金属(铁、镍)复合纳米粒子“核/壳”结构及其电磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用直流电弧法和催化裂解法制备了不同核/壳结构的复合纳米粒子,包括:金属/同质金属氧化物,金属/异质金属氧化物,Ni/C复合纳米粒子。分析了物质表面能及氧化物的氧势对粒子核/壳结构形成的影响,提出了氧化物包覆金属复合纳米粒子形成的热力学判据。通过实验分析了合成温度在催化裂解合成过程中对Ni/C复合纳米粒子结构的影响。对复合纳米粒子的结构、磁性、热稳定性进行了表征。将复合纳米粒子均匀分散在石蜡基体中,在2-18 GHz频率范围内测定了其电磁参数。通过比较不同结构复合纳米粒子的电磁参数,系统分析了粒子结构与电磁参数的关系。
     分析了同质金属氧化物包覆金属纳米粒子电磁性能与结构的关系。直流电弧法制备的金属Fe、Ni纳米粒子表面为Fe、Ni氧化物壳层,铁表面的氧化铁壳层由于含有Fe的不同价态,在交变电场作用下存在方向极化(oriental polarization)过程,从而产生较大的介电损耗,有利于电磁能量的吸收,而Ni表面氧化物具有单一价态,介电损耗很小,复合样品电磁吸收性能较差。Fe、Ni及Fe-Ni合金纳米粒子的磁导率虚部在2-18GHz范围内出现自然共振峰。由于金属粒子尺寸减小,表面各向异性作用增强,自然共振频率受到有效各向异性增大的影响而移向高频。共振频率随不同金属成分的磁晶各向异性变化而发生偏移。改变合金成分不仅能够提高纳米粒子的抗氧化性,而且可以得到微波吸收性能良好的复合纳米材料。
     以金属,异质金属氧化物混合料块为原料,利用直流电弧法合成了具有不同异质金属氧化物壳层的Fe, Ni复合纳米粒子。氧化物表面能较金属小得多,在蒸发过程中自发吸附于金属表面,形成具有氧化物壳层的复合金属纳米粒子。由于Fe氧化物氧化势与氧化钛、氧化锰接近,Fe复合纳米粒子形成过程中Fe与氧反应,表面形成双氧化物。氧化铝的氧化势非常低,Fe与氧化铝混合蒸发形成的复合纳米粒子表面氧化物主要是非晶态的AlOx。Ni氧化物氧化势较高,Ni复合纳米粒子表面生成单氧化物壳层。基于对同质氧化物包覆的金属纳米粒子的电磁性能的研究,对异质氧化物包覆的金属纳米粒子电磁特性进行了分析。表面壳层不仅提高了金属纳米粒子的热稳定性,而且改变了粒子的电磁特性。含有异质氧化物壳层的金属复合纳米颗粒,介电常数和磁导率相对于同质氧化物包覆金属纳米粒子,明显减小,但变化趋势相同,这同样是纳米金属粒子中的多重极化综合作用的结果。异质金属氧化物包覆Fe纳米粒子,介电损耗及磁损耗比同质金属氧化物包覆Fe纳米粒子小,吸收频率移向高频,样品厚度增加。而异质金属氧化物包覆的Ni复合纳米粒子,由于其本征的磁化强度较低,磁损耗较小,随介电常数降低,介电损耗同时减小,电磁波损耗性能没有明显改善。双氧化物包覆的金属纳米粒子介电损耗较高,电磁波吸收厚度比单氧化物包覆金属纳米粒子小。
     为了改善Ni纳米粒子的电磁波损耗性能,利用催化裂解法,将Ni纳米粒子在甲烷中退火处理得到了结构均匀的碳包覆复合纳米粒子。对复合粒子的结构,磁性,热稳定性及电磁特性进行了表征。复合纳米粒子中的包覆层结构随反应温度呈现不同的状态,Ni纳米粒子在反应过程中未发生烧结。随着石墨壳层增加,Ni纳米粒子氧化温度提高,氧化速度减缓。通过对Ni/C复合纳米粒子的电磁性能的分析发现,石墨壳层结晶、厚度、形态的不同对粒子介电性能影响明显。由于石墨壳层具有良好的导电性,而且其中存在大量缺陷,本方法制备的Ni/C复合纳米粒子具有较高的介电常数。石墨壳层中自由电子运动及壳层与金属核间的界面极化带来较大的介电损耗,其中500℃制备的纳米粒子介电常数最大,介电常数实部最大值达到66,介电损耗最大值47,较低的粒子添加量即能获得良好的微波吸收性能。
In this work, DC arc-discharge and catalytic pyrogenation methods were employed to prepare core/shell structure composite nanoparticles, such as metal/homogeneity metal oxides, metal/heterogeneity metal oxides and Ni/C composite nanoparticles. By the analysis of the influences of the oxidation potential and surface energy on the formation of core/shell type composite nanoparticles, a thermodynamics criterion about the particle formation was brought forward. It was also investigated how the reaction temperature determine the structure of Ni/C composite nanoparticles for the catalytic pyrogenation method. The particle structures, magnetic properties and thermal stability of the samples were characterized. The electromagnetic parameters were measured in the 2-18GHz frequency range by dispersing the particles in a paraffine matrix. The relation between the particle structure and electromagnetic parameters was construed by comparison of the electromagnetic parameters for various samples.
