2003,171-173.
    [143]陈秀琴,CVD法制备微旋管状炭纤维的微观形貌[J],新型炭材料,2000,15(3):23-26
    [144]Yang R.T.,Chen J.P.,Mechanism of carbon filament growth on metal catalysts[J],J.Catal.,1989,115(1):52-64
    [145]Wen Y K.,Shen Z.M.,Synthsis of regular coiled carbon nanotubes by Ni-catalyzed pyrolysis of acetylene and a growth mechanism analysis,Carbon,2001,39(15):2369-2374
    [146]Zhou W.W.,Han Z.Y.,Wang J.Y.,et al.,Copper catalyzing growth of single-walled carbon nanotubes on substrates,Nano Letter,2006,6(12):2987-2990
    [147]Ren Z.F.,Huang Z.P.,Xu J.W.,et al.,Synthesis of large arrays of well-aligned carbon nanombes on glass,Science,1998,282:1105-1107
    [148]Fan S.S.,Chapline M.G.,Franklin N.R.,et al.,Self-oriented regular arrays of carbon nanotubes and their field emission properties,Science,1999,283:512-514
    [149]Tans S.J.,Devoret M.H.,Dai H.,et al.,Individual single-wall carbon nanotubes as quantum wires,Nature,1997,386:474-477
    [150]Collins P.G.,Arnold M.S.,Avouris P.,Engineering carbon nanotubes and nanotube circuits using electrical breakdown,scienee,2001,292:706-709
    [151]Bobard J.-M.,Kind H.,Sto[?]ckli T.,et al.,Field emission from carbon nanotubes:the first five years,Solid-State Electron,2001,45(6):893-914.
    [152]Tseng,G.Y.,Ellenbogen J.C.,Enhanced:toward nanocomputers,Scienice,2001,294: 1293-1294
    [153]Kong J.,Cao J.,Dai H.,et al,Chemical profiling of single nanotubes:Intramolecular p-n-p junctions and on-tube single-electron transistors,Appl.Phys.Lett.,2002,80:73-75
    [154]Derycke V.,Martel R.,Appenzeller J.,Ph.Avouris,Carbon nanotube inter-and intramolecular logic gates,Nano Lett.,2001,1(9):453-456
    [155]Ural A.,Li Y.,Dai H.,Electric-field-aligned growth of single-walled carbon nanotubes on surfaces,Appl.Phys.Lett.,2002,81:3464-3466
    [156]Ajayan P.M.,Stephan O.,Colliex C,et al.,Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite,Science,1994,265:1212-1214
    [157]Li W.Z.,Xie S.S.,Qian L.X.,et al.,Large-scale synthesis of aligned carbon nanotubes,Science,1996,274:1701-1703
    [158]Kyotani TV,Tsai L.F.,Tomita A.,Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template,Chem.Mater.,1995,7(8):1427-1428.
    [159]Terrones M.,Grobert N.,Olivares J.,et al.,Controlled production of aligned-nanotube bundles,Nature,1997,388:52-55
    [160]Andrews R.,Jacques D.,Qian D.L.,et al.,Multiwall carbon nanotubes:synthesis and application,Acc.Chem.Res.,2002,35:1008-1017
    [161]Yoon Y.J.,Baik H.K.,Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition,Diamond and Related Materials,2001,10(3-7):1214-1217
    [162]Zhong G.,Iwasaki T.,Kawarada H.,et al.,Synthesis of highly oriented and dense conical carbon nanofibers by a DC bias-enhanced microwave plasma CVD method,Thin Solid Films,2004,464-465:315-318
    [163]Wang B.B.,Lee S.,Yan H.,et al.,Study on glow discharge effects on catalyst films for growing aligned carbon nanofibers in negative bias-enhanced hot filament chemical vapor deposition system,Thin Solid Films,2005,474:103-108
    [164]Merkulov V.I.,Guillorn M.A.,Lowndes D.H.,et al.,Shaping carbon nanostructures by controlling the synthesis process,Appl.Phys.Lett.,2001,79:1178-1180
    [165]Merkulov V.I.,Hensley D.K.,Melechko A.V.,et al.,Control mechanisms for the growth of isolated vertically aligned carbon nanofibers,J.Phys.Chem.B,2002,106(41):10570-10577
    [166]Merkulov V.I.,Melechko A.V.,Guillorn M.A.,et al.,Controlled alignment of carbon nanofibers in a large-scale synthesis process,Appl.Phys.Lett.,2002,80:4816-4818
    [167]McKnight T.E.,Melechko A.V.,Griffin G.D.,et al.,Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation,Nanotechnology,2003,14:551-556
    [168]Guillorn M.A.,Hale M.D.,Merkulov V.I.,et al,Operation of individual integrally gated carbon nanotube field emitter cells,Appl.Phys.Lett.,2002,81:2860-2862
    [169]Yang X.J.,Guillorn M.A;,Austin D.,et al.,Fabrication and characterization of carbon nanofiber-based vertically integrated schottky barrier junction.diodes,Nano Letters,2003,3(12):1751-1755
