纳米纤维基载体材料的静电纺丝制备及其功能化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物纳米纤维具有较高的比表面积、良好的机械性能,在药物传输和靶向释放、组织工程、植入物表面改性等方面都有广泛的应用。静电纺丝技术是制备纳米级连续纤维的唯一方法,设备简单、操作容易,是构建合成及天然高分子聚合物、聚合物合金、含生色团聚合物以及金属陶瓷等纳米纤维的最有效的方法,也是制备纳米颗粒及生物活性物质等功能化纳米纤维的新型手段。将静电纺丝纳米纤维作为载体材料,采用不同的修饰方法,可以得到具有特定应用目的的、结构多样、性能优异的复合纳米纤维,在光电器件、传感技术、催化、过滤、生物以及医用领域都有诱人的应用潜力。本课题围绕静电纺丝纳米纤维高长径比、高比表面积、形貌可调和易于功能化等方面的优点,采用静电纺丝技术制备了介孔二氧化硅纳米纤维,并将其作为载体材料实现与纳米粒子及生物高分子的有效复合,得到一系列性能优异、电化学活性优良、生物相容性良好的复合纳米纤维,最后对其应用价值进行了初步研究。主要完成了以下几个方面的工作:
     (1)将溶胶—凝胶法与静电纺丝技术相结合,以PVP为赋形剂、P123为结构导向剂,制备了介孔二氧化硅纳米纤维。考查了溶胶pH值、硅水比、PVP种类、陈化温度和时间、搅拌时间及PVP加料时间对电纺过程的影响。探讨了溶剂蒸发诱导自组装法(EISA)对模板剂有序组装的影响,优化了纤维形貌的控制因素。实验结果表明:在纺丝电压为10 kV、纺丝距离为20 cm的纺丝条件下有利于得到直径均匀、单分散性良好的纳米介孔二氧化硅纤维;所制备的纤维具有双分布的介孔结构,大部分介孔尺寸为3.70nm,部分约为13 nm。小的介孔基本沿纤维轴向分布而大的介孔则自由分布。纤维具有极高的比表面积和孔容,分别为2988.70 m2/g和4.40 cm3/g。通过改变后处理工艺,将电纺纤维经过水蒸气老化处理和H2O2氧化降解模板剂P123后制备了形貌保持完好、具有均匀介孔的二氧化硅支撑的PVP纤维,纤维直径约700 nm,介孔平均孔径14.98 nm,孔容0.12 cm3/g,比表面积32.07 m2/g。
     (2)在纺丝溶胶的配方中原位掺杂硝酸银,利用硝酸银的热解还原机理和PVP的还原保护机理制备了银掺杂量不同的介孔二氧化硅复合纤维带。结果表明,复合纤维带具有独特的带状形貌,宽高比较大,厚度较薄,表面光滑,纳米银粒子分布均匀,平均直径约为31.50 nm。独特的形貌结构使复合纤维带对亚甲基蓝溶液的硼氢化钠还原反应具有很高的催化活性。以此纤维为固定化载体,负载葡萄糖氧化酶(GOx)和细胞色素C(CytC)后构筑了生物传感器,电化学实验表明复合材料具有较好的直接电子传递作用。
     (3)采用静电自组装方法在二氧化硅纤维表面修饰了一层粒径和分布密度可控的纳米金粒子,并以此修饰纤维为生长核分别在HAuCl4的PVP溶液和K2CO3的HAuCl4溶液中还原生长,最终得到具有完整金壳的SiO2@Au核壳复合纤维。考查了不同制备方法、操作工艺和R值(PVP中乙烯吡咯烷酮结构单元与HAuCl4的摩尔比)对纤维结构和形貌的影响,并以此复合纤维作为电子传输介质构筑葡萄糖氧化酶(GOx)生物传感器。研究结果显示,较低的R容易产生较厚的金壳,较高的R值有利于得到厚度较薄且均匀的致密的金壳。电化学实验表明生物传感器具有优良的电化学特性和灵敏的响应性,在C-V曲线出现了对称清晰的氧化还原峰,峰电流超过0.10 mA,证明此核壳复合纤维可充当电子媒介体在生物杂化系统中得到广泛应用。
Nano-scale polymer fibers have high surface volume ration and excellent mechanical property, so they can be exploited for the applications of drug delivery or target release, tissue engineering, surface modification of insert and so on. Electrospinning is currently the only versatile method of fabricating continuous fibers with diameters down to a few nanometers. The method can be applied to synthetic and natural polymers, polymer alloys, and polymers loaded with chromophores, nanoparticles, or active agents, as well as to metals and ceramics. If the electrospun fibers were used as carrier matrix and chemically modified, they can be endowed with different functions, various nano-structures, tailorable morphology and excellent property, which can be applied to the fields as diverse as optoelectronics, sensor technology, catalysis, filtration, and medicine or medical care. This dissertation paid attention to the advantages of high aspect ratio, high surface volume ration, talorable morphology and easy functionalization ascribed to electrospun fibers, and synthesized mesoporous silica nanofibers via electrospinning. These fibers were then used as template and followed by chemical modification so as to combine with nano particles or biomolecules, which showed excellent electrochemical activity and biocompatibility. Main completed researches are shown as follows:
     (1) Mesoporous silica nanofibers were synthesized by a facile combination of electrospinning technique and sol-gel method. Tetraethyl orthosilicate, polyvinylpyrrolidone (PVP), triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer Pluronic P123 were the components of sol for the production of silica fibers. Heat removal of structure-directing agent P123 and excipient PVP in the hybrid fibers at high temperatures resulted in mesoporous morphology. The effect of pH value, silica water ratio, PVP molecular weight, aging temperature and time, stirring and time point of PVP addition on electrospining precess were investigated. Simultaneously, the effect of evaporation induced self-assembly (EISA) on the ordered assemble of P123 template was also investigated, and the influencing parameters on electrospinning were optimized. Experiments showed that silica fibers with uniform size and integrated morphology were prepared on the optimal electrospun conditions of 10 kV driving voltage and 20 cm receiving distance. The silical fibers have bimodal size distribution, and the average pore diameter, surface area and pore volume are 3.70 nm,2988.70 m2/g and 4.40 cm3/g respectively. Changing post treatment process, after the as-electrospun fibers were aged in hot vapor and extracted in H2O2 the silica-sustained PVP hybrid fibers were successfully synthesized. These fibers have narrow pore size distribution, and the average pore diameter, surface area and pore volume are 14.98 nm,32.07 m2/g and 0.12 cm3/g respectively.
     (2) Novel silver nanoparticles doped silica fibers with ribbon morphology were synthesized by in situ adding silver nitrate to electrospun sol followed by thermal decomposition of siver and protective reducing mechanism of PVP. The composite nanoribbons present the width of approximately 10μm The content and size of silver nanoparticles encapsulated in ribbons can be readily controlled by varying the concentration of silver nitrate and thermal treatment conditions. Average size of silver particles is 31.50 nm. The silver nanoparticles in the ribbons exhibit good catalytic activity on the reduction of methylene blue dye with NaBH4 as a reducing agent, which is given by the ultra-high surface of the ribbons and their very small thickness. After loading glucose oxidase (GOx) and cytochrome C (Cyt C), the Ag-doped silica ribbons were used to fabricate GOx and Cyt C amperometric biosensors. Electrochemical results show that the hybrid ribbons facilitate electron transfer from active center of enzyme to electrode surface.
     (3) Mesoporous silica fibers were used as templates for the modification of gold nanoparticles via layer by layer self-assemble method (LbL), and then the gold-seeded silica fibers were further coated by continuous and uniform gold shells via solution-phase reduction of an appropriate metal ion in PVP or K2CO3 solution. The thickness and morphology of gold shell could be tailored by the molar ration of repeating units of PVP to gold ions (R), operation process and growth time. Experimental results show that the low R tend to form the thick gold layer with sharp tips, whereas high R favor obtaining the thin and uniform Au shell. The SiO2@Au fiber hybrid nanostructures are further used as substrates for fabrication of GOx biosensor, which exhibites excellent bio-electrochemical activity with high sensitivity and rapid response. These hybrid nanostructures are, therefore, regarded as molecule wires for potential application in highly sensitive chemical or biological sensors.