     The relation was discussed between the electromagnetic characteristics and the structure of metal nanoparticles coated by homogeneity metal oxide. It was discovered that the Fe and Ni nanoparticles fabricated by DC arc-discharge method are encapsulated by Fe and Ni oxide and the oxides present enormous influences on the dielectric loss of the composite nanoparticles. The Fe oxides outside Fe nanoparticles containing Fe ions with various valence states show high dielectric loss for the oriental polarization favoring excellent microwave absorption properties, while the Ni nanoparticles possess low dielectric loss and microwave attenuation for the single valence state of Ni ions. Natural resonance peaks appear in the imaginary permeability curves of Fe, Ni and Fe-Ni alloy nanoparticles at high frequency for the enhanced surface anisotropy of the magnetic nanoparticles. The resonance frequencies shift with the alloy component, and the adjusting of alloy component can not only improve antioxidation property of the metal nanoparticles, but also achieve excellent microwave absorption property.
     Fe and Ni nanoparticles encapsulated in heterogeneity metal oxides were prepared by a DC arc-discharge method using the mixture compacts containing metal and oxides as precursors. The oxidation potential of Fe oxides is so low that double-oxides, Fe/Fe3-xTixO4 and Fe3-xMnxO4 formed outside the particles for the reactivity of Fe with oxygen, while AlOX shell formed due to the low oxidation potential of aluminum oxide. The oxidation potential of Ni oxide is much higher than Fe, and TiO2, Al2O3, MnO formed outside Ni nanoparticles. The electromagnetic characteristics of the composite nanoparticles were discussed based on the analysis of the metal nanoparticles coated by homogeneity oxides. The heterogeneity metal oxide not only improves the thermal stability but also change the electromagnetic characteristics. The permittivity of the composite nanoparticles present smaller values than the metal nanoparticles coated by homogeneity oxides, and constants in the whole frequency range for the synthetic action of diverse polarization machinism. The changing permittivity and permeability enable the nanoparticles show different attenuation properties, the effective absorption frequency shifts to high frequency and matching thickness increases as the lowing dielectric and magnetic loss. Differing from the Fe composite nanoparticles, the microwave attenuation properties of Ni composite nanoparticles have not improved markedly for the lower intrinsic magnetization and dielectric loss, though the permittivities reduced.
     With the purpose of improving the attenuation property of Ni nanoparticles, the Ni nanoparticles were annealed in methane atmosphere to synthesize C coated Ni nanoparticles by the catalytic pyrogenation method. The structures, magnetic properties, thermal stability and electromagnetic characteristics were investigated. The graphite in the composite nanoparticles exhibits different morphology for various reaction temperatures, and the Ni nanoparticle were not sintered during the reaction process. The oxidation temperatures increase and oxidation rates drop with the increasing thickness of graphit shell in the composite nanoparticles. The analysis of electromagnetic property indicates that the crystalline, thickness and structure of the graphite phase influence the dielectric prperties obviously. The defects and conductivity of the shell bring about much higher permittivity in the composite nanoparticles than in Ni nanoparticles and the Ni/C composite nanoparticles fabricated by DC arc-discharge method. The composite nanoparticles exhibit much higher dielectric loss due to the motion of free electron in graphite shells and interface polarization between cores and shells. Among the samples, the particles synthesized at 500℃exhibit highest permittivity values. The real permittivity and imaginary parts can reachs 66 and 47 in the sample containing 50wt.% composite nanoparticles. For the high dielectric loss, excellent attenuation property can be achieved in the samples with smaller additive amount of the composite nanoparticles.
引文
[1]Kubo R. Electronic Properties of metallic fine particles[J]. I. J. Phys. Soc. Jpn,1962, 17:975-986.
    [2]Taniguchi N. On the Basic Concept of "Nano-Technology" [J]. Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering,1974:5-10.
    [3]Gleiter H. On the structure of grain-boundaries in metals[J]. Mater. Sci. Eng,1982, 52:91-94.
