纳米金属Al复合含能材料激光光热过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金属复合含能材料作为一种新兴的能量体系具有高度可调的能量释放率等优点。目前的应用和研究表明:需要对纳米含能材料的反应动力学过程尽可能详细地了解以提高其综合性能。激光诱导纳米含能材料反应过程(如点火或烧蚀)的机理存在着两种基本的解释:一个是热点火;另一个是冲击压力点火,即激光感生冲击压力引发化学反应从而实现点火。这两种机制哪一个占主要地位,分别在什么情况下适用尚不清楚。针对这一背景问题,本文选取纳米金属铝复合硝化纤维含能材料(Al/NC)为研究对象,采用实验测量和数值模拟的方法研究Al-Al_2O_3纳米粒子的光吸收性质以及脉冲激光引发纳米含能材料的点火初期热反应动力学机制。
     对镶嵌在硝化纤维中的Al-Al_2O_3核壳纳米粒子的近红外和可见吸收光谱的实验测量和数值模拟表明:金属的带间跃迁起始频率是和尺寸相关的,这种尺寸相关性是由纳米粒子的小尺寸效应和表面效应导致电子结构的改变引起的,并且是吸收峰红移的主要原因。
     为了进一步探求带间跃迁起始频率与纳米粒子尺寸之间的关系,对其它几种尺寸的Al-Al_2O_3核壳纳米粒子的吸收光谱进行了测量和模拟。研究发现带间跃迁起始频率随纳米金属直径(25-100nm)的减小近似线性的减小。这种变化关系与最近文献报道的纳米粒子内压力随粒子直径的变化关系相接近。带间跃迁起始频率与尺寸关系的确立使金属介电函数的尺寸效应不再仅仅表现在自由电子阻尼系数上,电子的带间跃迁尺寸效应也可以被引入到金属的介电函数中,从而更有效的描述纳米粒子的光学性质。
     引入带间跃迁的尺寸关系研究了Al-Al_2O_3纳米粒子的核壳尺寸(包括氧化)、粒子的形状以及点火光波长对其光吸收性能的影响。一个反直觉的现象被发现:纳米金属粒子的氧化可以增强光吸收,但是这种增强性要依赖于点火光波长和初始时刻纳米粒子的核壳尺寸。在同体积条件下,椭球形纳米粒子因其表体比较大而具有比球形纳米粒子更强的光吸收性能,这表明用椭球形纳米粒子作为含能材料的添加剂可以减小点火时间;这些结果在纳米含能材料的激光点火和材料制备等应用方面具有重要的指导意义。
     给出镶嵌在介质中的纳米金属粒子吸收脉冲激光的瞬时功率密度的解析表达式,进而分别利用双温模型和Fourier定律计算短脉冲(1ps、10ps、100ps)和长脉冲(10ns、25ns)激光加热Al/NC薄膜的温度场分布。结果表明:当脉冲宽度大于或等于100ps时,Fourier热传输模型可以用来计算温度场分布;此时,需要考虑纳米金属Al粒子与周围NC介质之间的热量交换。当脉冲宽度小于100ps时,需要用双温模型求解温度场分布。
     以热分解机制为基础发展了热点模型数值模拟了100ps、10ns、25ns脉冲激光激发Al/NC纳米含能材料的热反应动力学过程。热点模型涉及纳米金属Al吸收脉冲激光能量,热量传播引发放热的化学反应以及其释放的能量反馈给热点。计算中,考虑了脉冲激光作用期间纳米Al粒子和周围NC介质之间的热交换和化学反应,金属Al核的消耗以及反应后原物质的改变。体系中发生化学反应的位置是时间、空间和温度的函数。Matlab有限差分数值方法用来求解体系的温度场分布。反应过程中体系内部的热量和化学反应的进展由不同时刻的三维空间温度形貌图展示出来。计算的化学反应直径与实验结果相比较,表明了热分解机制主导着纳秒脉冲激光引发的反应过程,验证了实验上发展的Al/NC烧蚀阈值标准的正确性。然而对于100ps脉冲激发的过程,热分解不再重要,定性分析表明了冲击压力引发了此过程的化学反应。
Nanometallic particles based composite energetic materials as a novel energetic system have the merits of high and tunable energetic release rate Recently, practical applications and researches show: It is necessary to kown more detailed of the reaction mechanism of energetic materials in order to enhance its comprehensive properties. There exist two basical explanations for the reacted process (such as ignition and ablation) of laser-induced nanoenergetic materials: one is the heat ignition; the other is the shock pressure ignition, that is, shock pressure induced by laser causes chemical reaction to realize ignition. It is not evident for the two mechanisms that which one dominates the reaction process and their accordingly applicable conditions. In view of this problem, we choose nanometallic aluminum composite nitrocellulose energetic materials to be the study object. Experimentally study and numerically simulate are used to research the optical property of Al-Al_2O_3 nanoparticles and the thermal reaction dynamic mechanism of Al-Al_2O_3/NC composite thin film excited by pulse laser.
     The experimental measurement and numerical simulation of near-infrared and visible absorption spectra of Al-Al_2O_3 core-shell nanoparticles embedded in the nitrocellulose show that the interband transition onset frequency of nanometallic Al is size-dependent, and this size-dependent property is caused by variation of electronic structure due to the small size effect and surface effect of nanoparticles and is the main reason of redshift of absorption peak by simulations.