引文
[1]Boudriot U, Dersch R, Greiner A, Wendorff J H. Electrospinning approaches toward scaffold engineering-a brief overview [J]. Artif. Organs.2006,30:785-792.
    [2]Katti D S, Robinson K W, Ko F K, Laurencin C T. Bioresorbable nanofiber based systems for wound healing and drug delivery:optimization of fabrication parameters [J]. J. Biomed. Mater. Res. Part B.2004,70:286-296.
    [3]Xie J, Wang C H. Electrespun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro [J]. Pharm. Res.2006,23:1817-1826.
    [4]Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fiber [J]. Angew. Chem. Int. Ed.2007,46:2-36.
    [5]Bose G M. Recherches sur la cause et sur la veritable theorie de l'electricite. Wittenberg,1745.
    [6]Rayleigh L. Philos. Mag.1882,14:184-186.
    [7]Cooley J F. Apparatus for electrically dispensing fluids [P].1902, USP:692,631.
    [8]Morton W J. Method of dispersing fluids [P].1902, USP:705,691.
    [9]Cooley J F.1903, USP:745,276.
    [10]Hagiwaba K, Oji-Machi O. Ku K.1929, Jpn:1,699,615.
    [11]Simm W, Gosling K. Bonart R. Falkai B V.1972, GB:1346231.
    [12]Doshi J, Srinivasan G, Reneker D H. A novel electrospinning process [J]. Polym. News. 1995,20:206-207.
    [13]Taylor G. Disintegration of water drops in electric field [J]. Proc. R. Soc. London. 1964,A280:383-397.
    [14]Reznik S N, Yarin A L, Theron A, Zussman E. Coaxial liquid-liquid flows in tubes with limited length [J]. J. Fluid Mech.2004,516:349-377.
    [15]Cloupeau M, Prunet-Foch B. Electrostatic spraying of liquids in cone-jet mode [J]. J. Electrost.1989,22(2):135-159.
    [16]Yarin A L, Koombhongse S, Reneker D H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers [J]. J. Appl. Phys.2001,90:4836-4846.
    [17]Reneker D H, Yarin A L, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning [J]. J. Appl. Phys.2000,87: 4531-4547.
    [18]Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning of
    nanofibers [J]. J. Appl. Phys.2001,89:3018-3026.
    [19]Hohman M M, Shin M, Rutledge G, Brenner M P. Electrospinning and electrically forced jets. I. Stability theory [J]. Phys. Fluids.2001,13:2201-2220.
    [20]Hohman M M, Shin M, Rutledge G, Brenner M P. Electrospinning and electrically forced jets. Ⅱ. Applications [J]. Phys. Fluids.2001,13:2221-2236.
    [21]Rayleigh L. On the instability of a cylinder of viscous liquid under capillary force [J]. Philos. Mag.1892,34:145-155.
    [22]Tomotika S. On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid [J]. Proc. R. Soc. London.1935, A150:322-337.
    [23]Rumscheidt F D, Mason S G. Break-up of stationary liquid threads [J]. J. Colloid Sci. 1962,17:260-269.
    [24]Pakula T, Grebrowicz J, Kryszewski M. The kinetics of spontaneous changes in the phase structure of molten two-component polymer systems [J]. Polym. Bull.1980, 2:799-804.
    [25]Reneker D H, Kataphinan W, Theron A, Zussman E, Yarin A L. Nanofiber garland of polycaprolactone by electrospinning [J]. Polymer.2002,43:6785-6794.
    [26]Ziabicki A, Kawai H. High-speed fiber spinning:science and engineering Aspects [B]. 1985, Wiley, New York.
    [27]Haghi A K, Akbari M. Trends in electrospinning of natural nanofibers [J]. Phys. Stat. Sol. (a).2007,204(6):1830-1834.
    [28]Yao L, Haas T W, Guiseppi-Elie A, Bowlin G W L, Simpson D G, Wnek G E. Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers [J]. Chem. Mater.2003,15:1860-1864.
    [29]Jung Y H, Kim H Y, Lee D R, Park S Y, Khil M S. Characterization of PVOH nonwoven mats prepared from surfactant-polymer system via electrospinning [J]. Macromol. Res.2005,13:385-390.
    [30]Teo W E, Ramakrishna S. A reviewon electrospinning design and nanofibre assemblies [J]. Nanotechnology.2006,17:R89-R106.
    [31]赵一阳,王海鹰,李响,杨洋,杨敏,王策.静电纺丝法制备硫酸化的二氧化锆/二氧化硅复合纤维[J].高等学校化学学报.2007,28(2):382-384.
    [32]庞雪蕾.不同形貌介孔二氧化硅的可控制备与表征[J].感光科学与光化学.2004,22(5):397.
    [33]王升高,汪建华,倪棋梁.复合模板剂合成介孔二氧化硅[J].武汉化工学院学报.2003,25(1):58-60.
    [34]Kresge, C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature.1992, 359:710-712.
    [35]Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc.1992,114(27):10834-10843.
    [36]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev.1997,97:2373-2419.
    [37]Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science.1998,279:548-552.
    [38]Ying J Y, Mehnert C P, Wong M S. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew. Chem. Int. Ed.1999, 38(1-2):56-77.
    [39]Schuth F. Non-siliceous mesostructured and mesoporous materials [J]. Chem. Mater. 2001,13:3184-3195.
    [40]Chen C Y, Xiao S Q, Davis M E. Studies on ordered mesoporous materials III. Comparison of MCM-41 to mesoporous materials derived from kanemite [J]. Microporous Mater.1995,4:1-20.
    [41]Yuan Z Y, Zhou W Z. A novel morphology of mesoporous molecular sieve MCM-41 [J]. Chem. Phys. Lett.2001,333:427-431.
    [42]Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker S A, Zasadzinski J A, Glinka C, Nicol J, Margolese D, Stucky G D, Chmelka B F. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science.1995,267: 1138-1143.
    [43]Firouzi A, Atef F, Oertli A G, Stucky G D, Chmelka B F. Alkaline lyotropic silicate-surfactant liquid crystals [J]. J. Am. Chem. Soc.1997,119(15):3596-3610.
    [44]Epping J D, Chmelka B F. Nucleation and growth of zeolites and inorganic mesoporous solids:Molecular insights from magnetic resonance spectroscopy [J]. Curr. Opin. Colloid Interface Sci.2006,11:81-117.
    [45]Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker S A, Zasadinsky J A, Glinka C, Nicol J, Margolesse D, Stuky G D, Chmelka B F. Cooperative organization of inorganic-surfactant and biomimetic assembles [J]. Science.1995,267:1138-1143.
    [46]Kresge C T, Lenodowicz M E, Roth W J, Vartull J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature.1992, 359:710-712.
    [47]Beck J S, Vartuli J C, Roth W J, Leonowica M E, Kresge C T, Schmitt K D, Chu C T, Olson D h, Sheppard E W, Mccullen S B, Higgins J B, Schlender J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc.1992,114:10834-10843.
    [48]Vartuli J C, Schmit K D, Kresge T, Reth W J, Leonowica M E, McCullen S B, Herllring S D, Beck I S, Schlenker I L, Olson D H, Snepped E W. Effect of surfactant/silica molecular ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications [J]. Chem. Mater.1994,6:2317-2326.
    [49]Monnier A, Scxhuth F, Huo Q, KumarD, Margolesse D, Maxwell R S, Stucky G D, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostruture. Science.1993, 261:1299-1303.
    [50]Chen C Y, Burkeet S L, Li H X, Davis M E. Studies on mesoporous materials II. Synthesis mechanism of MCM-41 [J]. Micropor. Mater.1993,2:27-34.
    [51]Huo Q, Margolese D I, Ciesla U. Generalized synthesis of periodic surfactant/inorganic composite materials [J]. Nature.1994,368:317-321.
    [52]Zhang W, Pauly T R, Pinnavaia T J. Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (SoIo) assembly pathway [J]. Chem. Mater.1997,9:2491-2498.
    [53]Che S, Garcia-Bennett A E, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T. Mesoporous silica of novel structures with periodic modulations synthesized by anionic surfactant templating route [J]. Nat. Mater.2003,2:801-805.