    [4]周正华等,纳米材料开发使用及质量检测技术标准应用手册[M].长春:银声音像出版社,2005:3-10.
    [5]Kimoto K, Kamiya Y, Nonoyama M et al. An electron microscope study on fine metal particles prepared by evaporation in argon gas at low pressure[J]. Jpn. J. Appl. Phys,1963,2: 702-713.
    [6]Ruoff R S, Lorentzs D C, Chan B et al. Single crystal metals encapsulated in carbon nanoparticles[J]. Science,1993,259:297-299.
    [7]Saito Y. Nanoparticles and filled nanocapsules[J]. Carbon,1995,33:979-988.
    [8]Dong X L, Zhang Z D, Xiao Q F et al. Characterization of ultrafine α-Fe(C), γ-Fe(C) and Fe3C particles synthesized by arc-discharge in methane[J]. J. Mater. Sci,1998,33: 1915-1919.
    [9]Hirano T, Oku T, Suganuma K. Formation of gold and iron oxide nanoparticles encapsulated in boronnitride sheets[J]. J. Mater. Chem,1999,9:855-857.
    [10]Oku T, Kusunose T, Niihara K et al. Chemical synthesis of silver nanoparticles encapsulated in boron nitride nanocages[J]. J. Mater. Chem,2000,10:255-257.
    [11]Wu M Z, Zhang Y D, Hui S et al. Structure and magnetic properties of Si02-coated Co nanoparticles[J]. J. Appl. Phys,2002,92:491-495.
    [12]Si P Z, Zhang Z D, Geng D Y. Synthesis and characteristics of carbon-coated iron and nikel nanocapsules produced by arc discharge in ethanol vapor[J]. Carbon,2003,41:247-251.
    [13]Geng D Y, Park W Y, Kim J C et al. Synthesis and characterization of FeCoNiAl nanocapsules by plasma arc discharge process[J]. J. Mater. Res,2005,20:2534-2543.
    [14]Sun Xiang-Cheng, Nava N, Microstructure and Magnetic Properties of Fe(C) and Fe(0) Nanoparticles[J]. Nano Lett,2002,2:765-769.
    [15]Che R C, Peng L M, Duan X F et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv. Mater, 2004,16:401-403.
    [16]Liu X G, Du J, Geng D Y et al. Co-doped Y203 optical functional nanoparticles and novel self-assembly squama-like aggregates[J]. J. Alloy. Compd,2008,457:517-521.
    [17]Bao Jianchun, Xu Dapeng, Zhou Quanfa et al. An Array of Concentric Composite Nanostructure of Metal Nanowires Encapsulated in Zirconia Nanotubes:Preparation, Characterization, and Magnetic Properties[J]. Chem. Mater,2002,14:4709-4713.
    [18]张池明.超微粒子的化学特性.化学通报[J],1993,8:20-23.
    [19]Li Xing, Qiu Jieshan, Changhai Liang et al. A new approach to high performance Co/C catalysts for selective hydrogenation of chloronitrobenzenes[J]. J. Catal,2007,250: 369-372.
    [20]黄元恒.金属超细粉及其应用.上海钢研[J].1994,3:55-61.
    [21]翟秀静.张楠纳米金属材料的研究进展[J],材料导报.1999,13:22—24.
    [22]Erb U. Electrodeposited nano-crystals:synthesis, properties and industrial applications[J], Nanostructured Materials.1995,6:533-538.
    [23]刘筱薇,仵海东.纳米金属材料研究进展[J].热加工工艺,2001,3:55-58.
    [24]Uyeda R. Studies on ultrafine Particle in Japan[J]. Prog. Mater. Sci,1991,35:1-96.
    [25]张振英,王斌.军用隐身涂料技术的研究进展[J].现代涂料与涂装,2006:2 29-31.
    [26]Stefanik P, Sebo P. Electroless Plating Graphite With Copper and Nickel[J]. J Mater. Sci. Lett,1993,12:108-120.
    [27]陈利民,陈利明.纳米γ-(Fe,Ni)合金粒子的微观结构及其微波吸收特性[J].微波学报,1999,15:312-316.
    [28]Olmedo L, Deleuze C, Hourquebie P et al. Microwave absorbing materials based on conducting polymers[J]. Adv. Mater,1993,5:373-377.
    [29]Guan DengGao. Study on shielding functionally gradient materials with low reflection loss and high absorption loss for electromagnetic wave[J]. The 2003 IEEE international symposium on electromagnetic compatibility,2003,2:1259-1262.
    [30]Lu B, Dong X L, Huang H et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles[J]. J. Magn. Magn. Mater,2008,320:1106-1111.