     To explore the dependence of interband transition onset frequency and particle size further, measuring and simulating the absorption spectra of composites containing another several sized nanoprticles. Results show that interband transition onset frequency linearly increases with the increase of metallic particle diameter approximately. This change relationship is generally agreed with that of inner pressure of nanoparticle and metallic particle diameter reported by recent document. This descover of relation of interband transition onset frequency and metallic particle size provides convenience to incorporate the interband transition size effect into the metallic dielectric function, which makes the size effect of dielectric function is not only embodied in the free electron damping coefficient any longer as before.
     Incorporating the linear relation between interband transition onset frequency and nanoparticle size, we calculate the effects of core and shell sizes of nanoparticle (including oxidization), particle shape and the ignition optical wavelength on the absorption spectra. A counterinstinctive phenomenon is found: oxidization of nanometallic particle may enhance the optical absorption, but the enhancement relies on the excited optical wavelength and the initial core shell sizes of nanoparticles. For the same volume, ellipsoidal nanoparticles have the higher optical absorption ability due to its larger surface volume ratio than the spherical nanoparticles. This indicates that adding ellipsoidal nanoparticles into the energetic materials may reduce the igniton time. These results have important indicative significance in laser ignition and preparation of nanoenergetic materials.
     An analytic expression of instantaneous power density of pulse laser absorbed by nanoparticles embedded in matrix is derivated, Based on which, the temperature distribution of Al/NC system heated by short pulse (1ps,10ps,100ps) and long pulse (10ns,25ns) laser are calculated by using two-temperature model and Fourier law, respectively. Calculation results show: Fourier Law can be used to calculate the temperature distribution when the pulse duration is larger than the 100ps, while the two-temperature model is needed to calculate the temperature distribution when the pulse duration is smaller than 100ps. But during long pulse heating, the heat exchange between Al and surrounding NC has to be considered.
     A hot spot model based on thermal decomposition is developed to simulate numerically the chemical reaction process of Al/NC nanoenergetic materials excited by 100ps, 10ns, and 25ns pulse laser. The hot spot model involves in laser energy decoposition with the nanoparticle, exothermic chemical reaction triggered by heat propagation, and the energy feedback of hot spot. In this calculation, heat exchange and chemical reaction between Al nanoparticle and surrounding NC, the consumption of Al core, and conversion of matter due to chemical reaction are considered. The material position occurring chemical reaction are the functions of time, spatial and temperature. The evolutions of heat and chemical reaction in this process are exhibited by drawing three dimensional spatial images of temperature at different time. Calcuated chemical reaction diameters are compared with experimental results, which show thermal decomposition mechanism dominates the reaction process heated by nanosecond pulse laser and experimental ablation threshold ceritea of Al/NC is proven theoretically. However, for 100ps regime, thermal decomposition is not important any longer, but it is shown qualitatively that the shock pressure induces the chemical reaction.
引文
1王泽山.含能材料概论.哈尔滨工业大学出版社, 2005:1~3
    2莫红军,赵凤起.纳米含能材料的概念与实践. 2005, 28(3): 79~82
    3 T. M. Tillotson, A. E. Gash, R. L. Simpson, L. W. Hrubesh, J. H. Satcher Jr. and J. F. Poco. Nanostructured Energetic Materials using Sol-Gel Methodologies. J. Non-Cryst. Solids. 2001, 285(2): 338~345
    4 R. L. Simpson, T. M. Tillotson, J. H. Satcher, Jr., L. W. Hrubesh and A. E. Gash. Nanostructured Energetic Materials Derived from Sol-Gel Chemistry. 31th Int. Annu. Conf. ICT, Karlsruhe, Germany, 2000:35~37
    5 D. D. Dlott, Thinking Big (and Small) about Energetic Materials. Materials Science and Technology. 2006, 22: 463~473