    [54]Zhao Y Y, Wang H Y, Lu X F, Li X, Yang Y, Wang C. Fabrication of refining mesoporous silica nanofibers via electrospinning [J]. Mater. Lett.62(1):143-146.
    [55]Madhugiri S, Zhou W L, Ferraris J P, Kenneth J B Jr. Electrospun mesoporous molecular sieve fibers [J]. Microporous Mesoporous Mater.63(1-3):75-84.
    [56]Srinivasan D, Rao R, Zribi A. Synthesis of novel micro-and mesoporous zeolite nanostructures using electrospinning techniques [J]. J. Electro. Mater.2006,35(3): 504-509.
    [57]Zhan S H, Chen D R, Jiao X L. Co-electrospun SiO2 hollow nanostructured fibers with
    hierarchical walls [J]. J. Colloid Interface Sci.2008,318:331-336.
    [58]冯乙巳,张立德.介孔二氧化硅干凝胶和气凝胶纳米复合材料的研究进展[J].2003,24(6):619-625.
    [59]Yoshida M, Lal M. TiO2 nano-particle-dispersed polyimide composite optical wave guide materials through reverse micelles [J]. J. Mater. Sci.1997,32:4047-4051.
    [60]Nagai T, Hwang H J, Yasuoka M, Sando M, Niihara K. Preparation of a barium titanate-dispersed-magnesia nanocomposite [J]. J. Am. Ceram. Soc.1998,81(2): 425-428.
    [61]Ayers M R, Hunt A J, Hunt A J. Preparation of nanocomposite materials containing WS2,δ-WN, Fe3O4 or Fe9S10 in a silica aerogel host [J]. J. Mater. Sci.1996,31: 6251-6257.
    [62]Mo C M, Li Y H, Liu Y S. Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica areogels [J]. J. App. Phys.1997,83(8):4389-4391.
    [63]Matz W, Pham M T, Mucklich A. Nanometre-sized silver halides entrapped in SiO2 matrices [J]. J. Mater. Sci.1998,33:155-159.
    [64]Sakamoto Y, Togashi N, Terasaki O, Ohsuna T, Okamoto Y, Hiraga K. MoS2 clusters in the spaces of FAU zeolite [J]. Mater. Sci. Engi.1996, A 217/218:147-150.
    [65]Shikanai M, Sakairi M, Takahashi H, Seo M, Takahiro K, Nagata S, Yamaguchi S. Formation of Al/(Ti, Nb, Ta)-composite oxide films on aluminum by pore filling [J]. J. Electrochem. Soc.1997,144(8):2756-2766.
    [66]Oh S T, Sando M, Sando M. Fabrication of nano-sized Ni-Co alloy-dispersed alumina nanocomposite [J]. J. Sci. Mater. Lett.1998,17:1925-1927.
    [67]Asefa T, Lennox R B. Synthesis of gold nanoparticles via electroless deposition in SBA-15 [J]. Chem. Mater.2005,17(10):2481-2483.
    [68]Yang C M, Liu P H, Ho Y F, Chiu C Y, Chao K J. Highly dispersed metal nanoparticles in functionalized SBA-15 [J]. Chem. Mater.2003,15(1):275-280.
    [69]张立德,牟季美.纳米结构自组装和分子自组装体系[J].物理.1999,28(1):22-26.
    [70]Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host [J]. Science.1994,264:1757-1758.
    [71]Rao S, Karaguleff C, Gabel A, Fortenbery R, Seaton C, Stegeman G. Ultrarast carrier and grating lifetimes in semiconductor-doped glasses [J]. Appl. Phys. Lett.1985,46: 801-802.
    [72]Yasuda T, Komiyama H, Tanaka K. Gas-Sensitive Electrical Conduction and its Mechanism in a Ag/Insulator System with Locally Discontinuous Structure [J]. J. Appl.
    Phys.1987,26:818-824.
    [73]Cai W, Zhang Y, Jia J, Zhang L. Semiconducting optical properties of silver/silica mesoporous composite [J]. Appl. Phys. Lett.1998,73(19):2709-2711.
    [74]Cai W, Tan M, Wang G, Zhang L. Reversible transition between transparency and opacity for the porous silica host dispersed with silver nanometer particles within its pores [J]. Appl. Phys. Lett.1996,69:2980-2982.
    [75]Cai W, Zhang L. Ambience-induced alternating change of optical absorption for the porous silica host loaded with silver nanometer particles [J]. Appl. Phys. A, Mater. Sci. Process.1998,66:419-422.
    [76]Mackenzie J D. Application of the sol-gel process [J]. J. Non-Cryst. Solids.1988,100: 162-168.
    [77]Shi Y, Wan Y, Zhai Y, Liu R, Meng Y, Tu B, Zhao D. Ordered mesoporous SiOC and SiCN ceramics from atmosphere-assisted in situ transformation [J]. Chem. Mater.2007, 19(7):1761-1771.
    [78]Zhang L, Papaefthymiou G C, Ziolo R F,Ying J Y. Novel gamma-Fe203/Si02 magnetic nanocomposites via sol-gel matrix-mediated synthesis [J]. Nanostruct. Mater.1997,9: 185-188.
    [79]Zhang Z, Dai S, Blom D A, Shen J. Synthesis of ordered metallica nanowires inside ordered mesoporous materials through eledtroless deposition [J]. Chem. Mater.2002, 14:965-968.
    [80]Hartmann M, Bischof C, Luan Z, Kevan L. Preparation and characterization of ruthenium clusters on mesoporous supports [J]. Microporous Mesoporous Mater.2001, 44-45:385-394.
    [81]Zhang L, Papaefthymiou G C, Ying J Y. Synthesis and properties of y-Fe2O3 nanoclusters within mesoporous aluminosilicate materials [J]. J. Phys. Chem. B.2001, 105:7414-7423.
    [82](a) Luan Z, Kevan L. Electron spin resonance and difuse reflectance ultra violet-visible spectroscopies of vanadium immobilized at surface titanium centers of titanosilicate mesoporous Ti MCM-41 molecular sieves [J]. J. Phys. Chem. B.1997,101:2020-2027; (b) Luan Z, Meloni P A, Czernuszewicz R S, Kevan L. Raman spectroscopy of vanadium oxide speciesim mobilized at surface titanium centers of mesoporous titanosilicate Ti MCM-41 molecular sieves [J]. J. Phys. Chem. B.1997,101: 9046-9051.
    [83]Zheng S, Gao L, Zhang Q, Guo J. Synthesis, characterization and photo catalytic
    properties of titania-modified mesoporous silicate MCM-41 [J]. J. Mater. Chem.2000, 10:723-727.
    [84]Zheng S, Gao L, Zhang Q, Zhang W, Guo J. Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors [J]. J. Mater. Chem.2001,11:578-583.
    [85]Abe T, Tachibana Y, Uemastsu T, Iwamoto M. Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate [J]. J. Chem. Soc, Chem. Commun.1995: 1617-1618.
    [86]Poppl A, Baglioni P, Kevan L. Electron spin resonance and electron spin echo modulation studies of the incorporation of macrocyclic-complexed cupricions into siliceous MCM-41 [J]. J. Phys. Chem.1995,99:14156-14160.
    [87]Bohlmann W, Schandert K, Poppl A, Semmelhack H C. Synthesis and electron spin resonance studies of MCM-41 doped with copper pyridine complexes [J]. Zeolites. 1997,19:297-304.
    [88]Eliseev A A, Napolskii K S, Lukashin A V, Yuri Y D, Tretyakov D. Ordered iron nanowires in the mesoporous silica matrix [J]. J. Magn. Magn. Mater.2004,272-276: 1609-1611.
    [89]Ang H G, Chan K S, Chuah G K, Jaenicke S, Neo S K. Thermal reactions of Mo(CO)6 on metal-oxide surfaces [J]. J. Chem. Soc., Dalton Trans.1995,23:3753-3758.
    [90]Suvanto S, Hukkamaki J, Pakkanen T T, Pakkanen T A. High-cobalt-loaded MCM-41 via the gas-phase method [J]. Langmuir.2000,16:4109-4115.
    [91]Huang M H, Choudrey A, Yang P. Ag Nanowire Formation within Mesoporous Silica [J]. J. Chem. Soc., Chem. Commun.2000:1063-1064.