    [31]Ravindran R, Gangopadhyay K, Gangopadhyay S et al. Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles[J]. Appl. Phys. Lett,2006,89: 263511.
    [32]Snoek J L, New developments in ferromagnetic materials[J]. Physica (Amsterdam),1948, 14:207-217.
    [33]Kim S S, Kim S T, Yoon Y C et al. Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies[J]. J. Appl. Phys,2005,97:10F905.
    [34]Liu J R, Itoh M, Terada M, Horikawa T et al. Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range[J]. Appl. Phys. Lett,2007,91:093101.
    [35]彭伟才,陈康华.随机分布Fe纳米线复合材料的吸波性能[J].中国有色金属学报,2005,2:288-294.
    [36]Wu L Z, Ding J, Jiang H B et al. Particle size influence to the microwave properties of iron based magnetic particulate composites[J]. J. Magn. Magn. Mater,2005,285:233-239.
    [37]Liu J R, Itoh M, Machida K, Microwave absorption properties of α-Fe/Y203 nanocomposites in the GHz range prepared by melt-spun technique[J]. Chem. Lett,2003,32: 394-395.
    [38]Machida K, Liu J R, Itoh M. Gigahertz range absorption properties of α-Fe/Y203, FeCo/Y203, and α-Fe/Fe3B/Y203 Nanocomposites[J]. IEEE Transactions on magnetics,2005,41:3578-3580.
    [39]Liu J R, Itoh M, Machida K, Electromagnetic wave absorption properties of Fe/Fe3B/Y203 nanocomposites in gigahertz range[J]. Appl. Phys. Lett,2003,83:4017-4019.
    [40]Liu J R, Itoha M, Jiang J Z, Machida K. A, GHz range electromagnetic wave absorber with wide bandwidth made of FeCo/Y2O3 nanocomposites[J]. J. Magn. Magn. Mater,2004,271: 147-152.
    [41]Liu J R, Itoh M, Machida K, Electromagnetic wave absorption properties of Fel-xCox/Y203(x =0.33,0.5,0.67) nanocomposites in gigahertz range[J]. J. Alloys Comp,2005,389:265-269.
    [42]Sugimoto S, Maeda T, Book D et al. GHz microwave absorption of a fine a-Fe structure produced by the disproportionation of SmFe in hydrogen[J]. J. Alloys Comp,2002,330-332: 301-306.
    [43]Maeda T, Sugimoto S, Kagotani T et al. Electromagnetic microwave absorption of alpha-Fe microstructure produced by disproportionation reaction of Sm2Fe17 compound[J]. Mater. Trans. JIM,2000,41:1172-1175.
    [44]Liu J R, Itoh M, K. Machida. Magnetic and electromagnetic wave absorption properties of α-Fe/Z-typeBa-ferrite nanocomposites[J]. Appl. Phys. Lett,2006,88:062503.
    [45]Wu Mingzhong, Zhang Y D, Hui S et al. Microwave magnetic properties of Co5o/(Si02)so nanoparticles[J]. Appl. Phys. Lett,2002,80(23):4404-4407.
    [46]Liu X G, Geng D Y, Meng H et al. Microwave-absorption properties of ZnO-coated iron nanocapsules[J]. Appl. Phys. Lett,2008,92:173117.
    [47]Liu X G, Geng D Y, Zhang Z D, Microwave-absorption properties of FeCo microspheres self-assembled by Al203-coated FeCo nanocapsules[J]. Appl. Phys. Lett,2008,92:243110.
    [48]Liu X G, Jiang J J, Geng D Y et al. Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules[J]. Appl. Phys. Lett,2009,94:053119.
    [49]Wadhawan A, Garrett D, Perez J M, Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes[J]. Appl. Phys. Lett,2003,83:2683-2685.
    [50]Che R C, Zhi C Y, Liang C Y et al. Fabrication and microwave absorption of carbon nanotubes/CoFe204 spinel nanocomposite[J]. Appl. Phys. Lett,2006,88:033105.
    [51]Yang Y, Zhang B S, Xu W D et al. Preparation and properties of a novel iron-coated carbon fiber[J]. J. Magn. Magn. Mater,2003,256:129-132.
    [52]Liu J R, Itoh M, Horikawa T et al. Gigahertz range electromagnetic wave absorbers made of amorphous-carbon-based magnetic nanocomposites[J]. J. Appl. Phys,2005,98:054305.
    [53]Zhang X F, Dong X L, H. Huang et al. Microwave absorption properties of the carbon-coated nickel nanocapsules[J]. Appl. Phys. Lett,2006,89:053115.
    [54]Zhang X F, Dong X L, Huang H, et al. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. J. Phys. D:Applied Phys,2007,40:5383-5387.