    6王昕.纳米含能材料研究进展.火炸药学报. 2006, 29(2):29~32
    7 S. R. J. Brueck. Implications of Emerging Micro and Nanotechnologies. National Academies Press. 2002:5~12
    8 M. M. Mench, K. K. Kuo, C. L. Yeh and Y. C. Lu. Comparison of Thermal Behavior of Regular and Ultra-fine Aluminum Powders (Alex) Made from Plasma Explosion Process. Combust. Sci. Technol. 1998, 135:269~292
    9 E. W. Price. Combustion of Metalized Propellants. In Fundamentals of Solid-Propellant Combustion. Progress in Aeronautics and Astronautics. K. K. Summerfield, M. Eds. AIAA. New York. 1984, 90:479~450
    10 R. W. Armstrong, B. Baschung, D. W. Booth, M. Samirant. Enhanced Propellant Combustion with Nanoparticles. Nanolett. 2003, 3:253~255
    11项仕标.现代激光应用技术—激光点火.现代物理知识. 11(1):20~21
    12刘天儒.固体火箭发动机激光点火系统.固体火箭技术. 2000, 23(2):7~11
    13叶迎华,舒浪平,沈瑞琪.酚醛树脂对B/KNO3点火药的激光烧蚀特性的影响.含能材料. 2007, 15(1): 33~38
    14 R. R. Bryson. The Small ICBM Laser Ordnance Firing System. AIAA. 1992:1328~1329
    15 C. Boucher. Flight demonstration of flight term ination system and solid rocket motor ignition using semiconductor laser initiated ordnance. AIAA. 1995:2980
    16 C. Boucher. Flight Demonstration of Laser Diode Initiated Ordnance. AIAA.1995:2982~2983
    17牛和林.新型固体含能材料点火与燃烧特性研究.中国科学技术大学硕士论文. 2001:12
    18杜成中.销氨发射药点火过程特征及影响因素研究.火炸药燃烧技术专题研讨会文集. 2000:10~15
    19 Anon. Defense technology plan. ADA.1994:285415
    20 S. S. Bondarchuk, A. Vorozhtsov and V. P. Zima. Solid Propellant underwater Ignition Modeling, 37th American Institute of Aeronautics & Astronautics Aerospace Sciences Meeting and Exhibit, 1999: 864~870
    21 K. Muraoka. Laser-Aided Diagnostics of Plasma and Gases. Institute of Physics Publishing. 2001:56~60
    22张慧卿,严楠,华光.含能材料在激光作用下的点火特性.火工品. 2001, 2: 49~52
    23 R. G. Jungst, F. J. Salas, R. D. Watkins, and L. Kovacic. Development of Diode Laser-Ignited Pyrotechnic and Explosive Components. Proceedings of the 15th International Pyrotechnic Seminar. 1990:549~568
    24 Stephanie, C. Kunz, F. J. Salas. Diode Laser Ignition of High Explosives and Pyrotechnics. DE88008771/ HDM.1988
    25 N. B. M. Roman. Laser Ignition of Explosives and its Application in a Laser Diode based Ignition System. Proceedings of the 16th International Pyrotechnic Seminar.1990:822~836
    26 J. A Holy, T. C. Girmann. The Effects of Pressure on the Laser Initiation of TiHx/KClO4 and other Pyrotechnics. Proceedings of the 13th International Pyrotechnic Seminar. Colorado. USA. 1988: 29~32
    27 T. Ikai, S. Yamada, and T. Tsuneyama. The Ignitability and the Output Characteristics of the Laser Initiated Pyrotechnic. AIAA. 1998:3782~3783
    28 I. Annu. Laser Diode Ignition of the Combustion of Pyrotechnic Mixtures, 29th International Annual Conference of ICT. Karlsruhe Germany.1998:40.1~40.14
    29 D. W. Ewick, T. M. Beckman. Ignition Testing of Low-Energy Laser Diode Ignited Components. DE90009968/ HDM. 1990.
    30 R. D. Skocypec, A. R. Mahoney, and M. W. Glassetal. Modeling laser ignition of explosives and pyrotechnics effects and characterization of transfer,Proceedings of the 15th International Pyrotechnic Seminar. 1990:877~894
    31 D. W. Ewick. Finite Difference Model for Laser Diode Ignited Components. Proceedings of the 15th International Pyrotechnic Seminar. 1990:277~295
    32孙同举.激光与火工药剂互作用特性及机理的实验研究.南京理工大学博士学位论文. 1995:24
    33张小兵,袁亚雄,任如海.含能材料激光点火性能的研究.兵工学报. 2002, 23(1): 23~26
    34叶迎华,沈瑞琪,戴实之.酚醛树脂对B/KNO3点火药的激光点火特性的影响.中国激光. 1999, A26(11): 1007~1010
    35 Y. Q. Yang, Z. Y. Sun, S. F. Wang and D. D. Dlott. Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials. J. Phys. Chem. B. 2003, 107: 4485~4493.
    36 W. Ewick. Improved 2-D Finite Difference Model for Laser Diode Ignited Components. Proceedings of the 18th International Pyrotechnic Seminar. 1994: 255~266
    37 S. J. Ritchie, S. T. Thynell and K. K. Kuo. Modeling and Experiments of Laser-Induced Ignition of Nitramine Propellants. Journal of Propulsion and Power. 1997, 13:367~374
    38 R. D. Skocyper, A. R. Skocyper and A. R. Mahoney. Modeling Laser Ignition of Explosives and Pyrotechnics Effects and Characterization of Radiative Transfer. Proceedings of the 16th International Pyrotechnic Seminar. 1991:877~888
    39 H. Ostmark, N. Roman. Laser Ignition of Pyrotechnic Mixtures: Ignition Mechanisms. J. Appl. Phys. 1993, 73:1993~2003