    [92]Lee K B, Lee S M, Cheon J. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration [J]. Adv Mater.2001,13: 517-520.
    [93]Shin H J, Ryoo R, LiuZ, Terasaki O. Template synthesis of asymmetrically mesostructured platinum networks [J]. J. Am. Chem. Soc.2001,123:1246-1247.
    [94]Gu J, Shi, You G, Xiong L, Qian S, Hua Z, Chen H. Incorporation of highly dispersed gold nanoparticles into the pore channels of mesoporous silica thin films and their ultrafast nonlinear optical response [J]. Adv. Mater.2005,17:557-560.
    [95]Wang D, Zhou W L, McCaughy B F, Hampsey J E, Ji X, Jiang Y B, Xu H, Tang J, Schmehl R H, O'Connor C, Brinker C J, Lu Y. Electrodeposition of Metallic Nanowire Thin Films Using Mesoporous Silica Templates [J]. Adv Mater.2003,15:130-133.
    [96]Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. J. Chem. Soc., Chem. Commun.1993:680-682.
    [97]Inagaki S, Guan S, Fukushima Y, Ohsuna T O. Novel mesoporous materials with uniform distribution of organic and inorganic oxide in their frameworks [J]. J. Am. Chem. Soc.1999,121:9611-9614.
    [98]Froba M, Kohn R, Bouffaud G. Fe2O3 nanoparticles within mesoporous MCM-48 silica:in situ formation and characterization [J]. Chem. Mater.1999,11:2858-2865.
    [99]Tanyal, T, Daniela P, Ivan M, Holger H, Michael F, Momtchil D, Christo M. Iron modified mesoporous carbon and silica catalysts for methanol decomposition [J]. React. Kinet. Catal. Lett.2004,83(2):299-305.
    [100]Grieken van R, Aguado J. Synthesis of size-controlled silica-supported TiO2 photocatalysts. J. Photochem. Photobiol., A.2002,148:315-322.
    [101]Raviehandra S M, Takafumi S, Kiyotaka A, Toshihiro K, Yasuhiro I. Characterization of rhodium oxide nanoparticles in MCM-41 and their catalytic performances for NO-CO reactions in excess O2 [J]. Appl. catal., A.2002,228:305-314.
    [102]Selvaraj M, Pandrangan A, Seshadri K S. Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and A1[J]. Appl. Catal., A.2003,242:347-364.
    [103]Montea A F G, Dantasb N O, Moraisa P C, Rabeloc D. Synthesis and characterisation of CdS nanoparticles in mesoporous copolymer template [J]. Braz. J. Phys.2006,36: 427-429.
    [104]Wang S, Choi D G., Yang S M. Incorporation of CdS Nanoparticles Inside Ordered Mesoporous Silica SBA-15 via Ion Exchange [J]. Adv. Mater.2002,14:1311-1314.
    [105]Fukuokan A, Sakamoto Y, Guan S, Inagaki S, Sugimoto N, Fukushima Y, Hirahara K, Iijima S, Ichikawa M. Novel templating synthesis of necklace-shaped mono-and bimetallic nanowires in hybrid organic-inorganic mesoporous material [J]. J. Am. Chem. Soc.2001,123:3373-3374.
    [106]Parala H, Winkler H, Kolbe M, Wohlfart A, Fischer R A, Schmechel R, Seggern H. Confinement of CdSe nanoparticles inside MCM-41 [J]. Adv. Mater.2000,12(14): 1050-1055.
    [107]Winkler H, Birkner A, Hagen V, Wolf I, Schmechel R, von. Seggern H, Fischer R A. Quantum-confined gallium nitride in MCM-41 [J].Adv Mater.1999,11:1444-1448.
    [108]Schweyer-Tihay F, Braunstein P, Estournes C, Guille J L, Lebeau B, Paillaud J L, Richard-Plouet M, Rose J. Synthesis and characterization of supported Co2P nanoparticles by grafting of molecular clusters into mesoporous silica matrixes [J]. Chem. Mater.2003,15(1):57-62.
    [109]Turner E A, Huang Y, Corrigan J F. Synthetic Routes to the Encapsulation of II-VI Semiconductors in Mesoporous Hosts [J]. Eur. J. Inorg. Chem.2005,22:4465-4478.
    [110]Hampsey J E, Arsenault S, Hu Q, Lu Y. One-step synthesis of mesoporous metal-SiO2 particles by an aerosol-assisted self-assembly process [J]. Chem. Mater.2005,17(9): 2475-2480.
    [111]Li Y, Zhao C F, Xin H, Fan F, Zhang J, Magusin P C M M, Hensen E J M, van Santen R A, Yang Q, Li J. Effect of aluminum on the nature of the iron species in Fe-SBA-15 [J]. J. Phys. Chem. B.2006,110:26114-26121.
    [112]Grudzien R M, Grabicka B E, Knobloch D J, Jaroniec M. Co-condensation synthesis and adsorption properties of cage-like mesoporous silicas with imidazole groups [J]. Colloids Surf., A.2006,291:139-147.
    [113]Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C H, Park J G, Kim J, Hyeon T. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals [J]. J. Am. Chem. Soc.2006,128:688-689.
    [114]Sathe T R, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconductor quantum dots and Iron oxide nanocrystals:dual-function microcarriers for optical encoding and magnetic separation [J]. Anal. Chem.2006,78:5627-5632.
    [115]Insin N, Tracy J B, Lee H, Zimmer J P, Westervelt R M, Bawendi M G. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres [J]. ACS Nano. 2008,2(2):197-202.
    [116]Meng Y, Chen D, Jiao X. Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites [J]. J. Phys. Chem. B.2006,110: 15212-15217.
    [117]Lam K F, Yeung K L, McKay G. An investigation of gold adsorption from a binary mixture with selective mesoporous silica adsorbents [J]. J. Phys. Chem. B.2006,110: 2187-2194.
    [118]Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D Y. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew. Chem. Int. Ed.2003,42:3146-3150.
    [119]Sawicki R, Mercier L. Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media [J]. Environ. Sci. Technol.2006,40: 1978-1983.
    [120]Arruebo M, Galan M, Navascues N, Tellez C, Marquina C, Ibarra M R, Santamaria J. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery [J]. Chem. Mater.2006,18:1911-1919.
    [121]Yi D K, Lee S S, Papaefthymiou G C, Ying J Y. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites [J]. Chem. Mater.2006,18(3):614-619.
    [122]Dickinson C, Zhou W, Hodgkins R P, Shi Y, Zhao D, He H. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica [J]. Chem. Mater.2006,18(13):3088-3095.
    [123]Guo X J, Yang C M, Liu P H, Cheng M H, Chao K J. Formation and growth of platinum nanostructures in cubic mesoporous silica [J]. Cryst. Growth Des.2005,5(1): 33-36.
    [124]Shan Y, Gao L, Zheng S. A facile approach to load CdSe nanocrystallites into mesoporous SBA-15 [J]. Mater. Chem. Phys.2004,88:192-196.
    [125]Lin K J, Chen L J, Muppa R P, Cheng C Y. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite:Pt/PVP@MCM-41 [J]. Adv. Mater.2004, 16:1845-1849.
    [126]Yosef M, Schaper A K, Froba M, Schlecht S. Stabilization of the thermodynamically favored polymorph of cadmium chalcogenide nanoparticles CdX (X= S, Se, Te) in the polar mesopores of SBA-15 silica [J]. Inorg. Chem.2005,44:5890-5896.
    [127]Cheng Q, Pavlinek V, Li C, Lengalova A, He Y, Saha P. Synthesis and characterization of new mesoporous material with conducting polypyrrole confined in mesoporous silica [J]. Mater. Chem. Phys.2006,98:504-508.
    [128]Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles [J]. Langmuir.1996,12,4329-4335.
    [129]Qi Y L, Chen M, Liang S, Yang W, Zhao J. Micro-patterns of Au@SiO2 core-shell nanoparticles formed by electrostatic interactions [J]. Appl. Surf. Sci.2008,254: 1684-1690.
    [130]Shi Y L, Asefa T. Tailored core-shell-shell nanostructures:sandwiching gold nanoparticles between silica cores and tunable silica shells [J]. Langmuir.2007,23, 9455-9462.