    [55]Lee C C, Chen D H, Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles[J]. Appl. Phys. Lett,2007,90:193102.
    [56]Si P Z, Bruck E, Zhang Z D et al. Structural and magnetic properties of Mn nanoparticles prepared by arc-discharge[J]. Mater. Res. Bull,2005,40:29-37.
    [57]Dong X L, Zhang Z D, Zhao X G et al. The preparation and characterization of ultrafine Fe-Ni particles[J]. J. Mater. Res,1999,14:398-406.
    [58]Kratschmer W, Lamb L D, Fostiropoulos K et al. Solid C60:a new form of carbon[J]. Nature, 1990,347:354-358.
    [59]Saito Y, Okuda M, Yoshikawa T et al. Correlation between volatility of rare-earth metals and encapsulation of their carbides in carbon nanocapsules[J]. J. Phys. Chem,1994, 98:6696-6698.
    [60]Saito Y, Yoshikawa T, Okuda M et al. Carbon nanocapsules encaging metals and carbides[J]. J. Phys. Chem. Solids,1993,54:1849-1860.
    [61]Saito Y, Yoshikawa T, Okuda M et al. Synthesis and electron-beam incision of carbon nanocapsules encaging YC2[J]. Chem. Phys. Lett,1993,209:72-76.
    [62]Seraphin Supapan, Zhou Dan, Jiao Jun, Filling the carbon nanocages[J]. J. Appl. Phys, 1996,80 (4):2097-2104.
    [63]Dravid V P, Host J J, Teng M H et al. Controlled-size nanocapsules[J]. Nature,1995, 374:602-603.
    [64]Dong X L, Zhang Z D, Jin S R et al. Carbon-coated Fe-Co(C) nanocapsules prepared by arc discharge in methane[J]. J. Appl. Phys,1999,86:6701-6706.
    [65]Dong X L, Zhang Z D, Chuang Y C et al. Characterization of ultrafine Fe-Co particles and Fe-Co(C) nanocapsules[J]. Phys. Rev. B,1999,60:3017-3020.
    [66]Dai Hongjie, Rinzler Andrew G, Nikolaev Pasha et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chem. Phys. Lett,1996,260: 471-475.
    [67]Geng D Y, Zhang Z D, Zhang W S et al. Al2O3 coated α-Fe solid solution nanocapsules prepared by arc discharge[J]. Scripta Mater,2003,48:593-596.
    [68]Liu XG, Geng D Y, Meng H et al. Microwave absorption properties of FCC-Co/Al2O3 and FCC-Co/Y2O3, nanocapsules[J]. Solid State Commun,2009,149:64-67.
    [69]Zhang W S, Bruckc E, Li WF et al. Synthesis, characterization and magnetic properties of Fe-Al nanopins[J]. Physica B,2005,370:131-136.
    [70]Ichihito Narita, Takeo Oku, Arc-melting synthesis of BN nanocapsules from B/Al, TiB2 VB2[J]. Diam. Relat. Mater,2002,11:949-952.
    [71]Takeo Oku, Masaki Kuno, Hidehiko Kitahara et al. Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials[J]. Int. J. Inorg. Mater, 2001,3:597-612.
    [72]Takeo Oku, Masaki Kuno, Ichihito Narita. Hydrogen storage in boron nitride nanomaterials studied by TG/DTA and cluster calculation[J]. J. Phys. Chem. Solid,2004,65: 549-552.
    [73]Masaki Kuno, Takeo Oku, Katsuaki Suganuma. Synthesis of boron nitride nanotubes and nanocapsules with LaB6[J]. Diam. Relat. Mater,2001,10:1231-1234.
    [74]Takeo Oku, Masaki Kuno. Synthesis, argonyhydrogen storage and magneticpr operties of boronnitride nanotubes and nanocapsules[J]. Diam. Relat. Mater. Diam. Relat. Mater,2003,12: 840-845.
    [75]Si P Z, Choi C J, Bruck E et al. Structure and magnetic properties of surface alloyed Fe nanocapsules prepared by arc discharge[J]. Physica B,2005,369:215-220.
    [76]Dong X L, Choi C J, Kim B K, Structural and magnetic characterization of Fe nanoparticles synthesized by chemical vapor condensation process[J]. J. Appl. Phys,2002,92:5380-5385.
    [77]Wang Z H, Zhang Z D, Choi C J et al. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation[J]. J. Alloys Compd.2003,361: 289-293.
    [78]Elihn K, Landstrom L, Alm 0 et al. Size and structure of nanoparticles formed via ultraviolet photolysis of ferrocene[J]. J. Appl. Phys,2007,101:034311-1-3.