    [170]Ren Z.F.,Huang Z.P.,Wang D.Z.,et al.,Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,Appl.Phys.Lett.,1999,75:1086-1088
    [171]Merkulov V.I.,Melechko A.V.,Guillorn M.A.,et al.,Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition,Appl.Phys.Lett.,2001,79:2970-2972
    [172]Kikuchi T.,Maruyama T.,Fujii T.,et al.,The manipulation of the carbon nanofibers growth into lateral or vertical direction with respect to the substrate synthesized with iridium catalyst,Thin Solid Films,2006,503(1-2):219-223
    [173]Bower C,Zhu W.,Sungho J.,et al,Plasma-induced alignment of carbon nanotubes,Appl.Phys.Lett.,2000,77:830-832
    [174]Avigal Y.,Kalish R.,Growth of aligned carbon nanotubes by biasing during growth,Appl.Phys.Lett.,2001,78:2291-2293
    [175]Merkulov V.I.,Lowndes D.H.,Wei Y.Y.,et al.,Patterned growth of individual and multiple vertically aligned carbon nanofibers,Appl.Phys.Lett.,2000,76:3555-3557
    [176]Wang B.B.;Wang W.L.,Liao K.J.,et al.,Experimental and theoretical studies of diamond nucleation on silicon by biased hot filament chemical vapor deposition[J],Phys.Rev.B,2001,63:85412-85423
    [177]Tsai S.H.,Chao C.W.,Lee C.L.,et al.,Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis,Appl.Phys.Lett.,1999,74:3462-3464
    [178]Hayashi N.,Honda S.,Tsuji K.,et al.,Highly aligned carbon nanotube arrays fabricated by bias sputtering,Appl.Surf.Sci.,2003,212-213:393-396
    [179]Motojima S.,Hoshiya S.,Hishikawa Y.,Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands,Carbon,2003,41(13):2658-2660
    [180]Gommes C,Blacher S.,Bossuot Ch.,et al,Influence of the operating conditions on the production rate of multi-walled carbon nanotubes in a CVD reactor,Carbon,2004,42(8-9):1473-1482
    [181]de Lucas A.,Garc(?)'a P.B.,Garrido A.,et al.,Catalytic synthesis of carbon nanofibers with different grapheme plane alignments using Ni deposited on iron pillared clays,Applied Catalysis A: General,2006,301:123-132[182]Tibbetts,G.G.,Balogh,M.P.,Increase in yield of carbon fibres grown above the iron/carbon eutectic,Carbon,1999,37(2):241-247[183]Zheng G.B.,Kouda K.,Sano H.,et al.,A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst,Carbon,2004,42(3):635-640[184]Zhang X.X.,Li,Z.Q.,Wen G.H.,et al.,Microstructure and growth of bamboo-shaped carbon nanotubes,Chem.Phys.Lett.,2001,333(6):509-514[185]Kukovitsky E.F.,Lvov S.G.,Sainov N.A.,et al.,Correlation between metal catalyst particle size and carbon nanotube growth,Chem.Phys.Lett.,2002,355(5-6):497-503[186]Weidenkaff A.,Ebbinghaus S.G.,Mauron P.,et al.,Metal nanoparticles for the production of carbon nanotube composite materials by decomposition of different carbon sources,Mater.Sci.Eng.C,2002,19(1-2):119-123[187]Ci L.J.,Wei J.Q.,Wei B.Q.,et al.,Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method,Carbon,2001,39(3):329-335[188]成会明,纳米碳管制备、结构、物性及应用,北京:化学工业出版,2002,91-92[189]Smalley R.E.,From dopyballs to nanowires,Mater.Sci.Eng.B,1993,19:1-7[190]Hansen,P L.,Wagner,J.B.,Helveg,S.,et al.,Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals,Science,2002,295:2053-2055[191]Lee C.J.,Park J.,Growth model for bambmlike structured carbon nanotubes synthesized using thermal chemical vapor dewitianu,J.Phys.Chem.B,2001,105:2365-2368[192]Liu J.W.,Shao M.W.,Chen X.Y.,Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process,J.Am.Chem.Soc.,24333,125:8088-8089[193]包建春,王克宇,张宇,竹节状碳纳米管有序阵列的合成和表征,无机化学学报,2002,18(11):1097-1100[194]Li Y.F.,Qiu J.S.,Zhao Z.B.,et al.,Bamboo-shaped carbon tubes from coal[J],Chemical Physics Letters,2002,366(5-6):544-550[195]Blank V.D.,Gorlova I.G,Hutchison J.L.,et al.,The structure of nanotubes fabricated by carbon evaporation at high gas pressure,Carbon,2000,38:1217-1240[196]Saito Y.,Yoshikawa T.,Bamboo-shaped carbon tube filled partially with nickel[J],Journal of Crystal Growth,1993,134:154-156[197]Deck C.P.,Vecchio K.,Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams,Carbon,2006,44(2),267-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700