    [131]Xu J, Perry C C.A novel approach to Au@SiO2 core-shell spheres [J]. J. Non-Cryst. Solids.2007,353(11-12):1212-1215.
    [132]Yang Y, Hori M, Hayakawa T, Nogami M. Self-assembled 3-dimensional arrays of
    Au@SiO2 core-shell nanoparticles for enhanced optical nonlinearities [J]. Surf. Sci. 2005,579:215-224.
    [133]Tunc I, Suzer S, Correa-Duarte M A, Liz-Marzan L M. XPS characterization of Au (Core)/SiO2 (Shell) Nanoparticles [J]. J. Phys. Chem. B.2005,109 (16):7597-7600.
    [134]Xue J G, Wang C G, Ma Z F. A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles [J]. Mater. Chem. Phys.2007,105:419-425.
    [135]Kang S M, Lee K B, Kim D J, Choi I S. Biomimetic approach to the formation of gold nanoparticle/silica core/shell structures and subsequent bioconjugation [J]. Nanotechnolog.2006,17:4719-4725.
    [136]Tunc I, Demirok U K, Suzer S, Correa-Duatre M A, Liz-Marzan L M. Charging/discharging of Au (Core)/Silica (Shell) nanoparticles as revealed by XPS [J]. J. Phys. Chem. B.2005,109:24182-24184.
    [137]Qu Y Q, Porter R, Shan F, Carter J D, Guo T. Synthesis of Tubular Gold and Silver Nanoshells Nanowire Core Templates [J]. Langmuir.2006,22(14):6367-6374.
    [138]Shevchenko E V, Bodnarchuk M I, Kovalenko M V, Talapin D V, Smith R K, Aloni S, Heiss W, Alivisatos A Paul. Gold/iron oxide core/hollow-shell nanoparticles [J]. Adv. Mater.2008,20:4323-4329.
    [139]Liang C H, Wang C C, Lin Y C, Chen C H, Wong C H, Wu C Y. Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions [J]. Anal. Chem.2009,81(18):7750-7756.
    [140]Nash M A, Lai J J, Hoffman A S, Yager P, Stayton P S. "Smart" diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis [J]. Nano Lett.2010,10: 85-91.
    [141]Cheng F, Zhang K k, Chen D Y, Zhu L, Jiang M. Self-sssembly of heteroarms core-shell polymeric nanoparticles (HCPNs) and templated synthesis of gold nanoparticles within HCPNs and the superparticles [J]. Macromolecules.2009,42(18): 7108-7113.
    [142]Han J, Liu Y, Guo R. A simple one-step chemical route to gold/polymer core/shell composites and polymer hollow spheres [J]. J. Appl. Polym. Sci.2009,112: 1244-1249.
    [143]Fang C L, Qian K, Zhu J H, Wang S B, Lv X X, Yu S H. Monodisperse a-Fe2O3@SiO2@Au core/shell nanocomposite spheres:synthesis, characterization and properties [J]. Nanotechnology.2008,19:125601.
    [144]Min Y L, Wan Y, Liu R, Yu S H. Novel hollow sub-microspheres with movable Au
    nanoparticles and excessive Pt nanoparticles in core and silica as shell [J]. Mater. Chem. Phys.2008,111:364-367.
    [145]Liu G Y, Ji H F, Yang X L, Wang Y M. Synthesis of a Au/silica/polymer trilayer composite and the corresponding hollow polymer microsphere with a movable Au core [J]. Langmuir.2008,24(3):1019-1025.
    [146]Decher G, Hong J D. Buildup of ultrathin multiplayer films by a self-assembly process: consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Makomol. Chem. Macromol. Symp.1991,46:321-324.
    [147]Lvov Y, Decher G, Mohwald H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine) [J]. Langmuir.1993,9:481-486.
    [148]Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites [J]. Science.1997,277:1232-1237.
    [149]Zhai Y M, Zhai J F, Wang Y L, Guo S J, Ren W, Dong S J. Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced raman scattering [J]. J. Phys. Chem. C.2009,113(17):7009-7014.
    [150]Salgueirino-Maceira V, Correa-Duarte M A, Farle M, Lopez-Quintela A, Sieradzki K, Diaz R. Bifunctional gold-coated magnetic silica spheres [J]. Chem. Mater.2006,18, 2701-1706.
    [151]Laurell T. Biocatalytic Porous Silicaon Microreactors. Sensors update:sensors technology, applications, markets [J].2002,10:4-31.
    [152]Setzu S, Salis S, Demontis V, Salis A, Monduzzi M, Mula G. Silicon-based potentiometric biosensor for triglycerides [J]. Phys. Stat. Sol. (a).2007,4(5): 1434-1438.
    [153]Dancil K S, Greiner D P, Sailor M J. Porous silicon optical biosensor:detection of reversible binding IgG to a protein a-modified surface [J]. J. Am. Chem. Soc.1999, 121(34):7925-7930.
    [154]Lei J, Fan J, Yu C Z, Zhang L Y, Jiang S Y, Tu B, Zhao D Y. Immobilization of enzymes in mesoporous materials:controlling the entrance to nanospace [J]. Microporous Mesoporous Mater.2004,73:121-128.
    [155]Han Y J, Watson J T, Stucky G D, Butler A. Catalytic activity of mesoporous silicate-immobilized chloperoxidase [J]. J. Mol. Catal. B:Enzym.2002,17:1-8.
    [156]Thust M, Schoning M J, Schroth P, Malkoc U, Dicker C I, Steffen A, Kordos P, Luth H. Enzyme immobilization on planar and porous silicon substrates for biosensor
    applications [J]. J. Mol. Catal. B:Enzym.1999,7:77-83.
    [157]Mathew F P, Alocilja E C. Porous silicon-based biosensor for pathogen detection [J]. Biosens. Bioelectron.2005,20:1656-1661.
    [158]Yiu H H P, Wright P A, Botting N P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces [J]. J. Mol. Catal. B:Enzym. 2001,15:81-92.
    [159]Zhao D Y. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces [J]. Chem. Mater.2000,12:275-279.
    [160]Lei C H, Shin Y S, Liu J, Ackerman E J. Etranpping enzyme in a functionalized nanoporous support [J]. J. Am. Chem. Soc.2002,124(38):11242-11243.
    [161]Diaz J F, Balkus Jr K J. Enzyme immobilization in MCM-41 molecular sieve [J]. J. Mol. Catal. B:Enzym.1996,2:115-126.
    [162]Deere J, Mager E, Wall J G, Hodnett B K. Mechanistic and structural features of protein adsorption onto mesoporous silicates [J]. J. Phys. Chem. B.2002,106(29): 7340-7347.
    [163]Macias M, chacko A, Ferraris J P, Kenneth J B Jr. Electrospun mesoporous metal oxides [J]. Microporous Mesoporous Mater.2005,86:1-13.
    [164]翟国钧,李从举,付中玉,王佩杰,常敏.ZnO微/纳米纤维的静电纺丝及其表征[J].合成纤维工业.2006,29(6):6-8.
    [165]伞振鑫,李从举,李小宁.溶胶/凝胶涂附电纺纳米纤维制备ZrO2纳米管[J].无机化学学报.2007,23(5):879-882.
    [166]翟国钧,王佩杰,李从举,付中玉,常敏.静电纺丝法制备微孔Mn2O3微/纳米纤维及纤维结构表征[J].北京服装学院学报.2006,26(1):8-11.
    [167]Viswanathamurthi P, Bhattarai N, Kim H Y, Lee D R. Vanadium pentoxide nanofibers by electrospinning [J]. Scripta Mater.2003,49:577-581.
    [168]Yang X H, Shao C L, Liu Y C. Fabrication of Cr2O3/Al2O3 composite nanofibersby electrospinning [J]. J. Mater. Sci.2007,42:8470-8472.
    [169]Pan C, Sun C, Wei H M, Han G Z, Zhang J Z, Fujishima A, Gu Z Z. Bio-inspired titanium dioxide film with extremely stable super-amphilicity [J]. Mater. Res. Bull. 2007,42:1395-1401.