    [79]Tsai S H, Lee C L, Chao C W et al. A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon[J]. Carbon,2000,38:781-785.
    [80]Athanassiou E K, Grass R N, Stark W J, Large scale carbon coated Cu nanocapsules for sensor applications[J]. Nanotechnology,2006,17:1668-1673.
    [81]Graf C, Vossen D L J, Imhof A et al. A General Method To Coat Colloidal Particles with Silica. Langmuir,2003,19:6693-6700.
    [82]Wu M Z, Zhang Y D, Hui S et al. Magnetic properties of SiO2-coated Fe nanoparticles[J]. J. Appl. Phys,2002,92:6809-6812.
    [83]Wu M Z, Zhang Y D, Hui S et al. Structure and magnetic properties of SiO2-coated Co nanoparticles[J]. J. Appl. Phys,2002,92:491-495.
    [84]Ohmori M, Matijevic E. Preparation and properties of uniform coated inorganic colloidal particles silica on iron[J]. J. Colloid. Interface. Sci,1993,160:288-292.
    [85]Imhof A. Preparation and characterization of titania-coated polystyrene sphere and hollow titania shells[J]. Langmuir,2001,17:3579-3585.
    [86]Harris P J F, Tsang S C. A simple technique for the synthesis of filled carbon nanoparticles[J]. Chem. Phys. Lett,1998,293:53-58.
    [87]Tomita S, Hikita M, Fujii M. et al. A new and simple method for thin graphitic coating of magnetic-metal nanoparticles. Chem. Phys. Lett,2000,316:361-364.
    [88]Inagaki M, Okada Y, Miura H et al. Preparation of carbon-coated transition metal particles from mixtures of metal oxide and polyvinylchloride[J]. Carbon,1999,37:329-334.
    [89]Kosugi K, Bushiri M J, Nishi N, Formation of air stable carbon-skinned iron nanocrystals from FeC2[J]. Appl. Phys. Lett,2004,84:1753-1755.
    [90]Huo J P, Song H H, Chen X H et al. Structural transformation of carbon-encapsulated iron nanoparticles during heat treatment at 1000℃[J]. Mater. Chem. Phys,2007,101: 221-227.
    [91]Bokhonov B, Korchagin M. The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel[J]. J. Alloys. Compd, 2002:333:308-320.
    [92]Tokoro H, Fujii S, Muto S et al. Fe-Co and Fe-Ni magnetic fine particles encapsulated by graphite carbon[J]. J. Appl. Phys,2006,99:08Q512.
    [93]Bokhonov B, Borisova Y, Korchagin M, Formation of encapsulated molybdenum carbide particles by annealing mechanically activated mixtures of amorphous carbon with molybdenum[J]. Carbon,2004,42:2067-2071.
    [94]Ichihito Narita, Takeo Oku, Hisato Tokoro, Katsuaki Suganum, Synthesis of Co nanocapsules coated with BN layers by annealing of KBH4 and [Co(NH3)6]Cl3[J]. Solid. State Commun,2006,137:44-48.
    [95]Tomita S, Hikita M, Fujii M et al. Formation of Co filled carbon nanocapsules by metal-template graphitization of diamond nanoparticles[J]. J. Appl. Phys,2002,88: 5452-5456.
    [96]Jedadevan B, Suzuki Y, Tohji K, Encapsulation of nanopartieles by surfactant reduction. Mater[J]. Sci. Eng A,1996,217-218:54-57.
    [97]Hidehiko Kitahara, Takeo Oku, Takanori Hirano, Katsuaki Suganuma, Synthesis and characterization of cobalt nanoparticles encapsulated in boron nitride nanocages[J]. Diam. Relat. Mater,2001,10:1210-1213.
    [98]董星龙,左芳,钟武波,李哲男,陈平.纳米镍/聚苯胺复合粒子的制备与表征[J].功能材料,2005,36:1558-1563.
    [99]胡永红,刘应亮,容建华,李崇清.聚苯乙烯/镍核壳结构纳米微粒的制备[J].化学与生物工程,2006,23:12-15.
    [100]He J H, Yang R, Chueh Y L et al. Aligned AlN Nanorods with Multi-Tipped Surfaces-Growth, Field Emission, and Cathodoluminescence Properties[J]. Adv. Mater,2006,18:650.
    [101]Michaelson H B. The work function of the elements and its periodicity[J]. J. Appl. Phys,1977,48(11):4729.
    [102]Schwarz G, Theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution[J]. J. Phys. Chem,1962,66:2636-2642.
    [103]Chew W C, Sen P N. Dielectric enhancement due to electrochemical double layer:Thin double layer approximation[J]. J. Chem. Phys,1982,77:4683-4693.