    40 W. Volker, K. Stefan and E. Norbert. Influence of the Metal Particle Size on the Ignition of Energetic Materials. Propellants, Explosives, Pyrotechnics. 2001, 26:284~289
    41项仕标,冯长根,华光,王丽琼,陈朗.粒度对激光感度的影响分析.兵工学报. 2000, 21:80~82
    42鲁建存.激光起爆器.火工品. 1988, 1:17~20
    43胡艳,叶迎华,沈瑞琪.激光点火过程的一维有限差分模拟.激光技术. 2001, 25:331~334
    44韩勇,韩敦信,卢校军,黄毅民,何碧,关立峰.含铝炸药爆压及能量释放过程的研究.含能材料. 2003, 11:191~193
    45王丽琼,冯长根,杜志明.有限空间内爆炸和点火的理论与实验.北京理工大学出版社, 2005:25~30
    46刘清,刘培德,赵壮华,范时俊.炸药在弱冲击下热点形成的微观机理数值计算.兵工学报. 1996, 2:48~51
    47 S. D. Mcgrane, D. S. Moore and D. J. Funk. Shock Induced Reaction Observed Via Ultrafast Infrared Absorption in Poly (Vinyl Nitrate) Films. J. Phys. Chem. A. 2004,108:9342~9347
    48 T. P. Russell, T. M. Allen and Y. M. Gupta. Time Resolved Optical Spectroscopy to Examine Chemical Decomposition of Energetic Materials under Static High Pressure and Pulsed Heating Condition. Che. Phys. Lett. 1997, 267:351~358
    49沈瑞琪,叶迎华,涂建.激光等离子体和烧蚀对含能材料的激光点火过程的影响.中国激光. 2004, 31(11):1323~1326
    50孙同祥,沈瑞琪.激光点燃烟火药过程中的二次发火现象.兵工学报. 1996, 18(1):12~14
    51 R.Q. Shen, Y. H. Ye and S. Z. Dai. Chemical Reaction Process of Interaction of Laser and Energetical Materials. Laser Technology. 1997, 21:193~195
    52 L. C. Liou. Laser Ignition in Liquid Rocket Engines. Proceedings of the 30th AIAA/SAE/ASME/ASEE Joint Propulsion Conference. AIAA-94-2980, Indianapolis, 1994
    53 F. Ding, Z. W. Fu and Q. Z. Qin. Electrochromic Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition. Electrochemical and Solid-State Letters. 1999, 2 (8): 418~419
    54 Y. N. Nuli, S. L. Zhao and Q. Z. Qin. Nanorystalline Tin Oxides and Nickel Oxide Film Anodes for Li-ion Batteries. J. Power Sources. 2003, 114:113~120
    55谭新玉,张端明,李志华,关丽,李莉.纳秒脉冲激光沉积薄膜过程中的烧蚀特性研究.物理学报. 2005, 54:3915~3921
    56 Z. W. Fu, F. Huang and Y. Q. Chu. Characterization of Amorphous Ta2O5 Film as a Novel Anode Material. J. Electrochem. Soc. 2003, 150:776~782
    57 S. L. Zhao and Q. Z. Qin. Li-V-Si-O Thin Film Electrolyte for all-Solid Li-ion Battery. J. Power Soures. 2003,122:174~180
    58党海军,秦启宗.脉冲激光烧蚀金属氧化物的物理化学过程及反应机理.量子电子学报. 2004, 21:216~223
    59 R. K. Singh, J. Narayan. Pulse-Laser Evaporation Technique for Deposition of Thin Films: Physics and Theorical Model. Phys. Rev. B 1990, 41(13):8843~8859
    60 K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu and A. A. Puretzky. Mechanisms Affecting Kinetic Energies of Laser-Ablated Materials. J. Vac. Sci. Technol. 1996, 14(3):1111~1114
    61 K. R. Chen, J. N. Leboeuf, R.F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu and A. A. Puretzky. Accelerated Expansion of Laser-Ablated Materials near a Solid Surface. Phys. Rev. Lett. 1995, 75(25):4706~4709
    62 F. Richard, J. Haglund. Microscopic and Mesoscopic Aspects of Laser Induced Desorption and Ablation. Appl. Surf. Sci. 1996, 96-98:1
    63 J. E. Maham and A. Vantomme. A Simplified Collisional Model of Sputtering in the Linear Cascade Regime. J. Vac. Sci. Technol. 1997, 15:1976
    64 L. V. Zhigilie, P. B. S. Kodali and B. J. Garrison. A Microscopic View of Laser Ablation. J. Phys. Chem. B. 1998, 102: 2845~2853
    65 D. Von der Linde and K. Sokolowski-Tinten. The Physical Mechanisms of Short-Pulse Laser Ablation. Appl. Surf. Sci. 2000, 154-155:1~10
    66 S. Amoruso, X. Wang, C. Altucci. Double-Peak Distribution of Electron and Ion Emission Profile during Femtosecond Laser Ablation of Metals. Appl. Surf. Sci. 2002, 186:358~363
    67 E. G. Gamaly, A. V. Rode, V. T. Tikhonchuk and B. Luther-Davies. Electrostatic Mechanism of Ablation by Femtosecond Lasers. Appl. Surf. Sci. 2002, 197-198(925):699~704
    68 V. Craciun, N. Bassim, K. Singhr, D. Craciun, J. Hermann and C. Boulmer-Leborgne. Laser-Induced Explosive Boiling during Nanosecond Ablation of Silicon. Appl. Surf. Sci. 2002, 186:288~292
    69 M. Mendes and R. Vilar. Influence of the Processing Parameters on the Formation and Deposition of Particles in UV Pulsed Laser Ablation of Al2O3-Tic Ceramics. Appl. Surf. Sci. 2003, 217:149~162
    70 C. T. William, M. T. Craig and L. O. Don. Understanding Composite Explosve Energeties: III. Reactive Flow Modeling of Aluminum Reaction Kinetics in PEIN and TNT. LLNL Report UCRL-JC-108149
    71 G. Bjarnholt. Effects of Aluminum and Lithium Fluoride Admixtures on Metal Acceleration Ability of Comp. B. 6th Symp. On Detonation. Clalifornia USA. 1976.