    [170]Madhugiri S, Sun B, Smirniotis P G, Ferraris J P, Kenneth J B Jr. Electrospun mesoporous titanium dioxide fibers [J]. Microporous Mesoporous Mater.2004,69: 77-83.
    [171]Zhan S H, Chen D R, Jiao X L, Song Y. Mesoporous TiO2/SiO2 composite nanofibers
    with selective photocatalytic properties [J]. R. Soc. Chem.2007,2043-2045.
    [172]Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers [J]. J. Colloid Interface Sci.2009,333:242-248.
    [173]Liu L, Zhang T, Li S C, Wang L Y, Tian Y X. Preparation, characterization, and gas-sensing properties of Pd-doped In2O3 nanofibers [J]. Mate. Lett.2009,63: 1975-1977.
    [174]Wang Z X, Liu L. Synthesis and ethanol sensing properties of Fe-doped SnO2 nanofibers [J]. Mater. Lett.2009,63:917-919.
    [175]Ji T H, Yang F, Lv Y Y, Zhou J Y, Sun J Y. Synthesis and visible-light photocatalytic activity of Bi-doped TiO2 nanobelts [J]. Mater. Lett.2009,63:2044-2046.
    [176]Wang J. X, Zou B, Ruan S P, Zhao J, Chen Q K, Wu F Q. HCHO sensing properties of Ag-doped In2O3 nanofibers synthesized by electrospinning [J]. Mater. Lett.2009, 63:1750-1753.
    [177]Liu L, Zhang T, Wang L Y, Li S C. Improved ethanol sensing properties of Cu-doped SnO2 nanofibers [J]. Mater. Lett.2009,63:2041-2043.
    [178]Zhan S H, Chen D R, Jiao X L, Tao C H. Long TiO2 Hollow Fibers with Mesoporous Walls:Sol-Gel Combined Electrospun Fabrication and Photocatalytic Properties [J]. J. Phys. Chem. B.2006,111(23):11199-11204.
    [179]McCann J T, Li D, Xia Y N. Electrospinning of nanofibers with core-sheath, hollow, or porous structures [J]. J. Mater. Chem.2005,15:735-738.
    [180]Chen W S, Huang D A, Chen H C, Shie T Y, Hsieh C H, Liao J D, Kuo C S. Fabrication of ppolycrystalline ZnO nanotubes from the electrospinning of Zn2+/Poly(acrylic acid) [J]. Cryst. Growth Des.20094,9(9):4070-4077.
    [181]Ye X Y, Liu Z M, Wang Z G, Huang X J, Xu Z K. Preparation and characterization of magnetic nanofibrous composite membranes with catalytic activity [J]. Mater. Lett. 2009,63:1810-1813.
    [182]Im J S, Kim M I, Lee Y S. Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation [J]. Mater. Lett.2008,62:3652-3655.
    [183]Gong J, Shao C L, Pan Y, Gao F M, Qu L Y. Preparation, characterization and swelling behavior of H3PW12O40/poly(vinyl alcohol) fiber aggregates produced by an electrospinning method [J]. Mater. Chem. Phys.2004,86:156-160.
    [184]Faridi-Majidi R, Sharifi-Sanjani N. In situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through an electrospinning process [J]. J. Appl. Polym.
    Sci.2007,105:1351-1355.
    [185]冯淑芹,付中玉,李从举,朱金唐.PA6/纳米TiO2复合亚微米级纤维的制备及拉伸性能[J].北京服装学院学报.2006,26(4);18-22.
    [186]李响,赵一阳,卢晓峰,王海鹰,王策.聚乙烯吡咯烷酮/四氧化三铁复合纳米纤维的制备与表征[J].高等学校化学学报.2006,27(10):2002-2004.
    [187]Wang C, Tong Y B, Sun Z Y, Xin Yi, Yan E Y, Huang Z H. Preparation of one-dimensional TiO2 nanoparticles within polymer fiber matrices by lectrospinning [J]. Mater. Lett.2007,61:5125-5128.
    [188]李响,赵一阳,卢晓峰,王海鹰,王策.聚乙烯吡咯烷酮/四氧化三铁复合纳米纤维的制备与表征[J].高等学校化学学报.2006,27(10):2002-2004.
    [189]王海鹰,杨洋,卢晓峰,王策.硫化锌掺锰/聚乙烯醇复合纳米纤维的制备与表征[J].高等学校化学学报.2006,27(9):1785-1787.
    [190]Wang H Y, Lu X F, Zhao Y Y, Wang C. Preparation and characterization of ZnS: Cu/PVA composite nanofibers via electrospinning [J]. Materials Letters.2006,60(2): 2480-2484.
    [191]Lu X F, Zhao Y Y, Wang C, Wei Y. Fabrication of CdS nanorods in PVP fiber matrices by electrospinning [J]. Macromol. Rapid Commun.2005,26:1325-1329.
    [192]Yu Q Z, Shi M M, Deng M, Wang M, Chen H Z. Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning [J]. Mater. Sci. Eng., B. 2008,150:70-76.
    [193]Nair S, Hsiao E, Kim S H. Fabrication of electrically-conducting nonwoven porous mats of polystyrene-polypyrrole core-shell nanofibers via electrospinning and vapor phase polymerization [J]. J. Mater. Chem.2008,18:5155-5161.
    [194]Patel A C, Li S X, Wang C, Zhang W J, Wei Y. Electrospinning of porous silica nanofibers containing silver nanofibers for cataytic applicationgs [J]. Chem. Mater. 2007,19:1231-1238.
    [195]于建香,刘太奇.纳米丝负载钯催化剂的制备及催化烯烃加氢性能研究[J].高分子学报.2007.6(6):514-518.
    [196]Du J S, Yang Q B, Bai J, Wang S G, Zhang C Q, Li Y X. Synthesis of poly (N-vinylpyrrolidone) nanofibers containing gold nanoparticles via electrospinning technique [J]. Chem. Res. Chinese U.2007,23(5):538-540.
    [197]Formo E, Lee E, Campbell D, Xia Y. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications [J]. Nano Lett.2008, 8(2):668-672.
    [198]Jin M, Zhang X T, Nishimoto S, Liu Z Y, Tryk D A, Murakami T, Fujishima A. Large-scale fabrication of Ag nanoparticles in PVP nanofibres and net-like silver nanofibre films by electrospinning [J]. Nanotechnology.2007.18:075605.
    [199]Jin W J, Jeon H J, Kim J H, Youk J H. A study on the preparation of poly(vinyl alcohol) nanofibers containing silver nanoparticles [J]. Syn. Met.2007,157:454-459.
    [200]Qin X H, Yang E L, Li N, Wang S Y. Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution [J]. J. Appl. Polym. Sci.2007,103: 3865-3870.
    [201]Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers:effect of solution conditions on morphology and average fiber diameter [J]. Macromol. Chem. Phys.2004,205:2327-2338.
    [202]Wu X H, Wang L, Yu H, Huang Y. Effect of solvent on morphology of electrospinning ethyl cellulose fibers [J]. J. Appl. Polym. Sci.2005,97:1292-1297.
    [203]Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P. Electrospun cellulose acetate fibers:effect of solvent system on morphology and fiber diameter [J]. Cellulose.2007,14:563-575.
    [204]Morota K, Matsumoto H, Mizukoshi T, Konosu Y, Minagawa M, Tanioka A, Yamagata Y, Inoue K. Poly(ethylene oxide) thin films produced by electrospray deposition: morphology control and additive effects of alcohols on nanostructure [J]. J. Colloid Interface Sci.2004,279:484-492.
    [205]Zhang C X, Yuan X Y, Wu L L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats [J]. Eur. Polym. J.2005,41:423-432.
    [206]Wu Y Q, Clark R L. Controllable porous polymer particles generated by electrospraying [J]. J. Colloid Interface Sci.2007,310:529-535.
    [207]McCann J T, Marquez M, Xia Y N. Highly Porous Fibers by Electrospinning into a Cryogenic Liquid [J]. J. Am. Chem. Soc.2006,128:1436-1437.
    [208]Zmora S, Glicklis R, Cohen S. Tailoring the pore architecture of 3-D alginate scaffolds by controlling the freezing regime during fabrication [J]. Biomaterials.2002,23: 4087-4094.