    [104]Bardeen J. Theory of the work function II the surface double layer[J]. Phys. Rev,1936, 49:653.
    [105]Yusoff A N, Abdullah M H, Ahmad S H et al. Electromagnetic and absorption properties of some microwave absorbers[J]. J. Appl. Phys,2002,92:876-882.
    [106]戴道生,钱昆明.凝聚态物理丛书-铁磁学[M].北京:科学出版社,1998.
    [107]Brown J W F, Micromagnetics[M]. New York:Wiley-Interscience,1963.
    [108]Peng D L, Hihara T, Sumiyama K et al. Structural and magnetic characteristics of monodispersed Fe and oxide-coated Fe cluster assemblies[J]. Journal of applied physics,2002, 92:3075-3083.
    [109]Kittel C. On the Theory of Ferromagnetic Resonance Absorption[J]. Phys. Rev,1948, 73:155.
    [110]宇田雅広.新しぃ金属超微粒子の裂造法[J].日本金属学会会报,1983,22(5):412-420.
    [111]Ohno S, Uda M. Preparation for Ultrafine Particles of Fe-Ni, Fe-Cu and Fe-Si Alloys by Hydrogen Plasma-metal Reaction[J]. Jpn. Inst. Metals,1989,53(9):946-952.
    [112]Uda M. Prodution of Ultrafine Meal and Alloy Powders by Hydrogen Thermal Plasma[J]. Nanost. Mater,1992,1(1):101-106.
    [113]李星国,廖复辉.直流电弧等离子体法合成金属和陶瓷纳米颗粒[J].过程工程学报,2002,2(4):295-300.
    [114]希祜.钢铁冶金原理[M].北京:冶金工业出版社,2002.
    [115]Dai H, Rinzler A G, Nikolaev P et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chem. Phys. Lett,1996,260:471-475.
    [116]Zhang Lei, Persaud Rajendra, Madey Theodore E, Ultrathin metal films on a metal oxide surface:Growth of Au on TiO2 (110) [J]. Phys. Rev B,1997,56:10549-10557.
    [117]Halde F A, Kingery W D. Surface tension at elevated temperatures:II. Effect of C, N,0 and S on liquid iron surface tension and interfacial energy with Al2O3[J]. J. Phys. Chem, 1955,59:557-559.
    [118]Wang Z H, Zhang Z D, Choi C J et al. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation[J]. J. Alloy. Compd,2003,361: 289-293.
    [119]Song Huaihe, Chen Xiaohong. Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene[J]. Chem. Phys. Lett,2003,374: 400-404.
    [120]Che R, Peng L M, Chen Q et al. Controlled synthesis and phase transformation of ferrous nanowires inside carbon nanotubes[J]. Chem. Phys. Lett,2003,375:59-64.
    [121]Zhong Ziyi, Chen Huayi, Tang Songbei et al. Catalytic growth of carbon nanoballs with and without cobalt encapsulation[J]. Chem. Phys. Lett,2000,330:41-47.
    [122]Liu B H, Ding J, Zhong Z Y et al. Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy[J]. Nanotechnology,2008:19: 435102 (9pp).
    [123]Dai Hongjie, Rinzler Andrew G, Nikolaev Pasha et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chem. Phys. Lett,1996,260: 471-475.
    [124]Okuyama F, Hayashi T, Fujimoto Y. Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes[J]. J. Appl. Phys,1998,84(3):1626-1631.
    [125]Dong X L, Zhang Z D, Jin S R et al. Surface characterizations of ultrafine Ni particles[J]. Nanost. Mater,1998,10(4):585-592.
    [126]Lide D R., CRC Handbook of Chemistry and Physics (3rd Electronic Edition) [M]. Boca Raton:CRC press,2000.
    [127]Miles P A, Westphale W B, Hippel A von., Dielectric Spectroscopy of Ferromagnetic Semiconductors[J]. Rev. Mod. Phys,1957,29(3):279-307.
    [128]Liu J R, Itoh M, Machida K. Frequency dispersion of complex permeability and permittivity on iron-based nanocomposites derived from rare earth-iron intermetallic compounds[J]. J. Alloys and Compd,2006,408-412:1396-1399.
    [129]Deng Y D, Liu X, Shen B et al. Preparation and microwave characterization of submicrometer-sized hollow nickel spheres[J]. J. Magn. Magn. Mater,2006,303:181-184.
    [130]Kim S S, Kim S T, Ahn J M et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density[J]. J. Magn. Magn. Mater, 2004,271:39-45.
    [131]B(?)dker F, M(?)rup S, Linderoth S. Surface effects in metallic iron nanoparticles[J]. Phys. Rev. Lett,1994,72:282-285.