    72夏先贵,柏劲松,林其文,章冠人.含铝炸药起爆机理的研究.含能材料. 1999, 7(3):133~136
    73 T. Boddington, F. Chang-Gen and P. Gray. Criteria for Thermal Explosion with and without Reaction Consumption. Proc. Poy. Soc. Lond. 1983, A390: 265~281
    74 F. P. Bowden, M. A. Stone and G. K. Tudor. Hot Spots on Rubbing Surfaces and the Detonation of Explosives by Friction. Proc. Roy. Soc. Lond. 1947, A188:329~332
    75 S. A. Sheffield and A. C. Schwarz. Shock Compaction of a Porous Pyrotechnic Material. Proceedings of the 7th International Pyrotechnics Seminar. 1980, 1:304
    76 J. P. Agrawal. Recent Trends in High-Energy Materials. Prog. Energy Combust. Sci. 1998, 24:1~30
    77 J. E. Field. Hot Spot Ignition Mechanisms for Explosives. Acc. Chem. Res. 1992, 25(11):489~496
    78 M. Graf, G. Rasigni, J. P. Palmari and A. Llebaria. Surface Plasmon and Autocorrelation Function for Rough Surfaces of Silver Deposits. Phys. Rev. B. 1981, 23(2):527~531
    79 J. M. Elson and R. H. Ritchie. Photon Interactions at a Rough Metal Sruface. Phys. Rev. B. 1971, 4(12):4129~4138
    80 M. J. Bloemer, T. L. Ferrell, M. C. Buncick and R. J. Warmack. Optical Properties of Submicrometer-Size Silver Needles. Phys. Rev. B. 1988, 37(14):8015~8021
    81 B. K. Russel, J. G. Mantovani, V. E. Anderson, R. J. Warmack and T. L. Ferrell. Experimental Test of the Mie Theory for Microlithographically Produced Silver Spheres. Phys. Rev. B. 1987, 35(5):2151~2154
    82 U. Kreibig, C. Fragstein. The Limitation of Electron Mean Free Path in Small Silver Particles. Z. Phys. 1969, 224:307~323
    83 H. Ehrenreich and H. Philipp. Optical Properties of Ag and Cu. Phys. Rev. 1962, 128(4):1622~1629
    84 F. Bohren and D. R. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley, New York.1983:245
    85 R. Chandra, P. Taneja, J. John, P. Ayyub, G. Dey and S. Kulshreshtha. Synthesis and TEM study of nanoparticles and nanocrystalline thin films of silver by high pressure sputtering. Nanostruct. Mater. 1999, 11(8):1171~1179
    86 A. L. Aden, M. Kerker. Scattering of Electromagnetic Waves from Two Concentric Sphere. J. Appl. Phys. 1951, 22(10):1242~1246
    87 J. C. Maxwell-Garnett, Colours in Metal Glasses and in Metallic Films. Phil. Trans. R. Soc. Lond. 1904, 203:385~420
    88 C. G. Graqvist, O. Hunderi. Optical Properties of Ultrafine Gold Particles. Phys. Rev. B. 1977, 16(8):3520~3521
    89 D. A. G. Bruggeman. Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen. Ann. Phys.(Leipz.) 1935, 24:636~664
    90 R. Landauer. The Electrical Resistance of Binary Metallic Mixtures. J. Appl. Phys. 1952, 23:779~784
    91 O. Hunderi. Energy-Level Structure of Zinc in Magnetic Fields Using a Single-Band Effective Hamiltonian. Phys. Rev. B. 1973, 7:3429~3434
    92刘静.微米/纳米尺度传热学.科学出版社.北京. 93~94
    93 G. Chen, D. Borca-Tasciuc and R. G. Yang. Nanoscale Heat Transfer. Encyclopedia of Nanoscience and Nanotechnology. 2004, 7:433
    94 G. Chen, D. Borca-Tasciuc and R. G. Yang. Nanoscale Heat Transfer. Encyclopedia of Nanoscience and Nanotechnology. 2004, 7:442
    95 G. Chen. Phonon Wave Heat Conduction in Thin Films and Superlattices. Trans. ASME, J. Heat Transf. 1999, 121:945~953
    96 D. K. Ferry. Semiconductors. MacMillan Co. New York. 1991
    97 J. M. Ziman, Electrons and Phonons. Clarendon. Oxford.1960
    98 J. Caldlay. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113(4):1046~1051
    99 J. R. Howell, The Monte Carlo Method in Radiative Heat Transfer. J. Heat Transf. 1998, 120(4):547~560
    100 M. V. Fischetti, S. E. Laux. Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects. Phys. Rev. B. 1988, 38(14): 9721~9745
    101刘静.微米/纳米尺度传热学.科学出版社.北京. 103~104
    102 G. D. Mahan. Many-Particle Physics. Kluwer Academic. New York. 2000.
    103 L. D. Hicks, M. S. Dresselhaus. Thermoelectric Figure of Merit of a One-Dimensional Conductor. Phys. Rev. B. 1993, 47(24):16631~16634
    104 L. D. Hicks, M. S. Dresselhaus. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B. 1993, 47(19):12727~12731
    105 T. Ikeshoji, B. Hafskjold. Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction in Liquid and Through Liquid-Gas Interface. Mol. Phys. 1994, 81(2):251~261
    106 F. Muller-Plathe. A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity. J. Chem. Phys. 1997, 106(14):6082~6085
    107 R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12:570~586
    108 R. Zwanzig. Annu. Rev. Phys. Chem. Time-Correlation Functions and Transport Coefficients in Statistical Mechanics. Annu Rev. Phys. Chem. 1965, 16:67~102.