    [209]You Y, Youk J H, Lee S W, Min B M, Leed S J, Park W H. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers [J]. Mater. Lett.2006,60:757-760.
    [210]Moon S C, Choil J K, Farris R J. Highly porous polyacrylonitrile/polystyrene nanofibers by electrospinning [J]. Fibers Polym.2008,9(3):276-280.
    [211]Pai C L, Boyce M C, Rutledge G C. On the Morphology of Porous and Wrinkled Fibres of Polystyrene Electrospun from Dimethylformamide [J]. Macromolecules. 2009,42:2102-2114.
    [212]Megelski S, Stephens J S, Chase D B, Rabolt J F. Micro-and nanostructured surface morphology on electrospun polymer fibers [J]. Macromolecules.2002,35:8456-8466.
    [213]Kim C, Jeong Y I, Ngoc B T N, Yang K S, Kojima M, Kim Y A, Endo M, Lee J W. Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs [J]. Small.2007,3: 91-95.
    [214]Dayal P, Liu J, Kumar S, Kyu T. Experimental and theoretical investigations of porous structure formation in electrospun fibers [J]. Macromolecules.2007,40(21): 7689-7694.
    [215]Qi Z H, Yu H, Chen Y M, Zhu M F. Highly porous fibers prepared by electrospinning a ternary system of nonsolvent/solvent/poly(L-lactic acid) [J]. Mater. Lett.2009,63: 415-418.
    [216]Zhang Y Z, Feng Y, Huang Z M, Ramakrishna S, Lim C T. Fabrication of porous electrospun nanofibres [J]. Nanotechnology.2006,17:901-908.
    [217]Ma G P, Yang D Z, Nie J. Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning [J]. Polym. Adv. Technol.2009,20:147-150.
    [218]Finne-Wistrand A, Albertsson A C, Kwon O H, Kawazoe N, Chen G P, Kang I K, Hasuda H, Gong J S, Ito Y. Resorbable scaffolds from three different techniques: electrospun fabrics, salt-leaching porous films, and smooth flat surfaces [J]. Macromol. Biosci.2008,8:951-959.
    [219]Kim C, Ngoc B T N, Yang K S, Kim M Y J, Endo M, Yang S C. Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride [J]. Adv. Mater. 2007,19:2341-2346.
    [220]Schreuder-Gibson H L, Gibson P, Senecal K, Sennett M, Walker J, Yeomans W, Ziegler D, Tsai P P. Protective textile materials based on electrospun nanofibers [J]. J. Adv. Mater.2002,34:44-55.
    [221]Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers [J]. Colloids Surf. A.2001,187-188:469-481.
    [222]Tomadakis M M, Sotirchos S V. Effective knudsen diffusivities in structures of randomly overlapping fibers [J]. AIChE J.1991,37:74-86.
    [223]Tomadakis M M, Sotirchos S V. Ordinary and transition regime diffusion in random fiber structures [J]. AIChE J.1993,39:397-412.
    [224]Song X F, Wang Z J, Li Z Y, Wang C. Ultrafine porous carbon fibers for SO2 adsorption via electrospinning of polyacrylonitrile solution [J]. J. Colloid Interface Sci. 2008,327:388-392.
    [225]Stasiak M, Studer A, Greiner A, Wendorff J H. Polymer fibers as carriers for homogeneous catalysts [J]. Eur. J. Inorg. Chem.2007,13:6150-6156.
    [226]Sell S, Barnes C, Smith M, McClure M, Madurantakam P, Grant J, McManus M, Bowlin G. Review extracellular matrix regenerated:tissue engineering via electrospun biomimetic nanofibers [J]. Polym. Int.2007,56:1349-1360.
    [227]Sakai S J, Takagi Y, Yamada Y, Yamaguchi T, Kawakami K. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres [J]. Biomed. Mater.2008,3: 034102.
    [228]Chiu J B, Liu C, Hsiao B S, Chu B, Hadjiargyrou M. Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules [J]. J. Biomed. Mater. Res. A.2007,83:1117-1127.
    [229]Kim J B, Jia H F, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells [J]. Biotechnol.Adv.2006,24:296-308.
    [230]Herricks T E, Kim S H, Kim J B, Li D, Kwak J H, Grate J W, Kim S H, Xia Y N. Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning [J]. J. Mater. Chem.2005,15:3241-3245.
    [231]Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff J H, Greiner A. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings [J]. Biomacromolecules.2005,6: 1484-1488.
    [232]Kenawya E F, Abdel-Hay F I, El-Newehy M H, Wnek G E. Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers [J]. Mater. Science Eng., A. 2007,459:390-396.
    [233]Taepaiboon P, Rungsardthong U, Supaphol P. Effect of cross-linking on properties and release characteristics of sodium salicylate-loaded electrospun poly(vinyl alcohol) fibre mats [J]. Nanotechnology.2007,18:175102.
    [234]Zhang Y Z, Wang X, Feng Y, Li J, Lim C T, Ramakrishna S. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release [J]. Biomacromolecules.2006,7:
    1049-1057.
    [235]Qi H X, Hu P, Xu J, Wang A. Encapsulation of drug reservoirs in fibers by emulsion electrospinning:morphology characterization and preliminary release assessment [J]. Biomacromolecules.2006,7:2327-2330.
    [236]Kang M S, Jin H J. Electrically conducting electrospun silk membranesfabricated by adsorption of carbon nanotubes [J]. Colloid. Polym. Sci.2007,285:1163-1167.
    [237]Chronakis I S, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning:Electrical and morphological properties [J]. Polymer.2006,47: 1597-1603.
    [238]Yang M, Xie T F, Peng L, Zhao Y Y, Wang D J. Fabrication and photoelectric oxygen sensing characteristics of electrospun Co doped ZnO nanofibres[J]. Appl. Phys. A. 2007,89:427-430.
    [239]Yang G C, Gong J, Yang R, Guo H W, Wang Y Z, Liu B F, Dong S J. Modification of electrode surface through electrospinning followed by self-assembly multilayer film of polyoxometalate and its photochromic [J]. Electrochem. Commun.2006,8:790-796.
    [240]Kloster G M, Anson F C. Electrochemical reduction of HNO2 or oxidation of benzyl alcohol by electrocatalyst coatings consisting of alternating layers of [P2Mo18O62]6-anions and Os(II)-or Ru(II)-polypyridine cations [J]. Electrochim. Acta.1999,44: 2271-2279.
    [241]Shana Y P, Yang G C, Gong J, Zhang X L, Zhu L D, Qua L Y. Prussian blue nanoparticles potentiostatically electrodeposited on indium tin oxide/chitosan nano fibers electrode and their electrocatalysis towards hydrogen peroxide [J]. Electrochim. Acta.2008,53:7751-7755.
    [242]Wan L S, Ke B B, Wu J, Xu Z K. Catalase immobilization on electrospun nanofibers: effect of porphyrin pendants and carbon nanotubes [J]. J. Phys. Chem. C.2007, 111(38):14091-14097.
    [243]Brinker C J, Lu Y F, Sellinger A, Fan H Y. Evaporation-induced self-assembly: nanostructures made easy [J]. Adv. Mater.1999,11:7579-585.
    [244]Qiu Y Y, Yu J, Zhou X S, Tan C L, Yin J. Synthesis of porous NiO and ZnO submicro-and nanofibers from electrospun polymer fiber templates [J]. Nanoscale Res. Lett. 2009,4(2):173-177.
    [245]Kim G M, Michler G H, Potschke P. Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning [J]. Polymer.2005,46:7346-7351.
    [246]Han S O, Son W K, Youk J H, Leed T S, Park W H. Ultrafine porous fibers electrospun from cellulose triacetate [J]. Mater. Lett.2005,59:2998-3001.
    [247]Roh S H, Lee Y A, Lee J W, Kim S I. Preparation and characterization of electrospun silica nanofibers from PVP/P123 blended polymer solution [J]. J. Nanosci. Nanotechnol.2008,8:5147-5151.
    [248]Zhan S H, Chen D R, Jiao X L, Tao C H. Long TiO2 hollow fibers with mesoporous walls:Sol-gel combined electrospun fabrication and photocatalytic properties [J]. J. Phys. Chem. B.2006,110:11199-11204.