    [132]Viau G, Ravel F. Preparation and microwave characterization of spherical and monodisperse Co-Ni particles[J]. J. Magn. Magn. Mater,1995,140:377-378.
    [133]Respaud M, Broto J M, Rakoto H et al. Surface effects on the magnetic properties of ultrafine cobalt particles[J]. Phys. Rev. B,1998,57(5):2925-2935.
    [134]Motojima S, Noda Y, Hoshiya S et al. Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region[J]. J. Appl. Phys,2003,94 (4):2325-2330.
    [135]熊国宣,陈阳如,李坚利,叶越华,左跃.纳米TiO2与水泥复合材料的吸波机理探讨[J].功能材料,2007,38:836-841.
    [136]刘顺华,管洪涛,段玉平,赵彦波.二氧化锰复合材料吸波特性研究[J].功能材料,2006,37:197-199.
    [137]Glisenti Antonella, The reactivity of a Fe-Ti-O mixed oxide under different atmospheres:study of the interaction with simple alcohol molecules[J]. J. Mol. Catal A: Chem,2000,153:169-190.
    [138]Yang Z Q, He L L, Jin Z X et al. Effect of electron beam irradiation on the interphase boundary between crystalline Al and amorphous Al2O3[J]. J. Phys:Condens. Matter,2001,13: 8475-8479.
    [139]Pells G P. Radiation damage effects in alumina[J]. J. Am. Ceram. Soc,1994,77(2): 368-377.
    [140]Salisbury I G, Timsit R S, Berger S D et al. Nanometer scale electron beam lithography in inorganic materials[J]. Appl. Phys. Lett,1984,45:1289-1291.
    [141]Ardelean I, Cora Simona, Raluca Ciceo Lucacel, et al. EPR and FT-IR spectroscopic studies of B2O3-Bi2O3-MnO glasses[J]. Solid. State. Sci,2005,7:1438-1442.
    [142]Harizanov O, Ivanova T, Harizanova A. Study of sol-gel TiO2 and TiO2-MnO obtained from a peptized solution[J]. Mater. Lett,2001,49:165-171.
    [143]孟哲,贾振斌,魏雨.δ-FeOOH的制备及热处理产物的FTIR光谱[J].过程工业学报,2004,4(2):146-149.
    [144]廖绍彬.铁磁学[M].北京:科学出版社,1988.
    [145]Cheng P, Qiu J, Gu. M, Shangguan W. Synthesis of shape-controlled titania particles from a precursor solution containing urea[J]. Mater. Lett,2004,58:3751-3755.
    [146]Li D S, Horikawa T, Liu J R et al. Electromagnetic wave absorption properties of iron/rare earth oxide composites dispersed by amorphous carbon powder[J]. J. Alloy. Compod, 2006,408-412:1429-1433.
    [147]Liu J R, Itoh M, Horikawa T et al. Iron based carbon nanocomposites for electromagnetic wave absorber with wide bandwidth in GHz range[J]. Appl. Phys. A,2006,82:509-513.
    [148]Robtson J. Diamond-like amorphous carbon[J]. Mater. Sci. Eng R,2002,37:129-281.
    [149]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev B,2000,61 (20):14095-14107.
    [150]Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. J. Chem. Phys,1970,53(3): 1126-1130.
    [151]Brown S D M, Jorio A, Dresselhaus M S. et al. Observations of the D-band feature in the Raman spectra of carbon nanotubes[J]. Phys. Rev B,2001,64:0734031-0734034.
    [152]Nichols J A, Saito H, Deck C et al. Artificial introduction of defects into vertically aligned multiwalled carbon nanotube ensembles:Application to electrochemical sensors[J]. J. Appl. Phys,2007,102:0643061-0643066.
    [153]Yang Y, Zhang BS, Xu WD. et al. Preparation and electromagnetic characteristics of a novel iron-coated carbon fiber[J]. Journal of Alloys and Compounds,2004,365:300-302.
    [154]Beuneu F, Huillier C I, Salvetat J P et al. Modification of multiwall carbon nanotubes by electron irradiation:An ESR study[J]. Phys. Rev. B,1999,59:5945.
    [155]Wtts Paul C P, Hsu Wen-Kuang, Barnes Alan et al. High permittivity from Defective multiwalled carbon nanotubes in the X-band[J]. Adv. mater,2003,15(7-8):600-603.
    [156]X.G. Liu, B. Li, D. Y. Geng, W. B. Cui, F. Yang, Z.G. Xie, D. J. Kang, Z. D. Zhang, (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band[J]. Carbon,2009, 47:470-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700