    109 D. Polder and M. Von Hove, Theory of Radiative Heat Transfer between Closely Spaced Bodies. Phys. Rev. B. 1971, 4(10):3303~3314
    110 H. P. Myers. Introductory Solid State Physics. Taylor & Francis. London. 1990:168
    111 B. Z. Eapen, V. K. Hoffmann, M. Schoenitz and E. L. Dreizin. Combustion of Aerosolized Spherical Aluminum Powders and Flakes in Air. Combust. Sci. Technol. 2004, 176:1055~1069
    112 V. I. Levitas, B. W. Asay, S. F. Son and M. Pantoya. Mechanochemical Mechanism for Fast Reaction of Metastable Intermolecular Composites Based on Dispersion of Liquid Metal. J. Appl. Phys. 2007, 101:083524~083543
    113 S. F. Son. In Synthesis, Characterization and Properties of Energetic/Reactive Nanomaterials. R. W. Armstrong, N. N. Thadhani, W. H. Wilson, J. J. Gilman and R. L. Simpson. MRS Symp. Proc. 2004, 800: AA5.2
    114 S. F. Son, R. A. Yetter and V. Yang. Introduction: Nanoscale Composite Energetic Materials. J. Propul. Power. 2007, 23(4): 643~644
    115 Y. Q. Yang, S. F. Wang, Z. Y. Sun and D. D. Dlott. Near-Infrared and Visible Absorption Spectroscopy of Nao-Energetic Materials Containing Aluminum and Boron. Propellants, Explosives, Pyrotechnics. 2005, 30(3):171~177
    116 C. Graf, A. V. Bladeren. Metallodielectric Colloidal Core-Shell Particles for Photonic Applications. Langmuir. 2002, 18: 524~534
    117 C. Charnay, A. Lee, S. Q. Man, C. E. Moran, C. Radloff, R. K. Bradley and N. J. Halas. Reduced Symmetry Metallodielectric Nanoparticles: Chemical Synthesis and Plasmonic Properties. J. Phys. Chem. B. 2003, 107(30):7327~7333
    118 R. D. Averitt, D. Sarkar and N. J. Halas. Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: Insight into Multicomponent Nanoparticle Growth. Phys. Rev. Lett. 1997, 78(22):4217~4220
    119 S. N. Yan, Y. C. Wang, T. D. Wen and J. Zhu. A Study on the Optical Absorption Properties of Dielectric-Mediated Gold Nanoshells. Phys. E. 2006, 33:139~143
    120 F. Bohren, D. R. Huffman. Absorption and scattering of light by small particles. John Wiley. New York.1983:273
    121 E. D. Palik. Handbook of Optical Constants of Solids. Academic press, New York. 1985:371~372
    122 N. W. Ashcroft, K. Sturm. Correlation Energy of the Electron Gas at Metallic Densities. Phys. Rev. B. 1971, 3(6):1898~1910
    123 E. A. Coronado, G. C. Schatz. Surface Plasmon Broadening for Arbitrary Shape Nanoparticles: A Geometrical Probability Approach. J. Chem. Phys. 119(7):3926~3934
    124 P. Taneja, P. Ayyub. Size Dependence of the Optical Spectrum in Nanocrystalline Silver. Phys. Rev. B. 2002, 65(24):245412~245417
    125 S. Fedrigo, W. Harbich and J. Buttet. Collective Dipole Oscillations in Small Silver Clusters Embedded in Rare-Gas Matrices. Phys. Rev. B. 1993, 47(16):10706~10715
    126 S. J. Oldenburg, G. D. Hale, J. B. Jackson and N. J. Halas. Light Scattering from Dipole and Quadrupole Nanoshell Antennas. Appl. Phys. Lett. 1999, 75(8): 1063~1065
    127 E. D. Palik. Handbook of Optical Constants of Solids. Academic. New York.1985.
    128 O. L. Muskens, N. D. Fatti and F. Vallee. Single Metal NanoparticleAbsorption Spectroscopy and Optical Characterization. Appl. Phys. Lett. 2006,88: 063109~063111
    129 M. Abe, T. Suwa. Surface Plasma Resonance and Magneto-OpticalEnhancement in Composites Containing Multicore-Shell StructuredNanoparticles. Phys. Rev. B. 2004, 70(23): 235103~235117
    130 Y. Takeda, C. G. Lee and N. Kishimoto. Optical Properties of NanoparticleComposites in Insulatorsby High-Flux 60 KeV Cu- Implantation. NuclearInstruments and Methods in Physics Research B. 2002, 190: 797~801
    131 W. H. Li, C. C. Yang, F. C. Tsao, S. Y. Wu, P. J. Huang, M. K. Chung and Y. D.Yao. Enhancement of Superconductivity by the Small Size Effect in InNanoparticles. Phys. Rev. B. 2005, 72(21): 214516~214520
    132 H. Kachkachi, A. Ezzir, M. Nogues and E. Tronc. Surface Effects inNanoparticles: Application to Maghemite -Fe2O3. Eur. Phys. J. B. 2000, 14:681~689
    133 B. Balamurugan, T. Maruyama. Size-Modified d Bands and AssociatedInterband Absorption of Ag Nanoparticles. J. Appl. Phys. 2007, 102:034306~034310
    134 E. Anno, M. Tanimoto. Size-Dependent Change in Energy Bands ofNanoparticles of White Tin. Phys. Rev. B. 2006, 73:155430~155435
    135 C. Q. Sun, L. K. Pan, T. P. Chen, X. W. Sun, S. Li and C. M. Li. Distinguishingthe effect of crystal-field screening from the effect of valence recharging onthe 2p3/2 and 3d5/2 level energies of nanostructured copper. Appl. Surf. Sci.2006, 252: 2101~2107
    136 C. Q. Sun, L. K. Pan, Y. Q. Fu, B. K. Tay and S. Li, Size Dependence of the2p-Level Shift of Nanosolid Silicon. J. Phys. Chem. B. 2003, 107:5113~5115
    137 H. Ehrenreich, H. R. Philipp and B. Segall. Optical Properties of Aluminum.Phys. Rev. 1963, 132(5):1918~1928
    138 N. W. Ashcroft, K. Sturm. Interband Absorption and the Optical Properties ofPolyvalent Metals. Phys. Rev. B. 1971, 3(6):1898~1910.