    [249]Ivanoy I T, Tsokeva Z. Effect of chirality on PVP/drug interaction within binary physical mixtures of ibuprofen, ketoprofen, and naproxen:A DSC study [J]. Chirality. 2009,21:719-727.
    [250]Tobyn M, Brown J, Dennis A B, Fakes M, Gao Q, Gamble J, Khimyak Y Z, Mcgeorge G, Patel C, Sinclair W, Timmins P, Yin S. Amorphous drug-PVP dispersions: application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state [J]. J. Pharm. Sci.2009,98:3456-3468.
    [251]Kecht J, Bein T. Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment [J]. Microporous Mesoporous Mater.2008,116:123-130.
    [252]Joo S H, Ryoo R, Kruk M. Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates [J]. J. Phys. Chem. B.2002,106:4640-4646.
    [253]Yamada T, Zhou H, Hiroishi D. Platinum surface modification of SBA-15 by γ-radiation treatment [J]. Adv. Mater.2003,15:511-513.
    [254]Wan Y, Zhao D Y. On the controllable soft-templating approach to mesoporous silicates [J]. Chem. Rev.2007,107:2821-2860.
    [255]Longenberger L, Mills G. Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers [J]. J. Phys. Chem.1995,99:475-478.
    [256]Ghosh S K, Kundu S, Mandal M, Nath S, Pal T. Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation [J]. J. Nanopart. Res.2003,5: 577-587.
    [257]Wang M, Pan N. Predictions of effective physical properties of complex multiphase materials [J]. Mater. Sci. Eng. R:Report.2008,63:1-30.
    [258]Wang M, Pan N, Wang J K, Chen S Y. Mesoscopic simulations of phase distribution
    effects on the effective thermal conductivity of microgranular porous media [J]. J. Colloid Interface Sci.2007,311:562-570.
    [259]Jana N R, Pal T. Redox catalytic property of still-growing and final palladium particles:a comparative study [J]. Langmuir.1999,15:3458-3463.
    [260]Lu J Q, Bravo-Suarez J J, Takahashi A, Haruta M, Oyama S T. In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen [J]. J. Catal.2005,232:85-95.
    [261]Zarchi S R, Saboury A A, Norouzi P, Hong J, Ahmadian S, Ganjali M R, Moosavi-Movahedi A A, Moghaddam A B, Javed A. Use of silver nanoparticles as an electron transfer facilitator in electrochemical ligand-binding of haemoglobin [J]. J. Appl. Electrochem.2007,37:1021-1026.
    [262]Pan Q, Zhang R Y, Bai Y F, He N Y, Lu Z H. An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement [J]. Anal. Biochem.2008,375:179-186.
    [263]Yuan P X, Zhuo Y, Chai Y Q, Jua H X. Dendritic silver/silicon dioxide nanocomposite modified electrodes for electrochemical sensing of hydrogen peroxide [J]. Electroanal. 2008,20:1839-1844.
    [264]Millo D, Ranieri A, Gross P, Ly H k, Borsari M, Hildebrandt P, Wuite G J L, Gooijer C, Zwan G V. The electrochemical response of cytochrome C immobilized on smooth and roughened silver and gold surfaces chemically modified with 11-mercaptounodecanoic acid [J]. J. Phys. Chem. C.2009,113:2861-2866.
    [265]Chen Z P, Peng Z F, Luo Y, Qu B, Jiang J H, Zhang X B, Shen G L, Yu R Q. Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement [J]. Biosens. Bioelectron.2007,23: 485-491.
    [266]Chen Z, Xie S B, Shen L, Du Y, He S L, Li Q, Liang Z W, Meng X, Li B, Xu X D, Ma H W, Huang Y Y, Shao Y H. Investigation of the interactions between silver nanoparticles and hela cells by scanning electrochemical microscopy [J]. Analyst.2008, 133:1221-1228.
    [267]Li Y J, Liu C Y. Silver-sxchanged zeolite Y-modified electrodes:size selectivity for anions [J]. J. Electroana. Chem.2001,517(1-2):117-120.
    [268]Ghilane J, Fan F R F, Bard A J. Facile electrochemical characterization of core/shell nanoparticles:Ag Core/Ag2O shell structures [J]. Nano Lett.2007,7:1406-1412.
    [269]Wijaya A, Schaffer S B, Pallares I, Hamad-Schifferli G K. Selective Release of
    Multiple DNA Oligonucleotides from Gold Nanorods [J]. ACS Nano.2009,3(1): 80-86.
    [270]Pissuwan D, Valenzuela S M, Miller C M, Cortie M B. A golden bullet? selective targeting of toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods [J]. Nano Lett.2007,7:3808-3812.
    [271]Eck W, Craig G, Sigdel A, Ritter G, Old L J, Tang L, Brennan M F, Allen P J, Mason M D. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue [J]. ACS Nano.2008,2(11): 2263-2272.
    [272]Ni W H, Yang Z, Chen H J, Li L, Wang J F. Coupling between molecular and plasmonic resonances in freestanding dye?gold nanorod hybrid nanostructures [J]. J. Am. Chem. Soc.2008,130:6692-6693.
    [273]Li C Z, Male K B, Hrapovic S, Luong J H T. Fluorescence properties of gold nanorods and their application for DNA biosensing [J]. Chem. Commun.2005,31:3924-3926.
    [274]Wang C G, Irudayaraj J. Gold Nanorod Probes for the Detection of Multiple Pathogens [J]. Small.2008,4:2204-2208.
    [275]Barnakov Y A, Yu M H, Rosenzweig Z. Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled stober synthesis [J]. Langmuir. 2005,21:7524-7527.
    [276]Lee D C, Mikulec F V, Pelaez J M, Koo B, Korgel B A. Synthesis and magnetic properties of silica-coated FePt nanocrystals [J]. J. Phys. Chem. B.2006, 110:11160-11166.
    [277]Tartaj P, Gonzalez-Carreno T, Ferrer M L, Serna C J. Metallic nanomagnets randomly dispersed in spherical colloids:Toward a universal route for the preparation of colloidal composites containing nanoparticles [J]. Angew. Chem. Int. Ed.2004,43: 6304-6307.
    [278]Nakamura T, Yamada Y, Yano K. J. Novel synthesis of highly monodispersed γ-Fe2O3/SiO2 and ε-Fe2O3/SiO2 nanocomposite spheres [J]. Mater. Chem.2006,16: 2417-2419.
    [279]Logar M, Jancar B, Suvorov D, Kostanjsek R. In situ synthesis of Ag nanoparticles in polyelectrolyte multilayers [J]. Nanotechnology.2007,18:325601.
    [280]Phonthammachai N, Kah J C Y, Jun G, Sheppard C J R, Olivo M C, Mhaisalkar S G, White T J. Synthesis of contiguous silica-gold core-shell structures:critical parameters and processes [J]. Langmuir.2008,24(9):5109-5112.
    [281]Su K H, Wei Q H, Zhang X, Mock J J, Smith D R, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles [J]. Nano Lett.2003,3(8): 1087-1090.
    [282]Tsung C K, Kou X S, Shi Q H, Zhang J P, Yeung M H, Wang J F, Stucky G D. Selective shortening of single-crystalline gold nanorods by mild oxidation [J]. J. Am. Chem. Soc.2006,128(16):5352-5353.
    [283]Koo H Y, Choi W S, Kim D Y. Direct growth of optically stable gold nanorods onto polyelectrolyte multilayered capsules [J]. Small.2008,4:742-745.
    [284]Kelly K L, Coronado E, Zhao L L, Schatz G C. The Optical Properties of Metal Nanoparticles:The influence of size, shape and dielectric environment [J]. J. Phys. Chem. B.2003,107(3):668-677.
    [285]Yan Y M, Tel-Vered R, Yehezkeli O, Cheglakov Z, Willner I. Biocatalytic growth of Au nanoparticles immobilized on glucose oxidase enhances the ferrocene-mediated bioelectrocatalytic oxidation of glucose [J]. Adv. Mater.2008,20:2365-2370.
    [286]Bai Y, Yang H, Yang W W, Li Y C, Sun C Q. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction [J]. Sens. Actuators, B.2007,124:179-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700