    139 S. Bhattacharya, Y. F. Gao, S. Apperson, S. Subramaniam, R. Shende, S.Gangopadhyay and E. Talantsev. A novel on-chip diagnosis method to detectflame velocity of nano-scale thermites. J. Energetic materials.2006, 24:1~15
    140 K. Moore, M. L. Pantoya.Combustion Behaviors Resulting from Bimodal Aluminum Size Distributions in Thermites. J. Propul. Power. 2007, 23(1):181~185
    141 W. L. Perry, B. V. C. Tappan and B. L. Reardon. Energy Release Characteristics of the Nanoscale Aluminum-Tungsten Oxide Hydrate Metastable Intermolecular Composite. J. Appl. Phys. 2007, 101(6):064313~064317
    142 Y. Q. Yang, S. F. Wang, Z. Y. Sun and D. D. Dlott. Near-Infrared Laser Ablation of Poly Tetrafluoroethylene (Teflon) Sensitized by Nanoenergetic Materials. Appl. Phys. Lett. 2004, 85(9):1493~1495
    143 Y. Q. Yang, Z. Y. Sun, S. F. Wang and D. D. Dlott, Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials. J. Phys. Chem. B. 2003, 107: 4485~4493
    144 M. M. Mench, K. K. Kuo, C. L, Yeh and Y. C. Lu. Comparison of Thermal Behavior of Regular and Ultra-fine Aluminum Powders (Alex) Made from Plasma Explosion Process. Combust. Sci. and Tech. 1998, 135:269~292
    145 N. K. Grady, N. J. Halas and P. Nordlander. Influence of Dielectric Function Properties on the Optical Response of Plasmon Resonant Metallic Nanoparticles. Chem. Phys. Lett. 2004, 399:167~171
    146 H. Wang, F. Tam, N. K. Grady and N. J. Halas. Cu Nanoshells: Effects of Interband Transitions on the Nanoparticle Plasmon Resonance. J. phys. chem. B. 2005, 109:18218~18222
    147 K. C. See, J. B. Spicer, J. Brupbacher, D. J. Zhang and T. G. Vargo. Modeling Interband Transitions in Silver Nanoparticle-Fluoropolymer Composites. J. Phys. Chem. B. 2005, 109:2693~2698
    148 E. Anno and M. Tanimoto. Size-Dependent Change in the d Bands of Cu Particles. Phys. Rev. B. 1988, 38(5):3521~3524
    149 B. Balamurugan, T. Maruyama. Evidence of an Enhanced Interband Absorption in Au Nanoparticles: Size-dependent Electronnc Structure and Optical Properties. Appl. Phys. Lett. 87:143105~143107
    150 I. O. Sosa, C. Noguez and R. G. Barrera. Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J. Phys. Chem. B. 2003, 107:6269~6275
    151 X. Y. Chen, H. Cui, P. Liu and G. W. Yang. Shape-Induced Ultraviolet Absorption of Cuo Shuttlelike Nanoparticles. Appl. Phys. Lett. 2007, 90:183118~1831120
    152 P. K. Jain, K. S. Lee, I. H. Ei-Sayed and M. A. Ei-Sayed. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B. 2006, 110(14):7238~7248
    153 E. A. Coronado, G. C. Schatz. Surface Plasmon Broadening for Arbitrary Shape Nanoparticles: A Geometrical Probability Approach. J. Chem. Phys. 2003, 119(7):3926~3934
    154 J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz. Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. J. Chem. Phys. 2002, 116(15):6755~6759
    155 T. A. Taton, C. A. Mirkin and R. L. Letsinger. Science. Scanometric DNA Detection with Nanoparticle Probes. Science. 2000, 289:1757~1760
    156 J. Yang, J. Y. Lee and H. P. Too. Core-Shell Ag-Au Nanoparticles from Replacement Reaction in Organic Medium. J. Phys. Chem. B. 2005, 109:19208~19212
    157 F. Kim, J. H. Song and P. Yang. Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc. 2002, 124:14316~14317
    158 S. F. Wang, Y. Q. Yang, H. Yu and D. D. Dlott. Dynamical Effects of the Oxide Layer in Aluminum Nanoenergetic Materials. Propellants, Explosives, Pyrotechnics. 2005, 30(2):148~155
    159 R. Ruppin. Far-Infrared Absorption in Small Metallic Particles. Phys. Rev. B. 1979, 19(2):1318~1321
    160 E. Simanek. Far-Infrared Absorption in Ultrafine Al Particles. Phys. Rev. Lett. 1977, 38(20):1161~1163
    161 F. Hubenthal, C. Hendrich, H. Ouacha, D. Blazquez-Sanchez and F. Trager. Preparation of Gold Nanoparticles with Narrow Size Distribution and Well Defined Shapes. International Journal of Modern Physics B. 2005, 19:2604~2609
    162 S. Link, M. B. Mohamed and E. A. EI-Sayed. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio andthe Effect of the Medium Dielectric Constant. J. Phys. Chem. B. 1999, 103(16):3073~3077
    163 P. K. Jain, K. S. Lee, I. H. Ei-Sayed and M. A. Ei-Sayed. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B. 2006, 110(14):7238~7248
    164 M. A. Zamkov, R. W. Conner and D. D. Dlott. Ultrafast Chemistry of Nanoenergetic Materials Studied by Time-Resolved Infrared Spectroscopy: Aluminum Nanoparticles in Teflon. J. Phys. Chem. C. 2007, 111(28):10278~10284
    165 J. J. Granier, M. L. Pantoya. Modeling Laser Ignition and Heat Propagation in Nanocomposite Thermites, 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. St. Louis, Missouri. USA. 2002:3030
    166 T. Q. Qiu, C. L. Tien. Heat Transfer Mechanisms during Short-Pulse Laser Heating of Metals. J. Heat Transfer. 1993, 115:835~841
    167 R. R. Letfullin, T. F. George, G. C. Duree and B. M. Bollinger. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches. Advances in Optical Technologies. 2008, 1: 251718~251725
    168 V.K. Pustovalov. Theoretical Study of Heating of Spherical Nanoparticle in Media by Short Laser Pulses. Chem. Phys. 2005, 308:103~108
    169 L. Jiang, H. L. Tsai. Improved Tew-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films. J. Heat Transfer 2005, 127:1167~1173
    170 H. Ostmark, N. Roman. Laser Ignition of Pyrotechnic Mixtures: Ignition Mechanisms. J. Appl. Phys. 1993, 73:1993~1995
    171 V. K. Pustovalov. Investigation of Threshold Laser Intensities for Melting and Evaporation of Spherical and Spheroidal Nanoparticles in Media by Short Laser Pulses. Chem. Phys. Lett. 2006, 421:142~147
    172 E. J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke and E. Matthias. Electron and Lattice Dynamics Following Optical Excitation of Metals. Chemical Physics. 2000, 251:237~258
    173 S. I. Anisimov, B. L. Kapeliovich and T. L. Perelman. Electron Emission From Metal Surfaces Exposed to Ultrashort Laser Pulses. Sov. Phys. JETP. 1974,39:375~377
    174 Y. Q. Yang, S. F. Wang, Z. Y. Sun and D. D. Dlott. Propagation of Shock-Induced Chemistry in Nanoenergetic Materials: The First Micometer. J. Appl. Phys. 2004, 95(7): 3667~3676
    175 C. L. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson and C. P. Lin. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal. 2003, 84(6): 4023~4032
    176 Y. Q. Yang, S. F. Wang, Z. Y. Sun and D. D. Dlott. Propagation of Shock-Induced Chemistry in Nanoenergetic Materials: The First Micometer. J. Appl. Phys. 2004, 95(7): 3667~3676
    177 Y. Q. Yang, Z. Y. Sun, S. F. Wang and D. D. Dlott, Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials. J. Phys. Chem. B. 2003, 107: 4485~4493
    178 V. P. Zharov, R. R. Letfullin and E. N. Galitovskaya. Microbubbles-Overlpping Mode for Laser Killing of Cancer Cells with Absorbing Nanoparticle Clusters. J. Phys. D. 2005, 38(15): 2571~2581
    179 M. J. Maurer. Relaxation Model for Heat Conduction in Metals. J. Appl. Phys. 1969, 40:5123~5130
    180孙承伟,陆启生,范正修,陈裕泽,李成福,关吉利,关崇文.激光辐照效应.国防工业出版社. 2002: 8~10
    181 J. L. Hostetler, A. N. Smith, D. M. Czajkowsky and P. M. Norris. Appl. Opt. 1999, 38(16):3614~3620
    182 C. Kittel. Introduction to Solid State Physics. Wiley. New York. 1996:157
    183 S. F. Wang, Y. Q. Yang, Z. Y. Sun and D. D. Dlott. Fast Spectroscopy of Energy Release in Nanometric Explosives. Chem. Phys. Lett. 2002, 368:189~194
    184 D. A. Frank-Kamenetskii. Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press. Princeton. 1995
    185 J. J. Granier, T. Mullen and M. L. Pantoya. Nonuniform Laser Ignition in Energetic Materials. Combust. Sci. and Tech. 2003, 175:1929~1951
    186 V. Weiser, S. Kelzenberg and N. Eisenreich. Influence of the Metal Particle Size on the Ignition of Energetic Materials. Propellants, Explosives, Pyrotechnics. 2001, 26:284~289
    187 E. M. Hunt, M. L. Pantoya, Ignition Dynamics and Activation Energies of Metallic Thermites: Form Nano- to Micron-Scale Particulate Composites. J. Appl. Phys. 2005, 98(3):034909~034916
    188 D. Jou, M. Criado-Sancho. Thermodynamic Stability and Temperature Overshooting in Dual-Phase-Lag Heat Transfer. Phys. Lett. A. 1998, 248(9):172~178
    189 B. A. Khasainov, A. V. Attetkov and A. A. Borisov, Shock-Wave initiation of Porous Energetic Materials and Visco-Plastic Model of Hot Spot. Chem. Phys. Rep. 1996, 15:987~1062
    190 J. Kang, P. B. Butler and M. R. Baer, A Thermomechanical Analysis of Hot Spot Formation in Condensed-Phase, Energetic Materials. Combust. Flame. 1992, 89(2):117~139
    191 G. Langer, N. Eisenreich. Hot Spot in Energetic Materials. Propellants, Explos., Pyrotech. 1999, 24:113~118
    192董海山,胡荣祖,姚朴,张孝仪.含能材料热谱集.国防工业出版社.北京. 2002:164
    193 M. Rashidi-Huyeh, B. Palpant. Thermal Response of Nanocomposite Materials under Pulsed Laser Excitation. J. Appl. Phys. 96(8):4475~4482
    194 D. K. Sar, P. Nayak, K. K. Nanda. Thermodynamic Model for the Size-Dependent Melting of Prism-Shaped Nanoparticles. Phys. Lett. A. 2008, 372:4627-4629
    195 Y. Y. S. Lee, X. N. Wen, W. A. Tolbert, D. D. Dlott, M. Doxtader and D. R. Arnold. Direct Measurement of Polymer Temperature during Laser Ablation using a molecular Thermometer. J. Appl. Phys. 1992, 72(6):2440~2448
    196 D. Giguere, G. Olivie, F. Vidal, S. Toetsch, G. Girard, T. Ozaki and J. C. Kieffer. Laser Ablation Threshold Dependence on Pulse Duration for Fused Silica and Corneal Tissues: Experiments and Modeling. J. Opt. Soc. Am. A. 2007, 24(6) 1562~1568
    197 B. C. Stuart, M. D. Feit, D. Herman, A. M. Rubenchik, B. W. Shore and M. D. Perry. Optical Ablation by High-Power Short-Pulse Lasers. J. Opt. Soc. Am. B. 1996, 13(2):459~468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700